Home
  >  
Section 56

EurekaMag Full Text Articles Chapter 55,100



References:

MacNeil, J.A.M.; Adachi, J.D.; Goltzman, D.; Josse, R.G.; Kovacs, C.S.; Prior, J.C.; Olszynski, W.; Davison, K.S.; Kaiser, S.M. 2012: Predicting fracture using 2D finite element modelling. Medical Engineering and Physics 34(4): 478-484
Sambrook, P.N.; Flahive, J.; Hooven, F.H.; Boonen, S.; Chapurlat, R.; Lindsay, R.; Nguyen, T.V.; Díez-Perez, A.; Pfeilschifter, J.; Greenspan, S.L.; Hosmer, D.; Netelenbos, J.Coen.; Adachi, J.D.; Watts, N.B.; Cooper, C.; Roux, C.; Rossini, M.; Siris, E.S.; Silverman, S.; Saag, K.G.; Compston, J.E.; LaCroix, A.; Gehlbach, S. 2011: Predicting fractures in an international cohort using risk factor algorithms without BMD. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 26(11): 2770-2777
Haider, M.K.; Bertrand, H.-O.; Hubbard, R.E. 2011: Predicting fragment binding poses using a combined MCSS MM-GBSA approach. Journal of Chemical Information and Modeling 51(5): 1092-1105
Mathias, J.M. 2010: Predicting frailty risk in older patients. Or Manager 26(11): 23-24
Abramson, D.H.; Folberg, R.; Francis, J.H. 2018: Clinicopathologic Correlation of Choroidal Invasion in Retinoblastoma. Ophthalmology 125(4): 568
Bouarfa, L.; Atallah, L.; Kwasnicki, R.M.; Pettitt, C.; Frost, G.; Yang, G.-Z. 2014: Predicting free-living energy expenditure using a miniaturized ear-worn sensor: an evaluation against doubly labeled water. IEEE Transactions on Bio-Medical Engineering 61(2): 566-575
Bracewell, S.A.; Robinson, L.A.; Firth, L.B.; Knights, A.M. 2013: Predicting free-space occupancy on novel artificial structures by an invasive intertidal barnacle using a removal experiment. Plos one 8(9): E74457
Gale, C.P.; Cattle, B.A.; Simms, A.D.; Greenwood, D.C.; West, R.M. 2009: Predicting freedom from clinical events in non-ST-elevation acute coronary syndromes. Heart 95(16): 1355; Author Reply 1355-6
Brieger, D.; Fox, K.A.A.; Fitzgerald, G.; Eagle, K.A.; Budaj, A.; Avezum, A.; Granger, C.B.; Costa, B.; Anderson, F.A.; Steg, P.G. 2009: Predicting freedom from clinical events in non-ST-elevation acute coronary syndromes: the Global Registry of Acute Coronary Events. Heart 95(11): 888-894
Khrapak, S.A.; Morfill, G.E. 2009: Predicting freezing for some repulsive potentials. Physical Review Letters 103(25): 255003
Feng, G.; Foster, D.H. 2012: Predicting frequency of metamerism in natural scenes by entropy of colors. Journal of the Optical Society of America. a Optics Image Science and Vision 29(2): A200-A208
Bauminger, N.; Solomon, M.; Rogers, S.J. 2010: Predicting friendship quality in autism spectrum disorders and typical development. Journal of Autism and Developmental Disorders 40(6): 751-761
De Vries, H.; Eggers, S.M.; Lechner, L.; van Osch, L.; van Stralen, M.M. 2014: Predicting fruit consumption: the role of habits, previous behavior and mediation effects. Bmc Public Health 14: 730
Chang, S.; Wang, Z.J. 2014: Predicting fruit fly's sensing rate with insect flight simulations. Proceedings of the National Academy of Sciences of the United States of America 111(31): 11246-11251
Lee, S.; Dong, D.X.; Jindal, R.; Maguire, T.; Mitra, B.; Schloss, R.; Yarmush, M. 2014: Predicting full thickness skin sensitization using a support vector machine. Toxicology in Vitro: An International Journal Published in Association with Bibra 28(8): 1413-1423
Greenaway, M.C.; Duncan, N.L.; Hanna, S.; Smith, G.E. 2012: Predicting functional ability in mild cognitive impairment with the Dementia Rating Scale-2. International Psychogeriatrics 24(6): 987-993
De Saint-Hubert, M.; Schoevaerdts, D.; Cornette, P.; D'Hoore, W.; Boland, B.; Swine, C. 2010: Predicting functional adverse outcomes in hospitalized older patients: a systematic review of screening tools. Journal of Nutrition Health and Aging 14(5): 394-399
Lu, H.; Lin, L.; Sato, S.; Xing, Y.; Lee, C.J. 2009: Predicting functional alternative splicing by measuring RNA selection pressure from multigenome alignments. Plos Computational Biology 5(12): E1000608
Veeramani, B.; Bader, J.S. 2010: Predicting functional associations from metabolism using bi-partite network algorithms. Bmc Systems Biology 4: 95
Zhang, T.; Guo, L.; Li, K.; Zhu, D.; Cui, G.; Liu, T. 2011: Predicting functional brain ROIs via fiber shape models. Medical Image Computing and Computer-Assisted Intervention: Miccai . International Conference on Medical Image Computing and Computer-Assisted Intervention 14(Part 2): 42-49
Coleman, A.; Weir, K.; Ware, R.S.; Boyd, R. 2015: Predicting functional communication ability in children with cerebral palsy at school entry. Developmental Medicine and Child Neurology 57(3): 279-285
Josephs, K.A.; Whitwell, J.L.; Weigand, S.D.; Senjem, M.L.; Boeve, B.F.; Knopman, D.S.; Smith, G.E.; Ivnik, R.J.; Jack, C.R.; Petersen, R.C. 2011: Predicting functional decline in behavioural variant frontotemporal dementia. Brain: a Journal of Neurology 134(Part 2): 432-448
Hoogerduijn, J.G.; de Rooij, S.E.; Grobbee, D.E.; Schuurmans, M.J. 2014: Predicting functional decline in older patients undergoing cardiac surgery. Age and Ageing 43(2): 218-221
Chen, L-Yu.; Liu, L-Kuo.; Liu, C-Liang.; Peng, L-Ning.; Lin, M-Hsien.; Chen, L-Kung.; Lan, C-Fu.; Chang, P-Lun. 2013: Predicting functional decline of older men living in veteran homes by minimum data set: implications for disability prevention programs in long term care settings. Journal of the American Medical Directors Association 14(4): 309.E9
Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. 2013: Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics Chapter 7: Unit 7.20
Lindenberg, R.; Zhu, L.L.; Rüber, T.; Schlaug, G. 2012: Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Human Brain Mapping 33(5): 1040-1051
Reid, J.M.; Gubitz, G.J.; Dai, D.; Kydd, D.; Eskes, G.; Reidy, Y.; Christian, C.; Counsell, C.E.; Dennis, M.; Phillips, S.J. 2010: Predicting functional outcome after stroke by modelling baseline clinical and CT variables. Age and Ageing 39(3): 360-366
Nijboer, T.; van de Port, I.; Schepers, V.; Post, M.; Visser-Meily, A. 2013: Predicting functional outcome after stroke: the influence of neglect on basic activities in daily living. Frontiers in Human Neuroscience 7: 182
Simons, M.A.; Ziviani, J.; Copley, J. 2010: Predicting functional outcome for children on admission after burn injury: do parents hold the key?. Journal of Burn Care and Research: Official Publication of the American Burn Association 31(5): 750-765
Li, C.-C.; Chen, Y.-M.; Tsay, S.-L.; Hu, G.-C.; Lin, K.-C. 2010: Predicting functional outcomes in patients suffering from ischaemic stroke using initial admission variables and physiological data: a comparison between tree model and multivariate regression analysis. Disability and Rehabilitation 32(25): 2088-2096
Bade, M.J.; Kittelson, J.M.; Kohrt, W.M.; Stevens-Lapsley, J.E. 2014: Predicting functional performance and range of motion outcomes after total knee arthroplasty. American Journal of Physical Medicine and Rehabilitation 93(7): 579-585
O'Connor, S.R.; Bleakley, C.M.; Tully, M.A.; McDonough, S.M. 2013: Predicting functional recovery after acute ankle sprain. Plos one 8(8): E72124
Matsuzaki, H.; Narisawa, H.; Miwa, H.; Toishi, S. 2009: Predicting functional recovery and return to work after mutilating hand injuries: usefulness of Campbell's Hand Injury Severity Score. Journal of Hand Surgery 34(5): 880-885
Friedrich, M.G. 2013: Predicting functional recovery in acute heart disease using a single snapshot: we have a winner. Journal of the American College of Cardiology 61(1): 64-65
Torkamani, A.; Schork, N.J. 2008: Predicting functional regulatory polymorphisms. Bioinformatics 24(16): 1787-1792
Haddow, C.; Perry, J.; Durrant, M.; Faith, J. 2011: Predicting functional residues of protein sequence alignments as a feature selection task. International Journal of Data Mining and Bioinformatics 5(6): 691-705
Skinner, M.L.; Haggerty, K.P.; Fleming, C.B.; Catalano, R.F. 2009: Predicting functional resilience among young-adult children of opiate-dependent parents. Journal of Adolescent Health: Official Publication of the Society for Adolescent Medicine 44(3): 283-290
McKenzie, H.A.; Fung, C.; Becker, T.M.; Irvine, M.; Mann, G.J.; Kefford, R.F.; Rizos, H. 2010: Predicting functional significance of cancer-associated p16(INK4a) mutations in CDKN2A. Human Mutation 31(6): 692-701
Ward, L.D.; Bussemaker, H.J. 2008: Predicting functional transcription factor binding through alignment-free and affinity-based analysis of orthologous promoter sequences. Bioinformatics 24(13): I165-I171
Selpi; Bryant, C.H.; Kemp, G.J.L.; Sarv, J.; Kristiansson, E.; Sunnerhagen, P. 2009: Predicting functional upstream open reading frames in Saccharomyces cerevisiae. Bmc Bioinformatics 10: 451
Ucar, D.; Beyer, A.; Parthasarathy, S.; Workman, C.T. 2009: Predicting functionality of protein-DNA interactions by integrating diverse evidence. Bioinformatics 25(12): I137-I144
Levenstien, M.A.; Klein, R.J. 2011: Predicting functionally important SNP classes based on negative selection. Bmc Bioinformatics 12: 26
Dwyer, R.S.; Ricci, D.P.; Colwell, L.J.; Silhavy, T.J.; Wingreen, N.S. 2013: Predicting functionally informative mutations in Escherichia coli BamA using evolutionary covariance analysis. Genetics 195(2): 443-455
Hu, L.; Huang, T.; Shi, X.; Lu, W.-C.; Cai, Y.-D.; Chou, K.-C. 2011: Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties. Plos one 6(1): E14556
Shah, D.A.; Molineros, J.E.; Paul, P.A.; Willyerd, K.T.; Madden, L.V.; De Wolf, E.D. 2013: Predicting fusarium head blight epidemics with weather-driven pre- and post-anthesis logistic regression models. Phytopathology 103(9): 906-919
Dunn, M.; Mazanov, J.; Sitharthan, G. 2009: Predicting future anabolic-androgenic steroid use intentions with current substance use: findings from an internet-based survey. Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine 19(3): 222-227
Hansel, N.N.; Matsui, E.C.; Rusher, R.; McCormack, M.C.; Curtin-Brosnan, J.; Peng, R.D.; Mazique, D.; Breysse, P.N.; Diette, G.B. 2011: Predicting future asthma morbidity in preschool inner-city children. Journal of Asthma: Official Journal of the Association for the Care of Asthma 48(8): 797-803
Siegenthaler, U.; Oeschger, H. 1978: Predicting future atmospheric carbon dioxide levels. Science 199(4327): 388-395
Tolan, T. 2011: Predicting future behavior. Healthcare Informatics: the Business Magazine for Information and Communication Systems 28(6): 80
Lau, E.H.Y.; He, X.-Q.; Lee, C.-K.; Wu, J.T. 2013: Predicting future blood demand from thalassemia major patients in Hong Kong. Plos one 8(12): E81846
Kuceyeski, A.; Kamel, H.; Navi, B.B.; Raj, A.; Iadecola, C. 2014: Predicting future brain tissue loss from white matter connectivity disruption in ischemic stroke. Stroke 45(3): 717-722
Zhang, D.; Shen, D. 2012: Predicting future clinical changes of MCi patients using longitudinal and multimodal biomarkers. Plos one 7(3): E33182
Bewick, S.; Stuble, K.L.; Lessard, J-Phillipe.; Dunn, R.R.; Adler, F.R.; Sanders, N.J. 2014: Predicting future coexistence in a North American ant community. Ecology and evolution 4(10): 1804-1819
Petrič, I.; Cestnik, B. 2014: Predicting future discoveries from current scientific literature. Methods in Molecular Biology 1159: 159-168
Ordonez-Llanos, J.; Sionis, A. 2013: Predicting future events in patients with stable cardiovascular disease. Will high-sensitivity cardiac troponins be up to the challenge?. Clinical Biochemistry 46(1-2): 10-11
Furukawa, K.; Cologne, J.B.; Shimizu, Y.; Ross, N.Phillip. 2009: Predicting future excess events in risk assessment. Risk Analysis: An Official Publication of the Society for Risk Analysis 29(6): 885-899
Corke, C.; Leeuw, E.d.; Lo, S.K.; George, C. 2009: Predicting future intensive care demand in Australia. Critical Care and Resuscitation: Journal of the Australasian Academy of Critical Care Medicine 11(4): 257-260
De Grey, A.D.N.J. 2014: Predicting future longevity: at long last, extrapolation is on the way out. Rejuvenation Research 17(3): 247-248
Bagci, U.; Yao, J.; Miller-Jaster, K.; Chen, X.; Mollura, D.J. 2013: Predicting future morphological changes of lesions from radiotracer uptake in 18F-FDG-PET images. Plos one 8(2): E57105
Gray, N.S.; Fitzgerald, S.; Taylor, J.; Macculloch, M.J.; Snowden, R.J. 2007: Predicting future reconviction in offenders with intellectual disabilities: the predictive efficacy of VRAG, PCL-SV, and the HCR-20. Psychological Assessment 19(4): 474-479
Curtis, J.R.; Luijtens, K.; Kavanaugh, A. 2012: Predicting future response to certolizumab pegol in rheumatoid arthritis patients: features at 12 weeks associated with low disease activity at 1 year. Arthritis Care and Research 64(5): 658-667
Thamrin, C.; Zindel, J.; Nydegger, R.; Reddel, H.K.; Chanez, P.; Wenzel, S.E.; FitzPatrick, S.; Watt, R.A.; Suki, B.él.; Frey, U. 2011: Predicting future risk of asthma exacerbations using individual conditional probabilities. Journal of Allergy and Clinical Immunology 127(6): 1494-502.E3
Van Voorhees, B.W.; Paunesku, D.; Gollan, J.; Kuwabara, S.; Reinecke, M.; Basu, A. 2008: Predicting future risk of depressive episode in adolescents: the Chicago Adolescent Depression Risk Assessment (CADRA). Annals of Family Medicine 6(6): 503-511
Hermosillo, R.; Ritterband-Rosenbaum, A.; van Donkelaar, P. 2011: Predicting future sensorimotor states influences current temporal decision making. Journal of Neuroscience: the Official Journal of the Society for Neuroscience 31(27): 10019-10022
