Molecular wire encapsulated into pi organogels: efficient supramolecular light-harvesting antennae with color-tunable emission
Ajayaghosh, A.; Praveen, V.K.; Vijayakumar, C.; George, S.J.
Angewandte Chemie 46(33): 6260-6265
2007
ISSN/ISBN: 1433-7851
PMID: 17607676
DOI: 10.1002/anie.200701925
Accession: 054451320
PDF emailed within 0-6 h: $19.90
Related References
Xiao, T.; Wu, H.; Sun, G.; Diao, K.; Wei, X.; Li, Z.-Y.; Sun, X.-Q.; Wang, L. 2020: An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile Red Chemical Communications 56(80): 12021-12024Locritani, M.; Yu, Y.; Bergamini, G.; Baroncini, M.; Molloy, J.K.; Korgel, B.A.; Ceroni, P. 2014: Silicon Nanocrystals Functionalized with Pyrene Units: Efficient Light-Harvesting Antennae with Bright Near-Infrared Emission Journal of Physical Chemistry Letters 5(19): 3325-3329
Li, C.; Zhang, J.; Zhang, S.; Zhao, Y. 2019: Efficient Light-Harvesting Systems with Tunable Emission through Controlled Precipitation in Confined Nanospace Angewandte Chemie 58(6): 1643-1647
Ma, X.; Qiao, B.; Yue, J.; Yu, J.; Geng, Y.; Lai, Y.; Feng, E.; Han, X.; Liu, M. 2021: Efficient artificial light-harvesting systems based on aggregation-induced emission in supramolecular gels Soft Matter 17(34): 7813-7816
Jin, Y.; Zhou, H.-P.; Jiang, M.-S. 2016: A Tunable-Color Emission Phosphor Y₂O₃:Eu³⁺, Bi³⁺ with Efficient Energy Transfer for White Light Emitting Diodes Journal of Nanoscience and Nanotechnology 16(1): 704-708
Xu, L.; Wang, Z.; Wang, R.; Wang, L.; He, X.; Jiang, H.; Tang, H.; Cao, D.; Tang, B.Z. 2020: A Conjugated Polymeric Supramolecular Network with Aggregation-Induced Emission Enhancement: An Efficient Light-Harvesting System with an Ultrahigh Antenna Effect Angewandte Chemie 59(25): 9908-9913
Lou, X-Yue.; Song, N.; Yang, Y-Wei. 2019: Enhanced Solution and Solid-State Emission and Tunable White-Light Emission Harvested by Supramolecular Approaches Chemistry 25(51): 11975-11982
Van Herpt, J.T.; Areephong, J.; Stuart, M.C.A.; Browne, W.R.; Feringa, B.L. 2014: Light-controlled formation of vesicles and supramolecular organogels by a cholesterol-bearing amphiphilic molecular switch Chemistry 20(6): 1737-1742
Wang, Q.; Zhang, Q.; Zhang, Q-Wei.; Li, X.; Zhao, C-Xin.; Xu, T-Yi.; Qu, D-Hui.; Tian, H. 2020: Color-tunable single-fluorophore supramolecular system with assembly-encoded emission Nature Communications 11(1): 158
Atsbeha, T.; Bussotti, L.; Cicchi, S.; Foggi, P.; Ghini, G.; Lascialfari, L.; Marcelli, A. 2011: Photophysical characterization of low-molecular weight organogels for energy transfer and light harvesting Journal of Molecular Structure 993(1-3): 459-463
Kashida, H.; Azuma, H.; Maruyama, R.; Araki, Y.; Wada, T.; Asanuma, H. 2020: Efficient Light-Harvesting Antennae Resulting from the Dense Organization of Dyes into DNA Junctions through d-Threoninol Angewandte Chemie 59(28): 11360-11363
Diao, K.; Whitaker, D.J.; Huang, Z.; Qian, H.; Ren, D.; Zhang, L.; Li, Z.-Y.; Sun, X.-Q.; Xiao, T.; Wang, L. 2022: An ultralow-acceptor-content supramolecular light-harvesting system for white-light emission Chemical Communications 58(14): 2343-2346
Novikov, A.A.; Taisova, A.S.; Fetisova, Z.G. 2006: Optimal spectral coordination of subantennae in natural antennae as an efficient strategy for light harvesting in photosynthesis Journal of Bioinformatics and Computational Biology 4(4): 887-909
Tian, L.; Zhang, W.; Yang, B.; Lu, P.; Zhang, M.; Lu, D.; Ma, Y.; Shen, J. 2005: Zinc(II)-induced color-tunable fluorescence emission in the pi-conjugated polymers composed of the bipyridine unit: a way to get white-light emission Journal of Physical Chemistry. B 109(15): 6944-6947
Ziessel, R.; Harriman, A. 2011: Artificial light-harvesting antennae: electronic energy transfer by way of molecular funnels Chemical Communications 47(2): 611-631