+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Molecular and genetic characterisation of the SARS coronavirus auxiliary protein X1 in Drosophila



Molecular and genetic characterisation of the SARS coronavirus auxiliary protein X1 in Drosophila



Hong Kong Medical Journal 14(Suppl. 4): 14-16



1. We have generated monoclonal antibodies against the SARS coronavirus (SARS-CoV) X1/3a protein (3a), which are suitable for western blotting, immunocytochemistry, and immunohistochemistry. 2. We have established and characterised an in-vivo 3a transgenic Drosophila model, and demonstrated its usefulness in studying SARS-CoV 3a gene function. 3. We validated our in-vivo findings on 3a gene function in mammalian Vero E6 cells. 4. Our findings raise the possibility of using ion channel blockers as a novel approach to suppress SARS-CoV-induced cell death.

Please choose payment method:






(PDF emailed within 1 workday: $29.90)

Accession: 054432600

Download citation: RISBibTeXText

PMID: 18708668


Related references

Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. Journal of Clinical Microbiology 43(7): 3054-3058, 2005

Mouse studies of SARS coronavirus-specific immune responses to recombinant replication-defective adenovirus expressing SARS coronavirus N protein. Hong Kong Medical Journal 15(Suppl. 2): 33-36, 2009

Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. Journal of Clinical Microbiology 42(5): 2306-2309, 2004

Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. Journal of Virology 89(20): 10532-10547, 2015

Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clinical and Diagnostic Laboratory Immunology 11(4): 665-668, 2004

In vivo functional characterization of the SARS-Coronavirus 3a protein in Drosophila. Biochemical and Biophysical Research Communications 337(2): 720-729, 2005

Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303(5664): 1666-1669, 2004

Baculovirus surface display of SARS coronavirus (SARS-CoV) spike protein and immunogenicity of the displayed protein in mice models. Dna and Cell Biology 25(12): 668-673, 2006

Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. Journal of Immunology 181(9): 6337-6348, 2008

In vitro expression of SARS coronavirus (SARS-CoV) nucleocapsid protein and examination of the function of monoclonal antibody induced by the expressed protein. Journal of Zhejiang University Agriculture and Life Sciences 31(2): 232-236, 2005

The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology 354(1): 132-142, 2006

Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Research 228: 7, 2017

Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virology Journal 6: 230, 2009

Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. Journal of Virology 82(4): 1819-1826, 2008