Kanoupakis, E.M.; Manios, E.G.; Vardas, P.E. 2009: Predicting future shocks in implantable cardioverter defibrillator recipients: the role of biomarkers. Europace: European Pacing Arrhythmias and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing Arrhythmias and Cardiac Cellular Electrophysiology of the European Society of Cardiology 11(11): 1434-1439
Mitchell, C.C.; Ashley, S.W.; Zinner, M.J.; Moore, F.D. 2007: Predicting future staffing needs at teaching hospitals: use of an analytical program with multiple variables. Archives of Surgery 142(4): 329-334
May, A.M.; Klonsky, E.D.; Klein, D.N. 2012: Predicting future suicide attempts among depressed suicide ideators: a 10-year longitudinal study. Journal of Psychiatric Research 46(7): 946-952
Coid, J.W.; Ullrich, S.; Kallis, C. 2013: Predicting future violence among individuals with psychopathy. British Journal of Psychiatry: the Journal of Mental Science 203(5): 387-388
Liew, T.M.; Luo, N.; Ng, W.Y.; Chionh, H.L.; Goh, J.; Yap, P. 2010: Predicting gains in dementia caregiving. Dementia and Geriatric Cognitive Disorders 29(2): 115-122
Pagani, L.S.; Derevensky, J.L.; Japel, C. 2009: Predicting gambling behavior in sixth grade from kindergarten impulsivity: a tale of developmental continuity. Archives of Pediatrics and Adolescent Medicine 163(3): 238-243
Lu, W.C.; Cheng, C.-F.; Chen, L.H. 2013: Predicting game-attending behavior in amateur athletes: the moderating role of intention stability. Psychological Reports 113(2): 420-434
Wu, B.; Buddensick, T.J.; Ferdosi, H.; Narducci, D.Marie.; Sautter, A.; Setiawan, L.; Shaukat, H.; Siddique, M.; Sulkowski, G.N.; Kamangar, F.; Kowdley, G.C.; Cunningham, S.C. 2014: Predicting gangrenous cholecystitis. Hpb: the Official Journal of the International Hepato Pancreato Biliary Association 16(9): 801-806
Siderius, D.W.; Gelb, L.D. 2009: Predicting gas adsorption in complex microporous and mesoporous materials using a new density functional theory of finely discretized lattice fluids. Langmuir 25(3): 1296-1299
Guerra, D.; Ricciardi, L.; Laborde, J-Claude.; Domenech, S. 2007: Predicting gaseous pollutant dispersion around a workplace. Journal of Occupational and Environmental Hygiene 4(8): 619-633
Li, C.; Xie, H.-B.; Chen, J.; Yang, X.; Zhang, Y.; Qiao, X. 2014: Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH: overcoming the difficulty in experimental determination. Environmental Science and Technology 48(23): 13808-13816
Paproski, R.J.; Young, J.D.; Cass, C.E. 2010: Predicting gemcitabine transport and toxicity in human pancreatic cancer cell lines with the positron emission tomography tracer 3'-deoxy-3'-fluorothymidine. Biochemical Pharmacology 79(4): 587-595
Joyce, A.R.; Palsson, B.Ø 2008: Predicting gene essentiality using genome-scale in silico models. Methods in Molecular Biology 416: 433-457
Costa, I.G.; Roider, H.G.; do Rego, T.G.; de Carvalho, F.d.A.T. 2011: Predicting gene expression in T cell differentiation from histone modifications and transcription factor binding affinities by linear mixture models. Bmc Bioinformatics 12(Suppl 1): S29
Bhosale, R.; Jewell, J.B.; Hollunder, J.; Koo, A.J.K.; Vuylsteke, M.; Michoel, T.; Hilson, P.; Goossens, A.; Howe, G.A.; Browse, J.; Maere, S. 2013: Predicting gene function from uncontrolled expression variation among individual wild-type Arabidopsis plants. Plant Cell 25(8): 2865-2877
Guan, Y.; Myers, C.L.; Hess, D.C.; Barutcuoglu, Z.; Caudy, A.A.; Troyanskaya, O.G. 2008: Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biology 9(Suppl 1): S3
Chen, Y.; Li, Z.; Wang, X.; Feng, J.; Hu, X. 2010: Predicting gene function using few positive examples and unlabeled ones. Bmc Genomics 11(Suppl 2): S11
Phuong, T.; Nhung, N. 2013: Predicting gene function using similarity learning. Bmc Genomics 14(Suppl 4): S4
Cohen, P.E.; Holloway, J.K. 2010: Predicting gene networks in human oocyte meiosis. Biology of Reproduction 82(3): 469-472
Kuppuswamy, U.; Ananthasubramanian, S.; Wang, Y.; Balakrishnan, N.; Ganapathiraju, M.K. 2014: Predicting gene ontology annotations of orphan GWAS genes using protein-protein interactions. Algorithms for Molecular Biology: Amb 9(1): 10
Dozmorov, M.G.; Giles, C.B.; Wren, J.D. 2011: Predicting gene ontology from a global meta-analysis of 1-color microarray experiments. Bmc Bioinformatics 12(Suppl 10): S14
Zhu, M.; Dahmen, J.L.; Stacey, G.; Cheng, J. 2013: Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data. Bmc Bioinformatics 14: 278
Cosgrove, E.J.; Zhou, Y.; Gardner, T.S.; Kolaczyk, E.D. 2008: Predicting gene targets of perturbations via network-based filtering of mRNA expression compendia. Bioinformatics 24(21): 2482-2490
Teif, V.B. 2010: Predicting gene-regulation functions: lessons from temperate bacteriophages. Biophysical Journal 98(7): 1247-1256
Rahmani, H.; Blockeel, H.; Bender, A. 2012: Predicting genes involved in human cancer using network contextual information. Journal of Integrative Bioinformatics 9(1): 210
Feng, Y.; Chiu, C.-H. 2014: Predicting genetic and ecological characteristics of bacterial species by comparing the trajectories of dN/dS and dI/dS in bacterial genomes. Molecular Biosystems 10(2): 266-272
Chipman, K.C.; Singh, A.K. 2009: Predicting genetic interactions with random walks on biological networks. Bmc Bioinformatics 10: 17
Schooler, C.; Revell, A.J.; Timpano, K.R.; Wheaton, M.; Murphy, D.L. 2008: Predicting genetic loading from symptom patterns in obsessive- compulsive disorder: a latent variable analysis. Depression and Anxiety 25(8): 680-688
Raadsma, H.W.; Moser, G.; Crump, R.E.; Khatkar, M.S.; Zenger, K.R.; Cavanagh, J.A.L.; Hawken, R.J.; Hobbs, M.; Barris, W.; Solkner, J.; Nicholas, F.W.; Tier, B. 2008: Predicting genetic merit for mastitis and fertility in dairy cattle using genome wide selection and high density SNP screens. Developments in Biologicals 132: 219-223
Lee, I.; Lehner, B.; Vavouri, T.; Shin, J.; Fraser, A.G.; Marcotte, E.M. 2010: Predicting genetic modifier loci using functional gene networks. Genome Research 20(8): 1143-1153
Sahu, S.S.; Weirick, T.; Kaundal, R. 2014: Predicting genome-scale Arabidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches. Bmc Bioinformatics 15(Suppl 11): S13
Yang, N.; Winkel, L.H.E.; Johannesson, K.H. 2014: Predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United States. Environmental Science and Technology 48(10): 5660-5666
Sandoval-Ruiz, C.A.; Zumaquero-Rios, J.L.; Rojas-Soto, O.R. 2008: Predicting geographic and ecological distributions of triatomine species in the southern Mexican state of Puebla using ecological niche modeling. Journal of Medical Entomology 45(3): 540-546
Epp, T.Y.; Waldner, C.L.; Berke, O. 2009: Predicting geographical human risk of West Nile virus--Saskatchewan, 2003 and 2007. Canadian Journal of Public Health 100(5): 344-348
Rocha, C.M.; Kruger, E.; Whyman, R.; Tennant, M. 2014: Predicting geographically distributed adult dental decay in the greater Auckland region of New Zealand. Community Dental Health 31(2): 85-90
Carpenter, C.R.; Avidan, M.S.; Wildes, T.; Stark, S.; Fowler, S.A.; Lo, A.X. 2014: Predicting geriatric falls following an episode of emergency department care: a systematic review. Academic Emergency Medicine: Official Journal of the Society for Academic Emergency Medicine 21(10): 1069-1082
Reboul, C.F.; Mahmood, K.; Whisstock, J.C.; Dunstone, M.A. 2012: Predicting giant transmembrane β-barrel architecture. Bioinformatics 28(10): 1299-1302
Hamerton, I.; Howlin, B.J.; Kamyszek, G. 2012: Predicting glass transition temperatures of polyarylethersulphones using QSPR methods. Plos one 7(6): E38424
Howard, D.L.; Kim, M.M.; Hartnett, M.E. 2011: Predicting glaucoma diagnosis in an elderly sample: revisiting the established populations for epidemiologic studies of the elderly. Journal of the National Medical Association 103(4): 332-341
Bowd, C.; Lee, I.; Goldbaum, M.H.; Balasubramanian, M.; Medeiros, F.A.; Zangwill, L.M.; Girkin, C.A.; Liebmann, J.M.; Weinreb, R.N. 2012: Predicting glaucomatous progression in glaucoma suspect eyes using relevance vector machine classifiers for combined structural and functional measurements. Investigative Ophthalmology and Visual Science 53(4): 2382-2389
Xiang, Y.; Zhang, C.-Q.; Huang, K. 2012: Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on TCGA data. Bmc Bioinformatics 13(Suppl 2): S12
Trautwein, U.; Lüdtke, O. 2007: Predicting global and topic-specific certainty beliefs: domain-specificity and the role of the academic environment. British Journal of Educational Psychology 77(Part 4): 907-934
DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences of the United States of America 107(25): 11217-11222
Gustafson, E.J.; Shvidenko, A.Z.; Sturtevant, B.R.; Scheller, R.M. 2010: Predicting global change effects on forest biomass and composition in south-central Siberia. Ecological Applications: a Publication of the Ecological Society of America 20(3): 700-715
Senior, K. 2008: Predicting global death patterns not an easy task. Lancet. Infectious Diseases 8(7): 411
Tangri, N.; Alam, A.; Giannetti, N.; Deedwardes, M.B.; Cantarovich, M. 2008: Predicting glomerular filtration rate in heart transplant recipients using serum creatinine-based equations with cimetidine. Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation 27(8): 905-909
Novak, M.T.; Yuan, F.; Reichert, W.M. 2013: Predicting glucose sensor behavior in blood using transport modeling: relative impacts of protein biofouling and cellular metabolic effects. Journal of Diabetes Science and Technology 7(6): 1547-1560
McDowell, G.S.V.; Blanchard, A.P.; Taylor, G.P.; Figeys, D.; Fai, S.; Bennett, S.A.L. 2014: Predicting glycerophosphoinositol identities in lipidomic datasets using VaLID (Visualization and Phospholipid Identification)--an online bioinformatic search engine. Biomed Research International 2014: 818670
Fluckiger, M.; Brown, M.R.; Ward, L.R.; Moltschaniwskyj, N.A. 2011: Predicting glycogen concentration in the foot muscle of abalone using near infrared reflectance spectroscopy (NIRS). Food Chemistry 126(4): 1817-1820
O'Brien, S.R.; Xue, Y. 2014: Predicting goal achievement during stroke rehabilitation for Medicare beneficiaries. Disability and Rehabilitation 36(15): 1273-1278
Wurm, M.F.; Hrkać, M.; Morikawa, Y.; Schubotz, R.I. 2014: Predicting goals in action episodes attenuates BOLD response in inferior frontal and occipitotemporal cortex. Behavioural Brain Research 274: 108-117
Xu, B.; Madix, R.J.; Friend, C.M. 2014: Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies. Accounts of Chemical Research 47(3): 761-772
Robertson, J.M.; Söhn, M.; Yan, D. 2010: Predicting grade 3 acute diarrhea during radiation therapy for rectal cancer using a cutoff-dose logistic regression normal tissue complication probability model. International Journal of Radiation Oncology Biology Physics 77(1): 66-72
Duval, B.D.; Anderson-Teixeira, K.J.; Davis, S.C.; Keogh, C.; Long, S.P.; Parton, W.J.; DeLucia, E.H. 2013: Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop. Plos one 8(8): E72019
Magnusson, M.; Bergsten, A.; Ecke, F.; Bodin, O.; Bodin, L.; Hörnfeldt, B. 2013: Predicting grey-sided vole occurrence in northern Sweden at multiple spatial scales. Ecology and Evolution 3(13): 4365-4376
Wasson, P.; Prodoehl, J.; Coombes, S.A.; Corcos, D.M.; Vaillancourt, D.E. 2010: Predicting grip force amplitude involves circuits in the anterior basal ganglia. Neuroimage 49(4): 3230-3238
Mowat, G.; Heard, D.C.; Schwarz, C.J. 2013: Predicting grizzly bear density in western North America. Plos one 8(12): E82757
Peterson, C.B.; Crosby, R.D.; Wonderlich, S.A.; Mitchell, J.E.; Crow, S.J.; Engel, S. 2013: Predicting group cognitive-behavioral therapy outcome of binge eating disorder using empirical classification. Behaviour Research and Therapy 51(9): 526-532
Croon, M.A.; van Veldhoven, M.J.P.M. 2007: Predicting group-level outcome variables from variables measured at the individual level: a latent variable multilevel model. Psychological Methods 12(1): 45-57
Busscher, I.; Wapstra, F.H.; Veldhuizen, A.G. 2010: Predicting growth and curve progression in the individual patient with adolescent idiopathic scoliosis: design of a prospective longitudinal cohort study. Bmc Musculoskeletal Disorders 11: 93
Mesman, J.; Stoel, R.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.; Juffer, F.; Koot, H.M.; Alink, L.R.A. 2009: Predicting growth curves of early childhood externalizing problems: differential susceptibility of children with difficult temperament. Journal of Abnormal Child Psychology 37(5): 625-636
Crispen, P.L.; Wong, Y.-N.; Greenberg, R.E.; Chen, D.Y.T.; Uzzo, R.G. 2008: Predicting growth of solid renal masses under active surveillance. Urologic Oncology 26(5): 555-559
Mejlholm, O.; Gunvig, A.; Borggaard, C.; Blom-Hanssen, J.; Mellefont, L.; Ross, T.; Leroi, F.; Else, T.; Visser, D.; Dalgaard, P. 2010: Predicting growth rates and growth boundary of Listeria monocytogenes - An international validation study with focus on processed and ready-to-eat meat and seafood. International Journal of Food Microbiology 141(3): 137-150
Salah, N.; Abd El Dayem, S.M.; Fawaz, L.; Ibrahim, M. 2013: Predicting growth response among Egyptian prepubertal idiopathic isolated growth hormone deficient children. Journal of Pediatric Endocrinology and Metabolism: Jpem 26(3-4): 247-255
