Home
  >  
Section 55
  >  
Chapter 54,516

Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis

Kwiatkowski, T.J.; Bosco, D.A.; Leclerc, A.L.; Tamrazian, E.; Vanderburg, C.R.; Russ, C.; Davis, A.; Gilchrist, J.; Kasarskis, E.J.; Munsat, T.; Valdmanis, P.; Rouleau, G.A.; Hosler, B.A.; Cortelli, P.; de Jong, P.J.; Yoshinaga, Y.; Haines, J.L.; Pericak-Vance, M.A.; Yan, J.; Ticozzi, N.; Siddique, T.; McKenna-Yasek, D.; Sapp, P.C.; Horvitz, H.R.; Landers, J.E.; Brown, R.H.

Science 323(5918): 1205-1208

2009


ISSN/ISBN: 1095-9203
PMID: 19251627
DOI: 10.1126/science.1166066
Accession: 054515552

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder. Ten percent of cases are inherited; most involve unidentified genes. We report here 13 mutations in the fused in sarcoma/translated in liposarcoma (FUS/TLS) gene on chromosome 16 that were specific for familial ALS. The FUS/TLS protein binds to RNA, functions in diverse processes, and is normally located predominantly in the nucleus. In contrast, the mutant forms of FUS/TLS accumulated in the cytoplasm of neurons, a pathology that is similar to that of the gene TAR DNA-binding protein 43 (TDP43), whose mutations also cause ALS. Neuronal cytoplasmic protein aggregation and defective RNA metabolism thus appear to be common pathogenic mechanisms involved in ALS and possibly in other neurodegenerative disorders.

PDF emailed within 0-6 h: $19.90