Ingham, S.C.; Borneman, D.L.; Ané, C.éc.; Ingham, B.H. 2010: Predicting growth-no growth of Listeria monocytogenes on vacuum-packaged ready-to-eat meats. Journal of Food Protection 73(4): 708-714
Vishwakarma, R.K.; Shivhare, U.S.; Nanda, S.K. 2012: Predicting guar seed splitting by compression between two plates using Hertz theory of contact stresses. Journal of Food Science 77(9): E231-E239
Sinha, N.; Sen, S. 2011: Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model. European Journal of Medicinal Chemistry 46(2): 618-630
Solhjouy-Fard, S.; Sarafrazi, A.; Minbashi Moeini, M.; Ahadiyat, A. 2013: Predicting habitat distribution of five heteropteran pest species in Iran. Journal of Insect Science 13: 116
Gogol-Prokurat, M. 2011: Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecological Applications: a Publication of the Ecological Society of America 21(1): 33-47
Laybourne, A.H.; Biggs, S.; Martin, F.C. 2011: Predicting habitual physical activity using coping strategies in older fallers engaged in falls-prevention exercise. Journal of Aging and Physical Activity 19(3): 189-200
Gijbels, D.; Alders, G.; Van Hoof, E.; Charlier, C.; Roelants, M.; Broekmans, T.; Eijnde, B.Op.'t.; Feys, P. 2010: Predicting habitual walking performance in multiple sclerosis: relevance of capacity and self-report measures. Multiple Sclerosis 16(5): 618-626
van Kuijk, A.A.; Pasman, J.W.; Hendricks, H.T.; Zwarts, M.J.; Geurts, A.C.H. 2009: Predicting hand motor recovery in severe stroke: the role of motor evoked potentials in relation to early clinical assessment. Neurorehabilitation and Neural Repair 23(1): 45-51
Bishop, A.J.; Martin, P.; MacDonald, M.; Poon, L.; Jazwinski, S.M.; Green, R.C.; Gearing, M.; Markesbery, W.R.; Woodard, J.L.; Johnson, M.A.; Tenover, J.S.; Siegler, I.C.; Rodgers, W.L.; Hausman, D.B.; Rott, C.; Davey, A.; Arnold, J. 2010: Predicting happiness among centenarians. Gerontology 56(1): 88-92
Kimmelman, J.; London, A.John. 2011: Predicting harms and benefits in translational trials: ethics, evidence, and uncertainty. Plos Medicine 8(3): E1001010
Sebanc, A.M.; Kearns, K.T.; Hernandez, M.D.; Galvin, K.B. 2007: Predicting having a best friend in young children: individual characteristics and friendship features. Journal of Genetic Psychology 168(1): 81-95
Scott, H.D.; Cabral, R.M. 1988: Predicting hazardous lifestyles among adolescents based on health-risk assessment data. American Journal of Health Promotion: Ajhp 2(4): 23-28
Weaver, A.S.; Zakrajsek, A.D.; Lewandowski, B.E.; Brooker, J.E.; Myers, J.G. 2013: Predicting head injury risk during International Space Station increments. Aviation Space and Environmental Medicine 84(1): 38-46
Anderson, L.R.; Mellor, J.M. 2008: Predicting health behaviors with an experimental measure of risk preference. Journal of Health Economics 27(5): 1260-1274
Varga, L.M.; Surratt, H.L. 2014: Predicting health care utilization in marginalized populations: Black, female, street-based sex workers. Women's Health Issues: Official Publication of the Jacobs Institute of Women's Health 24(3): E335-E343
Todd, L.; Hoffman-Goetz, L. 2011: Predicting health literacy among English-as-a-second-Language older Chinese immigrant women to Canada: comprehension of colon cancer prevention information. Journal of cancer education: the official journal of the American Association for Cancer Education 26(2): 326-332
Huppertz, J.W. 2008: Predicting health plan member retention from satisfaction surveys: the moderating role of intention and complaint voicing. Health Marketing Quarterly 25(4): 383-404
Mittmann, N.; Hitzig, S.L.; Catharine Craven, B. 2014: Predicting health preference in chronic spinal cord injury. Journal of Spinal Cord Medicine 37(5): 548-555
Morris, J.H.; van Wijck, F.; Joice, S.; Donaghy, M. 2013: Predicting health related quality of life 6 months after stroke: the role of anxiety and upper limb dysfunction. Disability and Rehabilitation 35(4): 291-299
Payakachat, N.; Tilford, J.M.; Kuhlthau, K.A.; van Exel, N.J.; Kovacs, E.; Bellando, J.; Pyne, J.M.; Brouwer, W.B.F. 2014: Predicting health utilities for children with autism spectrum disorders. Autism Research: Official Journal of the International Society for Autism Research 7(6): 649-663
Forslund, M.V.; Roe, C.; Sigurdardottir, S.; Andelic, N. 2013: Predicting health-related quality of life 2 years after moderate-to-severe traumatic brain injury. Acta Neurologica Scandinavica 128(4): 220-227
Wu, Y.P.; Steele, R.G. 2013: Predicting health-related quality of life from the psychosocial profiles of youth seeking treatment for obesity. Journal of Developmental and Behavioral Pediatrics: Jdbp 34(8): 575-582
Hatzmann, J.; Valstar, M.J.; Bosch, A.M.; Wijburg, F.A.; Heymans, H.S.A.; Grootenhuis, M.A. 2009: Predicting health-related quality of life of parents of children with inherited metabolic diseases. Acta Paediatrica 98(7): 1205-1210
Skolasky, R.L.; Carreon, L.Y.; Anderson, P.A.; Albert, T.J.; Riley, L.H. 2011: Predicting health-utility scores from the Cervical Spine Outcomes Questionnaire in a multicenter nationwide study of anterior cervical spine surgery. Spine 36(25): 2211-2216
Kaplan, J. 2007: Predicting health. A six step implementation process may help providers improve patient care, best practices and ROI. Healthcare Informatics: the Business Magazine for Information and Communication Systems 24(7): 55-56
Hendriks, H.; van den Putte, B.; de Bruijn, G-Jan.; de Vreese, C.H. 2014: Predicting health: the interplay between interpersonal communication and health campaigns. Journal of Health Communication 19(5): 625-636
Mohr, D.C.; VanDeusen Lukas, C.; Meterko, M. 2008: Predicting healthcare employees' participation in an office redesign program: attitudes, norms and behavioral control. Implementation Science: Is 3: 47
Kuo, R.N.; Dong, Y.-H.; Liu, J.-P.; Chang, C.-H.; Shau, W.-Y.; Lai, M.-S. 2011: Predicting healthcare utilization using a pharmacy-based metric with the WHO's Anatomic Therapeutic Chemical algorithm. Medical Care 49(11): 1031-1039
Södergren, M.; Wang, W.C.; Salmon, J.; Ball, K.; Crawford, D.; McNaughton, S.A. 2014: Predicting healthy lifestyle patterns among retirement age older adults in the WELL study: a latent class analysis of sex differences. Maturitas 77(1): 41-46
Scheib, C. 2009: Predicting healthy outcomes. Health Management Technology 30(5): 22-24
McCaslin, D.L. 2014: Predicting hearing aid outcomes. Journal of the American Academy of Audiology 25(2): 132
Darras, B.T.; Tawil, R. 2013: Predicting hearing loss in facioscapulohumeral muscular dystrophy. Neurology 81(16): 1370-1371
Smith, M.E. 2012: Predicting hearing loss in fishes. Advances in Experimental Medicine and Biology 730: 259-262
Hsu, R.-F.; Ho, C.-K.; Lu, S.-N.; Chen, S.-S. 2010: Predicting hearing thresholds and occupational hearing loss with multiple-frequency auditory steady-state responses. Journal of Otolaryngology - Head and Neck Surgery 39(5): 504-510
Attias, J.; Karawani, H.; Shemesh, R.; Nageris, B. 2014: Predicting hearing thresholds in occupational noise-induced hearing loss by auditory steady state responses. Ear and Hearing 35(3): 330-338
Anonymous 2014: Predicting heart disease risk in women. Biomarkers could give your doctor a window into your heart risks, so you can start making changes to reverse them. Harvard Women's Health Watch 21(12): 3
Acquatella, H. 2008: Predicting heart failure and mortality in chronic Chagas' heart disease. a novel disorder in Spain. Revista Espanola de Cardiologia 61(2): 105-107
Ristow, B.; Ali, S.; Na, B.; Turakhia, M.P.; Whooley, M.A.; Schiller, N.B. 2010: Predicting heart failure hospitalization and mortality by quantitative echocardiography: is body surface area the indexing method of choice? the Heart and Soul Study. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography 23(4): 406-413
Tu, J.V. 2013: Predicting heart failure mortality from administrative data: can it be improved?. Canadian Journal of Cardiology 29(9): 1024-1026
Tjam, E.Y.; Heckman, G.A.; Smith, S.; Arai, B.; Hirdes, J.; Poss, J.; McKelvie, R.S. 2012: Predicting heart failure mortality in frail seniors: comparing the NYHA functional classification with the Resident Assessment Instrument (RAI) 2.0. International journal of cardiology 155(1): 75-80
Laing, C.; Jung, S.; Kim, N.; Elmetwaly, S.; Zahran, M.; Schlick, T. 2013: Predicting helical topologies in RNA junctions as tree graphs. Plos one 8(8): E71947
Bolboli Nojini, Z.; Abbas Rafati, A.; Majid Hashemianzadeh, S.; Samiee, S. 2011: Predicting helium and neon adsorption and separation on carbon nanotubes by Monte Carlo simulation. Journal of Molecular Modeling 17(4): 785-794
Apgar, J.R.; Gutwin, K.N.; Keating, A.E. 2008: Predicting helix orientation for coiled-coil dimers. Proteins 72(3): 1048-1065
Wu, C.; Wang, K.; Sun, T.; Xu, D.; Palmer, M.H. 2015: Predicting help-seeking intention of women with urinary incontinence in Jinan, China: a theory of planned behaviour model. Journal of Clinical Nursing 24(3-4): 457-464
Baechler, S.éb.; Hobbs, R.F.; Jacene, H.A.; Bochud, F.ço.O.; Wahl, R.L.; Sgouros, G. 2010: Predicting hematologic toxicity in patients undergoing radioimmunotherapy with 90Y-ibritumomab tiuxetan or 131I-tositumomab. Journal of Nuclear Medicine: Official Publication Society of Nuclear Medicine 51(12): 1878-1884
Brouwers, H.B.; Chang, Y.; Falcone, G.J.; Cai, X.; Ayres, A.M.; Battey, T.W.K.; Vashkevich, A.; McNamara, K.A.; Valant, V.; Schwab, K.; Orzell, S.C.; Bresette, L.M.; Feske, S.K.; Rost, N.S.; Romero, J.M.; Viswanathan, A.; Chou, S.H.-Y.; Greenberg, S.M.; Rosand, J.; Goldstein, J.N. 2014: Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurology 71(2): 158-164
Duong, H.K.; Bolwell, B.J.; Rybicki, L.; Koo, A.; Hsi, E.D.; Figueroa, P.; Dean, R.; Pohlman, B.; Kalaycio, M.; Andresen, S.; Sobecks, R.; Copelan, E. 2011: Predicting hematopoietic stem cell mobilization failure in patients with multiple myeloma: a simple method using day 1 CD34+ cell yield. Journal of Clinical Apheresis 26(3): 111-115
Salimi, J.; Razeghi, E.; Karjalian, H.; Meysamie, A.; Dahhaz, M.; Dadmehr, M. 2008: Predicting hemodialysis access failure with the measurement of dialysis access recirculation. Saudi Journal of Kidney Diseases and Transplantation: An Official Publication of the Saudi Center for Organ Transplantation Saudi Arabia 19(5): 781-784
Lacson, R. 2008: Predicting hemodialysis mortality utilizing blood pressure trends. AMIA .. Annual Symposium Proceedings. AMIA Symposium 2008: 369-373
Zheng, Q.; Fu, S.; Chen, D.; Li, X.; Li, Y.; Li, Y.; Yu, J.; Gong, M.; Bai, J. 2013: Predicting hemorrhage and obstruction in the elderly population using thromboelastographic indices. Clinical Interventions in Aging 8: 1405-1412
Zhang, H.-X.; Xu, X.-Q.; Fu, J.-F.; Lai, C.; Chen, X.-F. 2015: Predicting hepatic steatosis and liver fat content in obese children based on biochemical parameters and anthropometry. Pediatric Obesity 10(2): 112-117
Rehm, J.L.; Connor, E.L.; Wolfgram, P.M.; Eickhoff, J.C.; Reeder, S.B.; Allen, D.B. 2014: Predicting hepatic steatosis in a racially and ethnically diverse cohort of adolescent girls. Journal of Pediatrics 165(2): 319-325.E1
Zhang, Y.-J.; Wu, H.-C.; Shen, J.; Ahsan, H.; Tsai, W.Y.; Yang, H.-I.; Wang, L.-Y.; Chen, S.-Y.; Chen, C.-J.; Santella, R.M. 2007: Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 13(8): 2378-2384
Brown, T.N. 2014: Predicting hexadecane-air equilibrium partition coefficients (L) using a group contribution approach constructed from high quality data. Sar and Qsar in Environmental Research 25(1): 51-71
Gardner, S.P.; Roberts-Thomson, K.F. 2012: Predicting high achievers in the University of Adelaide, Australia, Bachelor of Oral Health program, 2002-09. Journal of dental education 76(12): 1646-1656
Soubrane, O.; Brouquet, A.; Zalinski, S.ép.; Terris, B.ît.; Brézault, C.; Mallet, V.; Goldwasser, F.ço.; Scatton, O. 2010: Predicting high grade lesions of sinusoidal obstruction syndrome related to oxaliplatin-based chemotherapy for colorectal liver metastases: correlation with post-hepatectomy outcome. Annals of Surgery 251(3): 454-460
Green, D.L.; Berry, L.A.; Chen, G.; Ryan, P.M.; Canik, J.M.; Jaeger, E.F. 2011: Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas. Physical Review Letters 107(14): 145001
Rutledge, D.N.; Jones, K.; Jones, C.J. 2007: Predicting high physical function in people with fibromyalgia. Journal of Nursing Scholarship: An Official Publication of Sigma Theta Tau International Honor Society of Nursing 39(4): 319-324
Murphy, C.R.; Hudson, L.O.; Spratt, B.G.; Quan, V.; Kim, D.; Peterson, E.; Tan, G.; Evans, K.; Meyers, H.; Cheung, M.; Lee, B.Y.; Mukamel, D.B.; Enright, M.C.; Whealon, M.; Huang, S.S. 2013: Predicting high prevalence of community methicillin-resistant Staphylococcus aureus strains in nursing homes. Infection Control and Hospital Epidemiology 34(3): 325-326
Clark, H.K.; Shamblen, S.R.; Ringwalt, C.L.; Hanley, S. 2012: Predicting high risk adolescents' substance use over time: the role of parental monitoring. Journal of Primary Prevention 33(2-3): 67-77
Vesprini, D.; Liu, S.; Nam, R. 2013: Predicting high risk disease using serum and DNA biomarkers. Current Opinion in Urology 23(3): 252-260
Olsson, G.E.; Hjertqvist, M.; Lundkvist, A.; Hörnfeldt, B. 2009: Predicting high risk for human hantavirus infections, Sweden. Emerging Infectious Diseases 15(1): 104-106
Hunt, M.K.; Hopko, D.R. 2009: Predicting high school truancy among students in the Appalachian south. Journal of Primary Prevention 30(5): 549-567
Lubin, A.S.; Snydman, D.R.; Ruthazer, R.; Bide, P.; Golan, Y. 2011: Predicting high vancomycin minimum inhibitory concentration in methicillin-resistant Staphylococcus aureus bloodstream infections. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 52(8): 997-1002
Chen, S.-Y.; Hsueh, P.-R.; Chiang, W.-C.; Huang, E.P.-C.; Lin, C.-F.; Chang, C.-H.; Chen, S.-C.; Chen, W.-J.; Chang, S.-C.; Lai, M.-S.; Chie, W.-C. 2014: Predicting high vancomycin minimum inhibitory concentration isolate infection among patients with community-onset methicillin-resistant Staphylococcus aureus bacteraemia. Journal of Infection 69(3): 259-265
Leininger, L.J.; Friedsam, D.; Voskuil, K.; DeLeire, T. 2014: Predicting high-need cases among new Medicaid enrollees. American Journal of Managed Care 20(9): E399-E407
Donovan, M.J.; Cordon-Cardo, C. 2013: Predicting high-risk disease using tissue biomarkers. Current Opinion in Urology 23(3): 245-251
Lamont, A.E.; Woodlief, D.; Malone, P.S. 2014: Predicting high-risk versus higher-risk substance use during late adolescence from early adolescent risk factors using Latent Class Analysis. Addiction Research and Theory 22(1): 78-89
Robertson, S.; Woods, C.; Gastin, P. 2015: Predicting higher selection in elite junior Australian Rules football: The influence of physical performance and anthropometric attributes. Journal of Science and Medicine in Sport 18(5): 601-606
Hsing, M.; Byler, K.; Cherkasov, A. 2009: Predicting highly-connected hubs in protein interaction networks by QSAR and biological data descriptors. Bioinformation 4(4): 164-168
Yun, H.; Delzell, E.; Ensrud, K.E.; Kilgore, M.L.; Becker, D.; Morrisey, M.A.; Curtis, J.R. 2010: Predicting hip and major osteoporotic fractures using administrative data. Archives of Internal Medicine 170(21): 1940-1942
Ebell, M.H. 2007: Predicting hip fracture risk in older women. American Family Physician 76(2): 273-275
Fulk, G.D.; Reynolds, C.; Mondal, S.; Deutsch, J.E. 2010: Predicting home and community walking activity in people with stroke. Archives of Physical Medicine and Rehabilitation 91(10): 1582-1586
Warren, J.R.; Okuyemi, K.S.; Guo, H.; Thomas, J.L.; Ahluwalia, J.S. 2010: Predicting home smoking restrictions among African American light smokers. American journal of health behavior 34(1): 110-118
Qiu, J.-D.; Sun, X.-Y.; Suo, S.-B.; Shi, S.-P.; Huang, S.-Y.; Liang, R.-P.; Zhang, L. 2011: Predicting homo-oligomers and hetero-oligomers by pseudo-amino acid composition: an approach from discrete wavelet transformation. Biochimie 93(7): 1132-1138
Bostan, B.; Greiner, R.; Szafron, D.; Lu, P. 2009: Predicting homologous signaling pathways using machine learning. Bioinformatics 25(22): 2913-2920
Poteat, V.P.; DiGiovanni, C.D.; Scheer, J.R. 2013: Predicting homophobic behavior among heterosexual youth: domain general and sexual orientation-specific factors at the individual and contextual level. Journal of Youth and Adolescence 42(3): 351-362
Cedergreen, N. 2010: Predicting hormesis in mixtures. Integrated Environmental Assessment and Management 6(2): 310-311
Ge, H.-L.; Liu, S.-S.; Zhu, X.-W.; Liu, H.-L.; Wang, L.-J. 2011: Predicting hormetic effects of ionic liquid mixtures on luciferase activity using the concentration addition model. Environmental Science and Technology 45(4): 1623-1629
Kozma, C.M.; Dirani, R.G.; Canuso, C.M.; Mao, L. 2010: Predicting hospital admission and discharge with symptom or function scores in patients with schizophrenia: pooled analysis of a clinical trial extension. Annals of General Psychiatry 9: 24
LaMantia, M.A.; Platts-Mills, T.F.; Biese, K.; Khandelwal, C.; Forbach, C.; Cairns, C.B.; Busby-Whitehead, J.; Kizer, J.S. 2010: Predicting hospital admission and returns to the emergency department for elderly patients. Academic Emergency Medicine: Official Journal of the Society for Academic Emergency Medicine 17(3): 252-259
Dexheimer, J.W.; Leegon, J.; Aronsky, D. 2007: Predicting hospital admission at triage in an emergency department. AMIA .. Annual Symposium Proceedings. AMIA Symposium 2007: 937
Fotheringham, J.; Caskey, F. 2014: Predicting hospital admissions by looking backwards: an alternative perspective. Nephrology Dialysis Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 29(2): 225-227
Joseph, B.; Pandit, V.; Rhee, P.; Aziz, H.; Sadoun, M.; Wynne, J.; Tang, A.; Kulvatunyou, N.; O'Keeffe, T.; Fain, M.J.; Friese, R.S. 2014: Predicting hospital discharge disposition in geriatric trauma patients: is frailty the answer?. Journal of Trauma and Acute Care Surgery 76(1): 196-200
Ismail, Z.; Arenovich, T.; Grieve, C.; Willett, P.; Sajeev, G.; Mamo, D.C.; Macqueen, G.M.; Mulsant, B.H. 2012: Predicting hospital length of stay for geriatric patients with mood disorders. Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie 57(11): 696-703
Van den Bosch, W.F.; Kelder, J.C.; Wagner, C. 2011: Predicting hospital mortality among frequently readmitted patients: HSMR biased by readmission. Bmc Health Services Research 11: 57
Rahmanian, P.B.; Adams, D.H.; Castillo, J.G.; Carpentier, A.; Filsoufi, F. 2010: Predicting hospital mortality and analysis of long-term survival after major noncardiac complications in cardiac surgery patients. Annals of Thoracic Surgery 90(4): 1221-1229
Chang, C.J.; Tam, H.P.; Ko, W.J.; Tsai, P.R. 2013: Predicting hospital mortality in adult patients with prolonged stay (>14 days) in surgical intensive care unit. Minerva Anestesiologica 79(8): 843-852
Libório, A.B.; Abreu, K.L.ív.S.; Silva, G.B.; Lima, R.S.A.; Barreto, A.G.C.; Barbosa, O.A.; Daher, E.F. 2011: Predicting hospital mortality in critically ill cancer patients according to acute kidney injury severity. Oncology 80(3-4): 160-166
Su, Y.-Y.; Li, X.; Li, S.-j.; Luo, R.; Ding, J.-p.; Wang, L.; Cao, G.-h.; Wang, D.-y.; Gao, J.-x. 2009: Predicting hospital mortality using APACHE Ii scores in neurocritically ill patients: a prospective study. Journal of Neurology 256(9): 1427-1433
Clark, D.E.; Lucas, F.L.; Ryan, L.M. 2007: Predicting hospital mortality, length of stay, and transfer to long-term care for injured patients. Journal of Trauma 62(3): 592-600
Kiefe, C.; Allison, J.J.; de Lissovoy, G. 2013: Predicting hospital readmission: different approaches raise new questions about old issues. Medical Care 51(1): 11-12
Hupert, N.; Wattson, D.; Cuomo, J.; Hollingsworth, E.; Neukermans, K.; Xiong, W. 2009: Predicting hospital surge after a large-scale anthrax attack: a model-based analysis of CDC's cities readiness initiative prophylaxis recommendations. Medical Decision Making: An International Journal of the Society for Medical Decision Making 29(4): 424-437
Drawz, P.E.; Miller, R.Tyler.; Sehgal, A.R. 2008: Predicting hospital-acquired acute kidney injury--a case-controlled study. Renal Failure 30(9): 848-855
Chang, Y.-J.; Yeh, M.-L.; Li, Y.-C.; Hsu, C.-Y.; Lin, C.-C.; Hsu, M.-S.; Chiu, W.-T. 2011: Predicting hospital-acquired infections by scoring system with simple parameters. Plos one 6(8): E23137
Zhang, J.; Goode, K.M.; Cuddihy, P.E.; Cleland, J.G.F. 2009: Predicting hospitalization due to worsening heart failure using daily weight measurement: analysis of the Trans-European Network-Home-Care Management System (TEN-HMS) study. European Journal of Heart Failure 11(4): 420-427
Buyuktiryaki, A.B.; Civelek, E.; Can, D.; Orhan, F.ıl.; Aydogan, M.; Reisli, I.; Keskin, O.; Akcay, A.; Yazicioglu, M.; Cokugras, H.; Yuksel, H.; Zeyrek, D.; Kocak, A.K.; Sekerel, B.E. 2013: Predicting hospitalization in children with acute asthma. Journal of Emergency Medicine 44(5): 919-927
Goldberg, J.F.; Ernst, C.L.; Bird, S. 2007: Predicting hospitalization versus discharge of suicidal patients presenting to a psychiatric emergency service. Psychiatric Services 58(4): 561-565
Fuller, T.L.; Gilbert, M.; Martin, V.; Cappelle, J.; Hosseini, P.; Njabo, K.Y.; Abdel Aziz, S.; Xiao, X.; Daszak, P.; Smith, T.B. 2013: Predicting hotspots for influenza virus reassortment. Emerging Infectious Diseases 19(4): 581-588
Arhami, M.; Kamali, N.; Rajabi, M.Mahdi. 2013: Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environmental Science and Pollution Research International 20(7): 4777-4789
Dong, B.; Zhang, P.; Chen, X.; Liu, L.; Wang, Y.; He, S.; Chen, R. 2011: Predicting housekeeping genes based on Fourier analysis. Plos one 6(6): E21012
Brockerhoff, E.G.; Kimberley, M.; Liebhold, A.M.; Haack, R.A.; Cavey, J.F. 2014: Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology 95(3): 594-601
Kim, D.-H.; Wirtz, D. 2013: Predicting how cells spread and migrate: focal adhesion size does matter. Cell Adhesion and Migration 7(3): 293-296
Ingebrigtsen, T.S.; Errington, J.R.; Truskett, T.M.; Dyre, J.C. 2013: Predicting how nanoconfinement changes the relaxation time of a supercooled liquid. Physical Review Letters 111(23): 235901
Perron, N.R.; Hodges, J.N.; Jenkins, M.; Brumaghim, J.L. 2008: Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorganic Chemistry 47(14): 6153-6161
Collen, B.; McRae, L.; Deinet, S.; De Palma, A.; Carranza, T.; Cooper, N.; Loh, J.; Baillie, J.E.M. 2011: Predicting how populations decline to extinction. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences 366(1577): 2577-2586
Kilpatrick, A.M.; Pape, W.J. 2013: Predicting human West Nile virus infections with mosquito surveillance data. American Journal of Epidemiology 178(5): 829-835
Ou, X.-l.; Gao, J.; Wang, H.; Wang, H.-s.; Lu, H.-l.; Sun, H.-y. 2012: Predicting human age with bloodstains by sjTREC quantification. Plos one 7(8): E42412
West, P.R.; Weir, A.M.; Smith, A.M.; Donley, E.L.R.; Cezar, G.G. 2010: Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicology and Applied Pharmacology 247(1): 18-27
Brison, D.R.; Hollywood, K.; Arnesen, R.; Goodacre, R. 2007: Predicting human embryo viability: the road to non-invasive analysis of the secretome using metabolic footprinting. Reproductive Biomedicine Online 15(3): 296-302
Malmborg, J.; Ploeger, B.A. 2013: Predicting human exposure of active drug after oral prodrug administration, using a joined in vitro/in silico-in vivo extrapolation and physiologically-based pharmacokinetic modeling approach. Journal of Pharmacological and Toxicological Methods 67(3): 203-213
Xu, J.; Jiang, M.; Wang, S.; Kankanhalli, M.S.; Zhao, Q. 2014: Predicting human gaze beyond pixels. Journal of Vision 14(1)
Borchani, H.; Bielza, C.; Toro, C.; Larrañaga, P. 2013: Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers. Artificial Intelligence in Medicine 57(3): 219-229
Li, X.; Hu, H.; Shu, L. 2010: Predicting human immunodeficiency virus protease cleavage sites in nonlinear projection space. Molecular and Cellular Biochemistry 339(1-2): 127-133
Zakeri-Milani, P.; Valizadeh, H.; Tajerzadeh, H.; Azarmi, Y.; Islambolchilar, Z.; Barzegar, S.; Barzegar-Jalali, M. 2007: Predicting human intestinal permeability using single-pass intestinal perfusion in rat. Journal of Pharmacy and Pharmaceutical Sciences: a Publication of the Canadian Society for Pharmaceutical Sciences Societe Canadienne des Sciences Pharmaceutiques 10(3): 368-379
Jiang, Q.; Wang, G.; Jin, S.; Li, Y.; Wang, Y. 2013: Predicting human microRNA-disease associations based on support vector machine. International Journal of Data Mining and Bioinformatics 8(3): 282-293
He, B.; Bai, J.; Zipunnikov, V.V.; Koster, A.; Caserotti, P.; Lange-Maia, B.; Glynn, N.W.; Harris, T.B.; Crainiceanu, C.M. 2014: Predicting human movement with multiple accelerometers using movelets. Medicine and Science in Sports and Exercise 46(9): 1859-1866
Revell, V.L.; Barrett, D.C.G.; Schlangen, L.J.M.; Skene, D.J. 2010: Predicting human nocturnal nonvisual responses to monochromatic and polychromatic light with a melanopsin photosensitivity function. Chronobiology International 27(9-10): 1762-1777
Gupta, S.; Dennis, J.; Thurman, R.E.; Kingston, R.; Stamatoyannopoulos, J.A.; Noble, W.S. 2008: Predicting human nucleosome occupancy from primary sequence. Plos Computational Biology 4(8): E1000134
Bowyer, H.L.; Forster, A.S.; Marlow, L.A.V.; Waller, J. 2014: Predicting human papillomavirus vaccination behaviour among adolescent girls in England: results from a prospective survey. Journal of Family Planning and Reproductive Health Care 40(1): 14-22
Katz, M.L.; Kam, J.A.; Krieger, J.L.; Roberto, A.J. 2012: Predicting human papillomavirus vaccine intentions of college-aged males: an examination of parents' and son's perceptions. Journal of American college health: J of ACH 60(6): 449-459
Guimerà, R.; Llorente, A.; Moro, E.; Sales-Pardo, M. 2012: Predicting human preferences using the block structure of complex social networks. Plos one 7(9): E44620
Du, P.; Wang, L. 2014: Predicting human protein subcellular locations by the ensemble of multiple predictors via protein-protein interaction network with edge clustering coefficients. PloS one 9(1): e86879
Honey, C.J.; Sporns, O.; Cammoun, L.; Gigandet, X.; Thiran, J.P.; Meuli, R.; Hagmann, P. 2009: Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America 106(6): 2035-2040
Lu, Y.; Rajaraman, S.; Ward, W.K.; Vigersky, R.A.; Reifman, J. 2011: Predicting human subcutaneous glucose concentration in real time: a universal data-driven approach. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2011: 7945-7948
Zhou, Q.; Guo, P.; Kruh, G.D.; Vicini, P.; Wang, X.; Gallo, J.M. 2007: Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 13(14): 4271-4279
Johnson, L.; Sullivan, B.; Hayhoe, M.; Ballard, D. 2014: Predicting human visuomotor behaviour in a driving task. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences 369(1636): 20130044
Martin, A.E.; Schmiedeler, J.P. 2014: Predicting human walking gaits with a simple planar model. Journal of Biomechanics 47(6): 1416-1421
Xu, S.; Zhu, D.; Zhang, Q. 2014: Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences of the United States of America 111(34): 12456-12461
Garrido, N.M.; Jorge, M.; Queimada, A.ón.J.; Gomes, J.é R.B.; Economou, I.G.; Macedo, E.én.A. 2011: Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation: a comparison of current force fields and the development of a new parameter set for accurate solvation data. Physical Chemistry Chemical Physics: Pccp 13(38): 17384-17394
Andersson, M.P.; Stipp, S.L.S. 2014: Predicting hydration energies for multivalent ions. Journal of Computational Chemistry 35(28): 2070-2075
Sulea, T.; Purisima, E.O. 2012: Predicting hydration free energies of polychlorinated aromatic compounds from the SAMPL-3 data set with FiSH and LIE models. Journal of Computer-Aided Molecular Design 26(5): 661-667
Klimovich, P.V.; Mobley, D.L. 2010: Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations. Journal of Computer-Aided Molecular Design 24(4): 307-316
König, G.; Pickard, F.C.; Mei, Y.; Brooks, B.R. 2014: Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4. Journal of Computer-Aided Molecular Design 28(3): 245-257
Sandberg, L. 2014: Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge. Journal of Computer-Aided Molecular Design 28(3): 211-219
Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. 2009: Predicting hydrogen-bond strengths from acid-base molecular properties. the pK(a) slide rule: toward the solution of a long-lasting problem. Accounts of Chemical Research 42(1): 33-44
Adelstein, E.; Schwartzman, D.; Gorcsan, J.; Saba, S. 2011: Predicting hyperresponse among pacemaker-dependent nonischemic cardiomyopathy patients upgraded to cardiac resynchronization. Journal of Cardiovascular Electrophysiology 22(8): 905-911
Heagerty, A.M. 2007: Predicting hypertension complications from small artery structure. Journal of Hypertension 25(5): 939-940
Freire, A.ía.V.ón.; Ropelato, M.ía.G.; Ballerini, M.ía.G.; Acha, O.; Bergadá, I.; de Papendieck, L.G.ñe.; Chiesa, A. 2014: Predicting hypocalcemia after thyroidectomy in children. Surgery 156(1): 130-136
Lin, C.-S.; Chiu, J.-S.; Hsieh, M.-H.; Mok, M.S.; Li, Y.-C.; Chiu, H.-W. 2008: Predicting hypotensive episodes during spinal anesthesia with the application of artificial neural networks. Computer Methods and Programs in Biomedicine 92(2): 193-197
Giocos, G.; Kagee, A.; Swartz, L. 2008: Predicting hypothetical willingness to participate (WTP) in a future phase IIi HIV vaccine trial among high-risk adolescents. Aids and Behavior 12(6): 842-851
Petroff, A.B.; Martz, D.M.; Webb, R.M.; Galloway, A.T. 2011: Predicting ideal body mass index: what does clothing size have to do with it?. Body Image 8(2): 126-134
Neal, C.J.; McClendon, J.; Halpin, R.; Acosta, F.L.; Koski, T.; Ondra, S.L. 2011: Predicting ideal spinopelvic balance in adult spinal deformity. Journal of Neurosurgery. Spine 15(1): 82-91
Chen, M.; Borlak, J.ür.; Tong, W. 2014: Predicting idiosyncratic drug-induced liver injury: some recent advances. Expert Review of Gastroenterology and Hepatology 8(7): 721-723
Skidmore, J.R.; Dyson, S.J.; Kupper, A.E.; Calabrese, D. 2014: Predicting illness behavior: health anxiety mediated by locus of control. American Journal of Health Behavior 38(5): 699-707
Heikkinen, J.; Biancari, F.; Satta, J.; Salmela, E.; Mosorin, M.; Juvonen, T.; Lepojärvi, M. 2007: Predicting immediate and late outcome after surgery for mitral valve regurgitation with EuroSCORE. Journal of Heart Valve Disease 16(2): 116-121
Thong, T.; Raitt, M.H. 2007: Predicting imminent episodes of ventricular tachyarrhythmia using heart rate. Pacing and Clinical Electrophysiology: Pace 30(7): 874-884
Thong, T. 2008: Predicting imminent episodes of ventricular tachyarrhythmia--retrospective analysis of short R-R records from ICD. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2008: 5664-5667
Parker, B.M.; Cywinski, J.B.; Alster, J.M.; Irefin, S.A.; Popovich, M.; Beven, M.; Fung, J.J. 2008: Predicting immunosuppressant dosing in the early postoperative period with noninvasive indocyanine green elimination following orthotopic liver transplantation. Liver Transplantation: Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 14(1): 46-52
Bratt, J.H. 2010: Predicting impact of price increases on demand for reproductive health services: can it be done well?. Health Policy 95(2-3): 159-165
Mathieu, D.; Alaime, T. 2014: Predicting impact sensitivities of nitro compounds on the basis of a semi-empirical rate constant. Journal of Physical Chemistry. a 118(41): 9720-9726
Fox, N.J.; White, P.C.L.; McClean, C.J.; Marion, G.; Evans, A.; Hutchings, M.R. 2011: Predicting impacts of climate change on Fasciola hepatica risk. Plos one 6(1): E16126
Ma, J.; Hu, Y.; Bu, R.; Chang, Y.; Deng, H.; Qin, Q. 2014: Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China. Plos one 9(4): E96157
Wu, Y.; Liu, S.; Gallant, A.L. 2012: Predicting impacts of increased CO₂ and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Science of the Total Environment 430: 150-160
Seppänen, J.; Heinävaara, S.; Hakulinen, T. 2008: Predicting impacts of mass-screening policy changes on breast cancer mortality. Statistics in Medicine 27(25): 5235-5251
Nalloor, R.; Bunting, K.; Vazdarjanova, A. 2011: Predicting impaired extinction of traumatic memory and elevated startle. Plos one 6(5): E19760
Barkley, R.A.; Fischer, M. 2011: Predicting impairment in major life activities and occupational functioning in hyperactive children as adults: self-reported executive function (EF) deficits versus EF tests. Developmental Neuropsychology 36(2): 137-161
Leung, S.K.F.; Lam, F.M.; Yew, W.W.; Wong, P.C. 2008: Predicting impairment of diffusing capacity for Chinese patients with lung fibrosis. Respirology 13(6): 929-930
Macdonald, S.W.S.; Hultsch, D.F.; Dixon, R.A. 2008: Predicting impending death: inconsistency in speed is a selective and early marker. Psychology and Aging 23(3): 595-607
Torii, R.; Kalantzi, M.; Theodoropoulos, S.; Sarathchandra, P.; Xu, X.Y.; Yacoub, M.H. 2013: Predicting impending rupture of the ascending aorta with bicuspid aortic valve: spatiotemporal flow and wall shear stress. JACC. Cardiovascular Imaging 6(9): 1017-1019
Haliloglu, T.; Gul, A.; Erman, B. 2010: Predicting important residues and interaction pathways in proteins using Gaussian Network Model: binding and stability of HLA proteins. Plos Computational Biology 6(7): E1000845
Feldman, S.R.; Winkelman, W.; Baum, E.; Preston, N. 2013: Predicting improvement in signs and symptoms of plaque psoriasis after 1 week of treatment with clobetasol propionate 0.05% spray. Journal of Drugs in Dermatology: Jdd 12(12): 1456-1460
Kwakkel, G.; Kollen, B. 2007: Predicting improvement in the upper paretic limb after stroke: a longitudinal prospective study. Restorative Neurology and Neuroscience 25(5-6): 453-460
Westra, B.L.; Savik, K.; Oancea, C.; Choromanski, L.; Holmes, J.H.; Bliss, D. 2011: Predicting improvement in urinary and bowel incontinence for home health patients using electronic health record data. Journal of Wound Ostomy and Continence Nursing: Official Publication of Wound Ostomy and Continence Nurses Society 38(1): 77-87
Nieuwenhuijsen, K.; Cornelius, L.R.; de Boer, M.R.; Groothoff, J.W.; Frings-Dresen, M.H.W.; van der Klink, J.J.L.; Brouwer, S. 2014: Predicting improvement of functioning in disability claimants. Journal of Occupational Rehabilitation 24(3): 410-418
Haber, M.G.; Karpur, A.; Deschênes, N.; Clark, H.B. 2008: Predicting improvement of transitioning young people in the partnerships for youth transition initiative: findings from a multisite demonstration. Journal of Behavioral Health Services and Research 35(4): 488-513
Black, E.B.; Mildred, H. 2013: Predicting impulsive self-injurious behavior in a sample of adult women. Journal of Nervous and Mental Disease 201(1): 72-75
Kim, K.C.; Allendorf, M.D.; Stavila, V.; Sholl, D.S. 2010: Predicting impurity gases and phases during hydrogen evolution from complex metal hydrides using free energy minimization enabled by first-principles calculations. Physical Chemistry Chemical Physics: Pccp 12(33): 9918-9926
Nielsen, E.I.; Cars, O.; Friberg, L.E. 2011: Predicting in vitro antibacterial efficacy across experimental designs with a semimechanistic pharmacokinetic-pharmacodynamic model. Antimicrobial Agents and ChemoTherapy 55(4): 1571-1579
Riddick, G.; Song, H.; Ahn, S.; Walling, J.; Borges-Rivera, D.; Zhang, W.; Fine, H.A. 2011: Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 27(2): 220-224
Heigoldt, U.; Sommer, F.; Daniels, R.; Wagner, K.-G. 2010: Predicting in vivo absorption behavior of oral modified release dosage forms containing pH-dependent poorly soluble drugs using a novel pH-adjusted biphasic in vitro dissolution test. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik E.V 76(1): 105-111
Zheng, B.; Tan, L.; Mo, X.; Yu, W.; Wang, Y.; Tucker-Kellogg, L.; Welsch, R.E.; So, P.T.C.; Yu, H. 2011: Predicting in vivo anti-hepatofibrotic drug efficacy based on in vitro high-content analysis. Plos one 6(11): E26230
Li, X.; Quon, G.; Lipshitz, H.D.; Morris, Q. 2010: Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. Rna 16(6): 1096-1107
Baker, J.G.; Kemp, P.; March, J.; Fretwell, L.; Hill, S.J.; Gardiner, S.M. 2011: Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses. Faseb Journal: Official Publication of the Federation of American Societies for Experimental Biology 25(12): 4486-4497
Smaldone, G.; Solomita, M. 2009: Predicting in vivo deposition in vitro. Journal of Aerosol Medicine and Pulmonary Drug Delivery 22(1): 9-10
Cunha, B.A. 2012: Predicting in vivo effectiveness from in vitro susceptibility: a step closer to performing testing of uropathogens in human urine. Scandinavian Journal of Infectious Diseases 44(9): 714-715
Epstein, H.; Rabinovich, L.; Banai, S.; Elazar, V.; Gao, J.; Chorny, M.; Danenebrg, H.D.; Golomb, G. 2008: Predicting in vivo efficacy of potential restenosis therapies by cell culture studies: species-dependent susceptibility of vascular smooth muscle cells. Open Cardiovascular Medicine Journal 2: 60-69
Henry, M.; Lavigne, R.; Debarbieux, L. 2013: Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrobial Agents and ChemoTherapy 57(12): 5961-5968
Stojanac, I.; Drobac, M.; Petrovic, L.; Atanackovic, T. 2012: Predicting in vivo failure of rotary nickel-titanium endodontic instruments under cyclic fatigue. Dental Materials Journal 31(4): 650-655
Akers, W.J.; Berezin, M.Y.; Lee, H.; Achilefu, S. 2008: Predicting in vivo fluorescence lifetime behavior of near-infrared fluorescent contrast agents using in vitro measurements. Journal of Biomedical Optics 13(5): 054042
Péry, A.R.R.; Brochot, C.él.; Desmots, S.; Boize, M.; Sparfel, L.; Fardel, O. 2011: Predicting in vivo gene expression in macrophages after exposure to benzo(a)pyrene based on in vitro assays and toxicokinetic/toxicodynamic models. Toxicology Letters 201(1): 8-14
Wolf, M.T.; Vodovotz, Y.; Tottey, S.; Brown, B.N.; Badylak, S.F. 2015: Predicting in vivo responses to biomaterials via combined in vitro and in silico analysis. Tissue Engineering. Part C Methods 21(2): 148-159
Greene, N.; Song, M. 2011: Predicting in vivo safety characteristics using physiochemical properties and in vitro assays. Future Medicinal Chemistry 3(12): 1503-1511
Doucet, F.J.; White, G.A.; Wulfert, F.; Hill, S.E.; Wiseman, J. 2010: Predicting in vivo starch digestibility coefficients in newly weaned piglets from in vitro assessment of diets using multivariate analysis. British Journal of Nutrition 103(9): 1309-1318
Alghnam, S.; Palta, M.; Hamedani, A.; Alkelya, M.; Remington, P.L.; Durkin, M.S. 2014: Predicting in-hospital death among patients injured in traffic crashes in Saudi Arabia. Injury 45(11): 1693-1699
Ndour, C.; Dossou Gbété, S.; Bru, N.; Abrahamowicz, M.; Fauconnier, A.; Traoré, M.; Diop, A.; Fournier, P.; Dumont, A. 2013: Predicting in-hospital maternal mortality in Senegal and Mali. Plos one 8(5): E64157
Tolenaar, J.L.; Froehlich, W.; Jonker, F.H.W.; Upchurch, G.R.; Rampoldi, V.; Tsai, T.T.; Bossone, E.; Evangelista, A.; O'Gara, P.; Pape, L.; Montgomery, D.; Isselbacher, E.M.; Nienaber, C.A.; Eagle, K.A.; Trimarchi, S. 2014: Predicting in-hospital mortality in acute type B aortic dissection: evidence from International Registry of Acute Aortic Dissection. Circulation 130(11 Suppl. 1): S45-S50
Grendar, J.; Shaheen, A.A.; Myers, R.P.; Parker, R.; Vollmer, C.M.; Ball, C.G.; Quan, M.L.; Kaplan, G.G.; Al-Manasra, T.; Dixon, E. 2012: Predicting in-hospital mortality in patients undergoing complex gastrointestinal surgery: determining the optimal risk adjustment method. Archives of Surgery 147(2): 126-135
Myers, R.P.; Quan, H.; Hubbard, J.N.; Shaheen, A.A.M.; Kaplan, G.G. 2009: Predicting in-hospital mortality in patients with cirrhosis: results differ across risk adjustment methods. Hepatology 49(2): 568-577
Ribera, A.; Marsal, J.R.; Ferreira-González, I.; Cascant, P.ó; Pons, J.M.V.; Mitjavila, F.; Salas, T.; Permanyer-Miralda, G.à 2008: Predicting in-hospital mortality with coronary bypass surgery using hospital discharge data: comparison with a prospective observational study. Revista Espanola de Cardiologia 61(8): 843-852
Marschollek, M.; Nemitz, G.; Gietzelt, M.; Wolf, K.H.; Meyer Zu Schwabedissen, H.; Haux, R. 2009: Predicting in-patient falls in a geriatric clinic: a clinical study combining assessment data and simple sensory gait measurements. Zeitschrift für Gerontologie und Geriatrie 42(4): 317-321
Xu, M.; Yu, L.; Wan, B.; Yu, L.; Huang, Q. 2011: Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. Plos one 6(7): E22644
Allen, S.; Yeung, P.; Janczewski, M.; Siddique, N. 2008: Predicting inadequate spirometry technique and the use of FEV1/FEV3 as an alternative to FEV1/FVC for patients with mild cognitive impairment. Clinical Respiratory Journal 2(4): 208-213
Thomas, T.L.; Nandram, B. 2010: Predicting incidence and asymptomatic rates for chlamydia in small domains. Journal of Advanced Nursing 66(12): 2650-2658
Cheng, S.; Wang, T.J. 2009: Predicting incident CKD. American Journal of Kidney Diseases: the Official Journal of the National Kidney Foundation 53(6): 936-939
Marcus, G.M. 2010: Predicting incident atrial fibrillation: an important step toward primary prevention. Archives of Internal Medicine 170(21): 1874-1875
Cruz-Cabeza, A.J.; Day, G.M.; Jones, W. 2009: Predicting inclusion behaviour and framework structures in organic crystals. Chemistry 15(47): 13033-13040
Golino, H.Fernandes.; Amaral, L.Souza.de.Brito.; Duarte, S.Fernando.Pimentel.; Gomes, C.Mauro.Assis.; Soares, T.de.Jesus.; Dos Reis, L.Araujo.; Santos, J. 2014: Predicting increased blood pressure using machine learning. Journal of Obesity 2014: 637635
Denniss, A.Robert. 2013: Predicting increased risk of aortic dissection. Heart Lung and Circulation 22(1): 1-2
Jarošík, Věch.; Pyšek, P.; Foxcroft, L.C.; Richardson, D.M.; Rouget, M.; MacFadyen, S. 2011: Predicting incursion of plant invaders into Kruger National Park, South Africa: the interplay of general drivers and species-specific factors. Plos one 6(12): E28711
Corley, C.D.; Mihalcea, R.; Mikler, A.R.; Sanfilippo, A.P. 2011: Predicting individual affect of health interventions to reduce HPV prevalence. Advances in Experimental Medicine and Biology 696: 181-190
Bekker, M.H.J.; Croon, M.A.; van Balkom, E.G.A.; Vermee, J.B.G. 2008: Predicting individual differences in autonomy-connectedness: the role of body awareness, alexithymia, and assertiveness. Journal of Clinical Psychology 64(6): 747-765
Connors, B.L.; Rende, R.; Colton, T.J. 2013: Predicting individual differences in decision-making process from signature movement styles: an illustrative study of leaders. Frontiers in Psychology 4: 658
Nagata, K. 2008: Predicting individual differences in drug-metabolizing enzymes. Drug Metabolism and Pharmacokinetics 23(1): 1
Wager, T.D.; Atlas, L.Y.; Leotti, L.A.; Rilling, J.K. 2011: Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. Journal of Neuroscience: the Official Journal of the Society for Neuroscience 31(2): 439-452
Harlaar, N.; Cutting, L.; Deater-Deckard, K.; Dethorne, L.S.; Justice, L.M.; Schatschneider, C.; Thompson, L.A.; Petrill, S.A. 2010: Predicting individual differences in reading comprehension: a twin study. Annals of Dyslexia 60(2): 265-288
Chandler, J.F.; Arnold, R.D.; Phillips, J.B.; Turnmire, A.E. 2013: Predicting individual differences in response to sleep loss: application of current techniques. Aviation Space and Environmental Medicine 84(9): 927-937
Zaak, D.; Burger, M.; Otto, W.; Bastian, P.J.; Denzinger, S.; Stief, C.G.; Buchner, H.; Hartmann, A.; Wieland, W.F.; Shariat, S.F.; Fritsche, H.-M. 2010: Predicting individual outcomes after radical cystectomy: an external validation of current nomograms. Bju International 106(3): 342-348
Chen, J.; Zhao, G. 2011: Predicting individual prognosis for patients undergoing resection of colorectal liver metastases. Annals of Surgical Oncology 18(3): 894-895
Van de Pas, N.C.A.; Rullmann, J.A.C.; Woutersen, R.A.; van Ommen, B.; Rietjens, I.M.C.M.; de Graaf, A.A. 2014: Predicting individual responses to pravastatin using a physiologically based kinetic model for plasma cholesterol concentrations. Journal of Pharmacokinetics and Pharmacodynamics 41(4): 351-362
Coderch, J.; Sánchez-Pérez, I.; Ibern, P.; Carreras, M.; Pérez-Berruezo, X.; Inoriza, J.é M. 2014: Predicting individual risk of high healthcare cost to identify complex chronic patients. Gaceta Sanitaria 28(4): 292-300
Lyman, G.H.; Kuderer, N.M.; Crawford, J.; Wolff, D.A.; Culakova, E.; Poniewierski, M.S.; Dale, D.C. 2011: Predicting individual risk of neutropenic complications in patients receiving cancer chemotherapy. Cancer 117(9): 1917-1927
Souto, J.C.; Soria, J.é M. 2012: Predicting individual risk of venous thrombosis. Blood 120(3): 500-501
Lagarde, S.M.; Reitsma, J.B.; Ten Kate, F.J.W.; Busch, O.R.C.; Obertop, H.; Zwinderman, A.H.; Moons, J.; van Lanschot, J.J.B.; Lerut, T. 2008: Predicting individual survival after potentially curative esophagectomy for adenocarcinoma of the esophagus or gastroesophageal junction. Annals of Surgery 248(6): 1006-1013
Cristia, A.; Seidl, A.; Junge, C.; Soderstrom, M.; Hagoort, P. 2014: Predicting individual variation in language from infant speech perception measures. Child Development 85(4): 1330-1345
Vo, L.T.K.; Walther, D.B.; Kramer, A.F.; Erickson, K.I.; Boot, W.R.; Voss, M.W.; Prakash, R.S.; Lee, H.; Fabiani, M.; Gratton, G.; Simons, D.J.; Sutton, B.P.; Wang, M.Y. 2011: Predicting individuals' learning success from patterns of pre-learning MRi activity. Plos one 6(1): E16093
Quinn, A.; Tamerius, J.D.; Perzanowski, M.; Jacobson, J.S.; Goldstein, I.; Acosta, L.; Shaman, J. 2014: Predicting indoor heat exposure risk during extreme heat events. Science of the Total Environment 490: 686-693
Martinez-Serrano, J.J.; Diez de Los Rios, A. 2014: Predicting induced activity in the Havar foils of the (18)F production targets of a PET cyclotron and derived radiological risk. Health Physics 107(2): 103-110
Sheu, R.J.; Jiang, S.H. 2010: Predicting induced radioactivity for the accelerator operations at the Taiwan Photon Source. Health Physics 99(6): 788-799
O'Keeffe, G.W.; Kenny, L.C. 2014: Predicting infant neurodevelopmental outcomes using the placenta?. Trends in Molecular Medicine 20(6): 303-305
Carrera, E.; Jones, P.S.; Alawneh, J.A.; Klærke Mikkelsen, I.; Cho, T.-H.; Siemonsen, S.; Guadagno, J.V.; Mouridsen, K.; Ribe, L.; Hjort, N.; Fryer, T.D.; Carpenter, T.A.; Aigbirhio, F.I.; Fiehler, J.; Nighoghossian, N.; Warburton, E.A.; Ostergaard, L.; Baron, J.-C. 2011: Predicting infarction within the diffusion-weighted imaging lesion: does the mean transit time have added value?. Stroke 42(6): 1602-1607
Schley, D.; Burgin, L.; Gloster, J. 2009: Predicting infection risk of airborne foot-and-mouth disease. Journal of the Royal Society Interface 6(34): 455-462
Gent, D.H.; Ocamb, C.M. 2009: Predicting infection risk of hop by Pseudoperonospora humuli. Phytopathology 99(10): 1190-1198
Jarvie, M.E.; Hand, D.W. 2009: Predicting influent estradiol and estrone concentrations for wastewater treatment facilities. Water Environment Research: a Research Publication of the Water Environment Federation 81(2): 131-139
Keijzers, G.B.; Vossen, C.Nathaniel.Kai-Lik.; Zhang, P.; Macbeth, D.; Derrington, P.; Gerrard, J.Gregory.; Doust, J. 2011: Predicting influenza A and 2009 H1N1 influenza in patients admitted to hospital with acute respiratory illness. Emergency Medicine Journal: Emj 28(6): 500-506
Yu, D.S.F.; Low, L.P.L.; Lee, I.F.K.; Lee, D.T.F.; Ng, W.M. 2014: Predicting influenza vaccination intent among at-risk chinese older adults in Hong Kong. Nursing Research 63(4): 270-277
Janssen, M.; Vereecken, K.M.; Geeraerd, A.H.; Logist, F.; De Visscher, Y.; Cappuyns, A.; Devlieghere, F.; Debevere, J.; Van Impe, J.F. 2003: Predicting inhibition and inactivation of Yersinia enterocolitica through lactic acid production by Lactobacillus sakei. Communications in Agricultural and Applied Biological Sciences 68(2): 449-457
Chekmarev, D.; Kholodovych, V.; Kortagere, S.; Welsh, W.J.; Ekins, S. 2009: Predicting inhibitors of acetylcholinesterase by regression and classification machine learning approaches with combinations of molecular descriptors. Pharmaceutical Research 26(9): 2216-2224
Roeg, D.; van de Goor, I.; Garretsen, H. 2015: Predicting initial client engagement with community mental health services by routinely measured data. Community Mental Health Journal 51(1): 71-78
Edmonds, E.W.; Capelo, R.M.; Stearns, P.; Bastrom, T.P.; Wallace, C.D.; Newton, P.O. 2009: Predicting initial treatment failure of fiberglass casts in pediatric distal radius fractures: utility of the second metacarpal-radius angle. Journal of Children's Orthopaedics 3(5): 375-381
Melzer, I.; Kurz, I.; Shahar, D.; Oddsson, L.I.E. 2009: Predicting injury from falls in older adults: comparison of voluntary step reaction times in injured and noninjured fallers--a prospective study. Journal of the American Geriatrics Society 57(4): 743-745
Neufeld, E.; Perlman, C.M.; Hirdes, J.P. 2012: Predicting inpatient aggression using the InterRAi risk of harm to others clinical assessment protocol: a tool for risk assessment and care planning. Journal of Behavioral Health Services and Research 39(4): 472-480
Bekelis, K.; Missios, S.; MacKenzie, T.A.; Desai, A.; Fischer, A.; Labropoulos, N.; Roberts, D.W. 2014: Predicting inpatient complications from cerebral aneurysm clipping: the Nationwide Inpatient Sample 2005-2009. Journal of neurosurgery 120(3): 591-598
Neuner, T.; Schmid, R.; Wolfersdorf, M.; Spiessl, H. 2008: Predicting inpatient suicides and suicide attempts by using clinical routine data?. General Hospital Psychiatry 30(4): 324-330
Bell, J.R.; Aralimarad, P.; Lim, K.-S.; Chapman, J.W. 2013: Predicting insect migration density and speed in the daytime convective boundary layer. Plos one 8(1): E54202
Kokras, N.; Kouzoupis, A.V.; Paparrigopoulos, T.; Ferentinos, P.; Karamanakos, P.; Kontoyannis, D.A.; Papadimitriou, G.N. 2011: Predicting insomnia in medical wards: the effect of anxiety, depression and admission diagnosis. General Hospital Psychiatry 33(1): 78-81
Afram, B.; Verbeek, H.; Bleijlevens, M.H.C.; Challis, D.; Leino-Kilpi, H.; Karlsson, S.; Soto, M.E.; Renom-Guiteras, A.; Saks, K.; Zabalegui, A.; Hamers, J.P.H.; Meyer, G.; Stephan, A.; Renom Guiteras, A.; Sauerland, D.; Wübker, A.; Bremer, P.; Hamers, P.; Afram, B.; Beerens, H.C.; Bleijlevens, M.H.C.; Verbeek, H.; Zwakhalen, S.M.G.; Ruwaard, D.; Ambergen, T.; Hallberg, I.Rahm.; Emilsson, U.Melin.; Karlsson, S.; Bokberg, C.; Lethin, C.; Challis, D.; Sutcliffe, C.; Jolley, D.; Tucker, S.; Bowns, I.; Roe, B.; Burns, A.; Leino-Kilpi, H.; Koskenniemi, J.; Suhonen, R. 2015: Predicting institutional long-term care admission in dementia: a mixed-methods study of informal caregivers' reports. Journal of Advanced Nursing 71(6): 1351-1362
Fitzgerald, S.; Gray, N.S.; Alexander, R.T.; Bagshaw, R.; Chesterman, P.; Huckle, P.; Jones, S.K.; Taylor, J.; Williams, T.; Snowden, R.J. 2013: Predicting institutional violence in offenders with intellectual disabilities: the predictive efficacy of the VRAG and the HCR-20. Journal of Applied Research in Intellectual Disabilities: Jarid 26(5): 384-393
Eum, R.S.; Seel, R.T.; Goldstein, R.; Brown, A.W.; Watanabe, T.K.; Zasler, N.D.; Roth, E.J.; Zafonte, R.D.; Glenn, M.B. 2015: Predicting institutionalization after traumatic brain injury inpatient rehabilitation. Journal of Neurotrauma 32(4): 280-286
Moreira, S.ér.R.; Ferreira, A.P.; Lima, R.M.; Arsa, G.; Campbell, C.S.G.; Simões, H.G.; Pitanga, F.J.G.; França, N.M. 2008: Predicting insulin resistance in children: anthropometric and metabolic indicators. Jornal de Pediatria 84(1): 47-52
Chiang, J.-K.; Lai, N.-S.; Chang, J.-K.; Koo, M. 2011: Predicting insulin resistance using the triglyceride-to-high-density lipoprotein cholesterol ratio in Taiwanese adults. Cardiovascular Diabetology 10: 93
Thornton, S.; Calam, R. 2011: Predicting intention to attend and actual attendance at a universal parent-training programme: a comparison of social cognition models. Clinical child psychology and psychiatry 16(3): 365-383
Astrøm, A.N.; Nasir, E.F. 2009: Predicting intention to treat HIV-infected patients among Tanzanian and Sudanese medical and dental students using the theory of planned behaviour--a cross sectional study. Bmc Health Services Research 9: 213
Abamecha, F.; Godesso, A.; Girma, E. 2013: Predicting intention to use voluntary HIV counseling and testing services among health professionals in Jimma, Ethiopia, using the theory of planned behavior. Journal of Multidisciplinary Healthcare 6: 399-407
Scholz, U.; Klaghofer, R.; Dux, R.; Roellin, M.; Boehler, A.; Muellhaupt, B.; Noll, G.; Wüthrich, R.P.; Goetzmann, L. 2012: Predicting intentions and adherence behavior in the context of organ transplantation: gender differences of provided social support. Journal of Psychosomatic Research 72(3): 214-219
Moan, I.S.øv.; Rise, J. 2011: Predicting intentions not to "drink and drive" using an extended version of the theory of planned behaviour. Accident; Analysis and Prevention 43(4): 1378-1384
Shapiro, M.A.; Porticella, N.; Jiang, L.C.; Gravani, R.B. 2011: Predicting intentions to adopt safe home food handling practices. Applying the theory of planned behavior. Appetite 56(1): 96-103
Bai, Y.; Wunderlich, S.M.; Fly, A.D. 2011: Predicting intentions to continue exclusive breastfeeding for 6 months: a comparison among racial/ethnic groups. Maternal and Child Health Journal 15(8): 1257-1264
Robinson, N.G.; Masser, B.M.; White, K.M.; Hyde, M.K.; Terry, D.J. 2008: Predicting intentions to donate blood among nondonors in Australia: an extended theory of planned behavior. Transfusion 48(12): 2559-2567
Pawlak, R.; Malinauskas, B.; Rivera, D. 2009: Predicting intentions to eat a healthful diet by college baseball players: applying the theory of planned behavior. Journal of nutrition education and behavior 41(5): 334-339
Smith-McLallen, A.; Fishbein, M. 2009: Predicting intentions to engage in cancer prevention and detection behaviors: examining differences between Black and White adults. Psychology Health and Medicine 14(2): 180-189
Groth, G.N. 2011: Predicting intentions to use research evidence for carpal tunnel syndrome treatment decisions among certified hand therapists. Journal of Occupational Rehabilitation 21(4): 559-572
Whitford, T.J.; Kubicki, M.; Ghorashi, S.; Schneiderman, J.S.; Hawley, K.J.; McCarley, R.W.; Shenton, M.E.; Spencer, K.M. 2011: Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTi study. Neuroimage 54(3): 2318-2329
Pawelczyk, S.; Scott, K.A.; Hamer, R.; Blades, G.; Deane, C.M.; Wadhams, G.H. 2012: Predicting inter-species cross-talk in two-component signalling systems. Plos one 7(5): E37737
Kern, C.; González, A.J.; Liao, L.; Vijay-Shanker, K. 2013: Predicting interacting residues using long-distance information and novel decoding in hidden Markov models. IEEE Transactions on Nanobioscience 12(3): 158-164
Scarabelli, G.; Morra, G.; Colombo, G. 2010: Predicting interaction sites from the energetics of isolated proteins: a new approach to epitope mapping. Biophysical Journal 98(9): 1966-1975
Griffith, G.P.; Fulton, E.A.; Gorton, R.; Richardson, A.J. 2012: Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models. Conservation Biology: the Journal of the Society for Conservation Biology 26(6): 1145-1152
Roomp, K.; Domingues, F.S. 2011: Predicting interactions between T cell receptors and MHC-peptide complexes. Molecular Immunology 48(4): 553-562
Hajingabo, L.J.; Daakour, S.; Martin, M.; Grausenburger, R.; Panzer-Grümayer, R.; Dequiedt, F.; Simonis, N.; Twizere, J.-C. 2014: Predicting interactome network perturbations in human cancer: application to gene fusions in acute lymphoblastic leukemia. Molecular Biology of the Cell 25(24): 3973-3985
Park, L.E.; Calogero, R.M.; Harwin, M.J.; DiRaddo, A.Marie. 2009: Predicting interest in cosmetic surgery: interactive effects of appearance-based rejection sensitivity and negative appearance comments. Body Image 6(3): 186-193
Jávo, I.á M.ár.á; Pettersen, G.; Rosenvinge, J.H.; Sørlie, T. 2012: Predicting interest in liposuction among women with eating problems: a population-based study. Body Image 9(1): 131-136
Shah, V.; Broseta, D. 2007: Predicting interfacial tension between water and nonpolar fluids from a Cahn-type theory. Langmuir 23(25): 12598-12605
Brasier, A.R.; Victor, S.; Ju, H.; Busse, W.W.; Curran-Everett, D.; Bleecker, E.; Castro, M.; Chung, K.F.; Gaston, B.; Israel, E.; Wenzel, S.E.; Erzurum, S.C.; Jarjour, N.N.; Calhoun, W.J. 2010: Predicting intermediate phenotypes in asthma using bronchoalveolar lavage-derived cytokines. Clinical and Translational Science 3(4): 147-157
Beckstrand, J.; Cirgin Ellett, M.L.; McDaniel, A. 2007: Predicting internal distance to the stomach for positioning nasogastric and orogastric feeding tubes in children. Journal of Advanced Nursing 59(3): 274-289
Mäntymaa, M.; Puura, K.; Luoma, I.; Latva, R.; Salmelin, R.K.; Tamminen, T. 2012: Predicting internalizing and externalizing problems at five years by child and parental factors in infancy and toddlerhood. Child Psychiatry and Human Development 43(2): 153-170
Muhtadie, L.; Zhou, Q.; Eisenberg, N.; Wang, Y. 2013: Predicting internalizing problems in Chinese children: the unique and interactive effects of parenting and child temperament. Development and Psychopathology 25(3): 653-667
Schabort, I.; Mercuri, M.; Grierson, L.E.M. 2014: Predicting international medical graduate success on college certification examinations: responding to the Thomson and Cohl judicial report on IMG selection. Canadian family physician Medecin de famille canadien 60(10): e478-e484
Paul, B. 2009: Predicting internet pornography use and arousal: the role of individual difference variables. Journal of Sex Research 46(4): 344-357
Carlert, S.; Pålsson, A.; Hanisch, G.; von Corswant, C.; Nilsson, C.; Lindfors, L.; Lennernäs, H.; Abrahamsson, B. 2010: Predicting intestinal precipitation--a case example for a basic BCS class Ii drug. Pharmaceutical Research 27(10): 2119-2130
Hobohm, C.; Fritzsch, D.; Budig, S.; Classen, J.; Hoffmann, K.-T.; Michalski, D. 2014: Predicting intracerebral hemorrhage by baseline magnetic resonance imaging in stroke patients undergoing systemic thrombolysis. Acta Neurologica Scandinavica 130(5): 338-345
Chi, J.H. 2012: Predicting intracerebral hemorrhage growth with a spot. Neurosurgery 71(2): N28-N29
Fabbri, A.; Servadei, F.; Marchesini, G.; Stein, S.C.; Vandelli, A. 2010: Predicting intracranial lesions by antiplatelet agents in subjects with mild head injury. Journal of Neurology Neurosurgery and Psychiatry 81(11): 1275-1279
Sivashanmugham, T.; Jahirdar, S.Mahamud.; Parthasarathy, S.; Muthurangan, G. 2013: Predicting intraoperative cardiovascular complication in patients with anterior mediastinal mass-role of central venous pressure monitoring. Indian Journal of Anaesthesia 57(4): 406-408
Azabou, E.; Manel, V.ér.; Abelin-Genevois, K.; Andre-Obadia, N.; Cunin, V.; Garin, C.; Kohler, R.; Berard, J.ér.ôm.; Ulkatan, S. 2014: Predicting intraoperative feasibility of combined TES-mMEP and cSSEP monitoring during scoliosis surgery based on preoperative neurophysiological assessment. Spine Journal: Official Journal of the North American Spine Society 14(7): 1214-1220
Jones, J.P.; Korzekwa, K.R. 2013: Predicting intrinsic clearance for drugs and drug candidates metabolized by aldehyde oxidase. Molecular Pharmaceutics 10(4): 1262-1268
Seabloom, E.W.; Borer, E.T.; Buckley, Y.; Cleland, E.E.; Davies, K.; Firn, J.; Harpole, W.S.; Hautier, Y.; Lind, E.; MacDougall, A.; Orrock, J.L.; Prober, S.M.; Adler, P.; Alberti, J.; Anderson, T.M.; Bakker, J.D.; Biederman, L.A.; Blumenthal, D.; Brown, C.S.; Brudvig, L.A.; Caldeira, M.; Chu, C.; Crawley, M.J.; Daleo, P.; Damschen, E.I.; D'Antonio, C.M.; DeCrappeo, N.M.; Dickman, C.R.; Du, G.; Fay, P.A.; Frater, P.; Gruner, D.S.; Hagenah, N.; Hector, A.; Helm, A.; Hillebrand, H.; Hofmockel, K.S.; Humphries, H.C.; Iribarne, O.; Jin, V.L.; Kay, A.; Kirkman, K.P.; Klein, J.A.; Knops, J.M.H.; La Pierre, K.J.; Ladwig, L.M.; Lambrinos, J.G.; Leakey, A.D.B.; Li, Q.; Li, W.; McCulley, R.; Melbourne, B.; Mitchell, C.E.; Moore, J.L.; Morgan, J. 2013: Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology 19(12): 3677-3687
Ayvaci, M.U.S.; Alagoz, O.; Chhatwal, J.; Munoz del Rio, A.; Sickles, E.A.; Nassif, H.; Kerlikowske, K.; Burnside, E.S. 2014: Predicting invasive breast cancer versus DCIS in different age groups. Bmc Cancer 14: 584
Paini, D.R.; Bianchi, F.J.J.A.; Northfield, T.D.; De Barro, P.J. 2011: Predicting invasive fungal pathogens using invasive pest assemblages: testing model predictions in a virtual world. Plos one 6(10): E25695
Celebiler Cavusoglu, A.; Kilic, Y.; Saydam, S.; Canda, T.; Başkan, Z.; Sevinc, A.I.; Sakizli, M. 2009: Predicting invasive phenotype with CDH1, CDH13, CD44, and TIMP3 gene expression in primary breast cancer. Cancer Science 100(12): 2341-2345
Paterson, R.A.; Dick, J.T.A.; Pritchard, D.W.; Ennis, M.; Hatcher, M.J.; Dunn, A.M. 2015: Predicting invasive species impacts: a community module functional response approach reveals context dependencies. Journal of Animal Ecology 84(2): 453-463
Loranger, J.; Meyer, S.T.; Shipley, B.; Kattge, J.; Loranger, H.; Roscher, C.; Weisser, W.W. 2012: Predicting invertebrate herbivory from plant traits: evidence from 51 grassland species in experimental monocultures. Ecology 93(12): 2674-2682
Loranger, J.; Meyer, S.T.; Shipley, B.; Kattge, J.; Loranger, H.; Roscher, C.; Wirth, C.; Weisser, W.W. 2013: Predicting invertebrate herbivory from plant traits: polycultures show strong nonadditive effects. Ecology 94(7): 1499-1509
Wood, J.L.; Alleyne, E.; Mozova, K.; James, M. 2014: Predicting involvement in prison gang activity: street gang membership, social and psychological factors. Law and human behavior 38(3): 203-211
Tan, Z.-J.; Chen, S.-J. 2010: Predicting ion binding properties for RNA tertiary structures. Biophysical Journal 99(5): 1565-1576
Lin, H.; Ding, H. 2011: Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. Journal of Theoretical Biology 269(1): 64-69
Parsons, D.F. 2014: Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions. Journal of Colloid and Interface Science 427: 67-72
He, Z.; Chen, S.-J. 2012: Predicting ion-nucleic acid interactions by energy landscape-guided sampling. Journal of Chemical Theory and Computation 8(6): 2095-2101
Olynyk, J.K.; Gan, E.; Tan, T. 2009: Predicting iron overload in hyperferritinemia. Clinical Gastroenterology and Hepatology: the Official Clinical Practice Journal of the American Gastroenterological Association 7(3): 359-362
Frisch, D.R.; Giedrimas, E.; Mohanavelu, S.; Shui, A.; Ho, K.K.L.; Gibson, C.M.; Josephson, M.E.; Zimetbaum, P.J. 2009: Predicting irreversible left ventricular dysfunction after acute myocardial infarction. American Journal of Cardiology 103(9): 1206-1209
Meurer, W.J.; Sánchez, B.N.; Smith, M.A.; Lisabeth, L.D.; Majersik, J.J.; Brown, D.L.; Uchino, K.; Bonikowski, F.P.; Mendizabal, J.E.; Zahuranec, D.B.; Morgenstern, L.B. 2009: Predicting ischaemic stroke subtype from presenting systolic blood pressure: the BASIC Project. Journal of Internal Medicine 265(3): 388-396
Goodman, P.G.; Mehta, A.R.; Castresana, M.R. 2009: Predicting ischemic brain injury after intraoperative cardiac arrest during cardiac surgery using the BIS monitor. Journal of Clinical Anesthesia 21(8): 609-612
Lian, B.Q.; Keaney, J.F. 2010: Predicting ischemic heart disease in women: the value of endothelial function. Journal of the American College of Cardiology 55(16): 1697-1699
Bellin, M.D.; Blondet, J.J.; Beilman, G.J.; Dunn, T.B.; Balamurugan, A.N.; Thomas, W.; Sutherland, D.E.R.; Moran, A. 2010: Predicting islet yield in pediatric patients undergoing pancreatectomy and autoislet transplantation for chronic pancreatitis. Pediatric Diabetes 11(4): 227-234
Wolken, G.G.; Fossen, B.J.; Noh, A.; Arriaga, E.A. 2013: Predicting isoelectric points of nonfunctional mitochondria from Monte Carlo simulations of surface compositions. Langmuir 29(8): 2700-2707
Wagner, H.; Boström, K.; Rinke, B. 2011: Predicting isometric force from muscular activation using a physiologically inspired model. Biomechanics and Modeling in Mechanobiology 10(6): 955-961
Whittaker, P.B.; Wang, X.; Regenauer-Lieb, K.; Chua, H.T. 2013: Predicting isosteric heats for gas adsorption. Physical Chemistry Chemical Physics: Pccp 15(2): 473-482
Chen, S.-Y.; Doong, S.-H. 2008: Predicting item exposure parameters in computerized adaptive testing. British Journal of Mathematical and Statistical Psychology 61(Part 1): 75-91
Wilford, J.; McMahon, A.D.; Peters, J.; Pickvance, S.; Jackson, A.; Blank, L.; Craig, D.; O'Rourke, A.; Macdonald, E.B. 2008: Predicting job loss in those off sick. Occupational Medicine 58(2): 99-106
Hardin, E.E.; Donaldson, J.R. 2014: Predicting job satisfaction: a new perspective on person-environment fit. Journal of Counseling Psychology 61(4): 634-640
Jung, H.; Lee, J.-E.; Kim, J. 2013: Predicting job stress: a specific case of a female golf caddy in South Korea. Work 45(2): 183-189
McQueen, F.M.; Dalbeth, N. 2009: Predicting joint damage in rheumatoid arthritis using MRi scanning. Arthritis Research and Therapy 11(5): 124
Cipriano, L.E.; Chesworth, B.M.; Anderson, C.K.; Zaric, G.S. 2007: Predicting joint replacement waiting times. Health Care Management Science 10(2): 195-215
Weber, M.; Thompson-Schill, S.L.; Osherson, D.; Haxby, J.; Parsons, L. 2009: Predicting judged similarity of natural categories from their neural representations. Neuropsychologia 47(3): 859-868
Mallett, C.A.; Stoddard Dare, P.; Seck, M.M. 2009: Predicting juvenile delinquency: the nexus of childhood maltreatment, depression and bipolar disorder. Criminal Behaviour and Mental Health: Cbmh 19(4): 235-246
Ang, R.P.; Goh, D.H. 2013: Predicting juvenile offending: a comparison of data mining methods. International Journal of Offender Therapy and Comparative Criminology 57(2): 191-207
Hattori, K.; Wakabayashi, H.; Tamaki, K. 2008: Predicting key example compounds in competitors' patent applications using structural information alone. Journal of Chemical Information and Modeling 48(1): 135-142
Zaza, G. 2012: Predicting kidney graft survival: molecular biology has the key. Giornale Italiano di Nefrologia: Organo Ufficiale Della Societa Italiana di Nefrologia 29(3): 266
Krikov, S.; Khan, A.; Baird, B.C.; Barenbaum, L.L.; Leviatov, A.; Koford, J.K.; Goldfarb-Rumyantzev, A.S. 2007: Predicting kidney transplant survival using tree-based modeling. Asaio Journal 53(5): 592-600
Talreja, H.; Akbari, A.; White, C.A.; Ramsay, T.O.; Hiremath, S.; Knoll, G. 2014: Predicting kidney transplantation outcomes using proteinuria ascertained from spot urine samples versus timed urine collections. American Journal of Kidney Diseases: the Official Journal of the National Kidney Foundation 64(6): 962-968
Bøgebo, R.; Horn, H.; Olsen, J.V.; Gammeltoft, S.; Jensen, L.J.; Hansen, J.L.; Christensen, G.L. 2014: Predicting kinase activity in angiotensin receptor phosphoproteomes based on sequence-motifs and interactions. Plos one 9(4): E94672
Sciabola, S.; Stanton, R.V.; Wittkopp, S.; Wildman, S.; Moshinsky, D.; Potluri, S.; Xi, H. 2008: Predicting kinase selectivity profiles using Free-Wilson QSAR analysis. Journal of Chemical Information and Modeling 48(9): 1851-1867
Lai, A.C.W.; Nguyen Ba, A.N.; Moses, A.M. 2012: Predicting kinase substrates using conservation of local motif density. Bioinformatics 28(7): 962-969
Hoorn, E.J.; Meima, M.E. 2012: Predicting kinase-substrate interactions in the era of proteomics: focus on "Identifying protein kinase target preferences using mass spectrometry". American Journal of Physiology. Cell Physiology 303(7): C711-C712
Al Otaiba, S.; Puranik, C.; Rouby, A.D.; Greulich, L.; Folsom, J.S.; Lee, J. 2010: Predicting kindergartners' end of year spelling ability from their reading, alphabetic, vocabulary, and phonological awareness skills, and prior literacy experiences. Learning Disability Quarterly: Journal of the Division for Children with Learning Disabilities 33(3): 171-183
Bai, H.; Yang, K.; Yu, D.; Zhang, C.; Chen, F.; Lai, L. 2011: Predicting kinetic constants of protein-protein interactions based on structural properties. Proteins 79(3): 720-734
Syaichurrozi, I.; Budiyono; Sumardiono, S. 2013: Predicting kinetic model of biogas production and biodegradability organic materials: biogas production from vinasse at variation of COD/N ratio. Bioresource Technology 149: 390-397
Markopoulos, G.; Grunenberg, J.ör. 2013: Predicting kinetically unstable C-C bonds from the ground-state properties of a molecule. Angewandte Chemie 52(40): 10648-10651
Jørgensen, D.R.; Dam, E.B.; Lillholm, M. 2013: Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps. Computers in Biology and Medicine 43(8): 1045-1052
Zhao, D.; Sakoda, H.; Sawyer, W.G.; Banks, S.A.; Fregly, B.J. 2008: Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor. Journal of Biomechanical Engineering 130(1): 011004
Maderbacher, G.ün.; Schaumburger, J.; Baier, C.; Zeman, F.; Springorum, H.-R.; Dornia, C.; Grifka, J.; Keshmiri, A. 2014: Predicting knee rotation by the projection overlap of the proximal fibula and tibia in long-leg radiographs. Knee Surgery Sports Traumatology Arthroscopy: Official Journal of the Esska 22(12): 2982-2988
Schjølberg, S.; Eadie, P.; Zachrisson, H.D.; Oyen, A.-S.; Prior, M. 2011: Predicting language development at age 18 months: data from the Norwegian Mother and Child Cohort Study. Journal of Developmental and Behavioral Pediatrics: Jdbp 32(5): 375-383
Payabvash, S.; Kamalian, S.; Fung, S.; Wang, Y.; Passanese, J.; Kamalian, S.; Souza, L.C.S.; Kemmling, A.; Harris, G.J.; Halpern, E.F.; González, R.G.; Furie, K.L.; Lev, M.H. 2010: Predicting language improvement in acute stroke patients presenting with aphasia: a multivariate logistic model using location-weighted atlas-based analysis of admission CT perfusion scans. AJNR. American Journal of Neuroradiology 31(9): 1661-1668
Josse, G.; Kherif, F.; Flandin, G.; Seghier, M.L.; Price, C.J. 2009: Predicting language lateralization from gray matter. Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29(43): 13516-13523
Reilly, S.; Wake, M.; Ukoumunne, O.C.; Bavin, E.; Prior, M.; Cini, E.; Conway, L.; Eadie, P.; Bretherton, L. 2010: Predicting language outcomes at 4 years of age: findings from Early Language in Victoria Study. Pediatrics 126(6): e1530-e1537
Brady, N.C.; Thiemann-Bourque, K.; Fleming, K.; Matthews, K. 2013: Predicting language outcomes for children learning augmentative and alternative communication: child and environmental factors. Journal of Speech Language and Hearing Research: Jslhr 56(5): 1595-1612
Ortendahl, M. 2007: Predicting lapse when stopping smoking among pregnant and non-pregnant women. Journal of Obstetrics and Gynaecology: the Journal of the Institute of Obstetrics and Gynaecology 27(2): 138-143
Kim, J.; Lin, L.-C.; Swisher, J.A.; Haranczyk, M.; Smit, B. 2012: Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. Journal of the American Chemical Society 134(46): 18940-18943
Grochola, G.; Snook, I.K.; Russo, S.P. 2014: Predicting large area surface reconstructions using molecular dynamics methods. Journal of Chemical Physics 140(5): 054701
Zhang, J.; Kim, S.; Grewal, J.; Albert, P.S. 2012: Predicting large fetuses at birth: do multiple ultrasound examinations and longitudinal statistical modelling improve prediction?. Paediatric and Perinatal Epidemiology 26(3): 199-207
Palmer, D.S.; Jensen, F. 2011: Predicting large-scale conformational changes in proteins using energy-weighted normal modes. Proteins 79(10): 2778-2793
Liao, Z.M.; Spaeth, M.L.; Manes, K.; Adams, J.J.; Carr, C.W. 2010: Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model. Optics Letters 35(15): 2538-2540
Wedlake, L.J.; Thomas, K.; Lalji, A.; Blake, P.; Khoo, V.S.; Tait, D.; Andreyev, H.J.N. 2010: Predicting late effects of pelvic radiotherapy: is there a better approach?. International Journal of Radiation Oncology Biology Physics 78(4): 1163-1170
Larose, E.; Rodés-Cabau, J.; Pibarot, P.; Rinfret, Séphane.; Proulx, G.; Nguyen, C.M.; Déry, J-Pierre.; Gleeton, O.; Roy, L.; Noël, B.; Barbeau, Gérald.; Rouleau, J.; Boudreault, J-Rock.; Amyot, M.; De Larochellière, R.; Bertrand, O.F. 2010: Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance. Journal of the American College of Cardiology 55(22): 2459-2469
Barbot, M.; Albiger, N.; Koutroumpi, S.; Ceccato, F.; Frigo, A.C.; Manara, R.; Fassina, A.; Gardiman, M.P.; Scanarini, M.; Mantero, F.; Scaroni, C. 2013: Predicting late recurrence in surgically treated patients with Cushing's disease. Clinical Endocrinology 79(3): 394-401
Pesco, D.; O'Neill, D.K. 2012: Predicting later language outcomes from the Language use Inventory. Journal of Speech Language and Hearing Research: Jslhr 55(2): 421-434
Boekelheide, K.; Blumberg, B.; Chapin, R.E.; Cote, I.; Graziano, J.H.; Janesick, A.; Lane, R.; Lillycrop, K.; Myatt, L.; States, J.C.; Thayer, K.A.; Waalkes, M.P.; Rogers, J.M. 2012: Predicting later-life outcomes of early-life exposures. Environmental Health Perspectives 120(10): 1353-1361
Lowmaster, S.E.; Morey, L.C. 2012: Predicting law enforcement officer job performance with the Personality Assessment Inventory. Journal of Personality Assessment 94(3): 254-261
Cheng, T.; Rivard, B.; Sánchez-Azofeifa, A.G.; Féret, J.-B.; Jacquemoud, S.; Ustin, S.L. 2012: Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. Journal of Plant Physiology 169(12): 1134-1142
Roelofsen, H.D.; van Bodegom, P.M.; Kooistra, L.; Witte, J.-P.M. 2014: Predicting leaf traits of herbaceous species from their spectral characteristics. Ecology and Evolution 4(6): 706-719
Tipple, B.J.; Berke, M.A.; Hambach, B.; Roden, J.S.; Ehleringer, J.R. 2015: Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model. Plant Cell and Environment 38(6): 1035-1047
Wysokinski, W.E.; Ammash, N.; Sobande, F.; Kalsi, H.; Hodge, D.; McBane, R.D. 2010: Predicting left atrial thrombi in atrial fibrillation. American Heart Journal 159(4): 665-671
Tandon, H.; LaSala, A.F. 2007: Predicting left ventricular end-diastolic pressure by echocardiography. American Journal of Cardiology 99(12): 1776
Koshy, S.K.G.; George, L.K. 2015: Predicting left ventricular function recovery after reperfusion in ST elevation myocardial infarction: can we balance cost and accuracy?. Echocardiography 32(4): 613-614
Fujishiro, T.; Nishiyama, T.; Hayashi, S.; Hashimoto, S.; Kurosaka, M.; Kanno, T.; Masuda, T. 2012: Predicting leg-length change after total hip arthroplasty by measuring preoperative hip flexion under general anaesthesia. Journal of Orthopaedic Surgery 20(3): 327-330
Bult, M.K.; Verschuren, O.; Lindeman, E.; Jongmans, M.J.; Westers, P.; Claassen, A.; Ketelaar, M. 2013: Predicting leisure participation of school-aged children with cerebral palsy: longitudinal evidence of child, family and environmental factors. Child: Care Health and Development 39(3): 374-380
Manzano-Santaella, A. 2009: Predicting length of hospitalisation and social factors. Age and Ageing 38(2): 247; Author Reply 247-8
Supervía, A.; Aranda, D.; Márquez, M.A.; Aguirre, A.; Skaf, E.; Gutiérrez, J. 2008: Predicting length of hospitalisation of elderly patients, using the Barthel Index. Age and Ageing 37(3): 339-342
Dunham, H.W.; Meltzer, B.N. 1946: Predicting length of hospitalization of mental patients. American Journal of Sociology 52: 123-131
Carter, E.M.; Potts, H.W.W. 2014: Predicting length of stay from an electronic patient record system: a primary total knee replacement example. Bmc Medical Informatics and Decision Making 14: 26
McClure, J.A.; Salter, K.; Meyer, M.; Foley, N.; Kruger, H.; Teasell, R. 2011: Predicting length of stay in patients admitted to stroke rehabilitation with high levels of functional independence. Disability and Rehabilitation 33(23-24): 2356-2361
Seligman, N.S.; Salva, N.; Hayes, E.J.; Dysart, K.C.; Pequignot, E.C.; Baxter, J.K. 2008: Predicting length of treatment for neonatal abstinence syndrome in methadone-exposed neonates. American Journal of Obstetrics and Gynecology 199(4): 396.E1-7
Torres, L. 2010: Predicting levels of Latino depression: acculturation, acculturative stress, and coping. Cultural Diversity and Ethnic Minority Psychology 16(2): 256-263
Faria, C.D.C.M.; Teixeira-Salmela, L.F.; Nadeau, S. 2013: Predicting levels of basic functional mobility, as assessed by the Timed "Up and Go" test, for individuals with stroke: discriminant analyses. Disability and Rehabilitation 35(2): 146-152
Pape, T.L.-B.; Guernon, A.; Lundgren, S.; Patil, V.; Herrold, A.A.; Smith, B.; Blahnik, M.; Picon, L.M.; Harton, B.; Peterson, M.; Mallinson, T.; Hoffmann, M. 2013: Predicting levels of independence with expressing needs and ideas 1 year after severe brain injury. Rehabilitation Psychology 58(3): 253-262
Lauchner, K.A.; Newman, M.; Britt, R.B. 2008: Predicting licensure success with a computerized comprehensive nursing exam: the HESi Exit Exam. Computers Informatics Nursing: Cin 26(5 Suppl): 4s-9s
Smith, D.D.; McCahill, L.E. 2008: Predicting life expectancy and symptom relief following surgery for advanced malignancy. Annals of Surgical Oncology 15(12): 3335-3341
McClave, S.A.; Delegge, M.H. 2008: Predicting life expectancy before percutaneous endoscopic gastrostomy placement: a lesson in futility or an exercise of injustice?. Gastrointestinal Endoscopy 68(2): 228-230; Quiz 333, 335
Tan, A.; Kuo, Y.-F.; Goodwin, J.S. 2013: Predicting life expectancy for community-dwelling older adults from Medicare claims data. American Journal of Epidemiology 178(6): 974-983
Yancy, C.W. 2008: Predicting life expectancy in heart failure. JAMA 299(21): 2566-2567
Krishnan, M.; Temel, J.S.; Wright, A.A.; Bernacki, R.; Selvaggi, K.; Balboni, T. 2013: Predicting life expectancy in patients with advanced incurable cancer: a review. Journal of Supportive Oncology 11(2): 68-74
Krishnan, M.S.; Epstein-Peterson, Z.; Chen, Y.-H.; Tseng, Y.D.; Wright, A.A.; Temel, J.S.; Catalano, P.; Balboni, T.A. 2014: Predicting life expectancy in patients with metastatic cancer receiving palliative radiotherapy: the TEACHH model. Cancer 120(1): 134-141
Jeldres, C.; Latouff, J.-B.; Saad, F. 2009: Predicting life expectancy in prostate cancer patients. Current Opinion in Supportive and Palliative Care 3(3): 166-169
Marion, D.; Laursen, B.; Zettergren, P.; Bergman, L.R. 2013: Predicting life satisfaction during middle adulthood from peer relationships during mid-adolescence. Journal of Youth and Adolescence 42(8): 1299-1307
Creemers, H.E.; Dijkstra, J.K.; Vollebergh, W.A.M.; Ormel, J.; Verhulst, F.C.; Huizink, A.C. 2010: Predicting life-time and regular cannabis use during adolescence; the roles of temperament and peer substance use: the TRAILS study. Addiction 105(4): 699-708
Poutanen, O.; Koivisto, A-Maija.; Mattila, A.; Joukamaa, M.; Salokangas, R.K.R. 2008: Predicting lifetime mood elevation in primary care patients and psychiatric patients. Nordic Journal of Psychiatry 62(4): 263-271
Boyce, S.E.; Mobley, D.L.; Rocklin, G.J.; Graves, A.P.; Dill, K.A.; Shoichet, B.K. 2009: Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. Journal of Molecular Biology 394(4): 747-763
Hirst, J.D. 1998: Predicting ligand binding energies. Current Opinion in Drug Discovery and Development 1(1): 28-33
Chupakhin, V.; Marcou, G.; Baskin, I.; Varnek, A.; Rognan, D. 2013: Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints. Journal of Chemical Information and Modeling 53(4): 763-772
González, A.J.; Liao, L.; Wu, C.H. 2012: Predicting ligand binding residues and functional sites using multipositional correlations with graph theoretic clustering and kernel CCA. Ieee/Acm Transactions on Computational Biology and Bioinformatics 9(4): 992-1001
Demel, M.A.; Krämer, O.; Ettmayer, P.; Haaksma, E.E.J.; Ecker, G.F. 2009: Predicting ligand interactions with ABC transporters in ADME. Chemistry and Biodiversity 6(11): 1960-1969
Unal, B.; Gur, A.S.; Beriwal, S.; Tang, G.; Johnson, R.; Ahrendt, G.; Bonaventura, M.; Soran, A. 2009: Predicting likelihood of having four or more positive nodes in patient with sentinel lymph node-positive breast cancer: a nomogram validation study. International Journal of Radiation Oncology Biology Physics 75(4): 1035-1040
Zhang, W.; Liu, J.; Zhao, M.; Li, Q. 2012: Predicting linear B-cell epitopes by using sequence-derived structural and physicochemical features. International Journal of Data Mining and Bioinformatics 6(5): 557-569
El-Manzalawy, Y.; Dobbs, D.; Honavar, V. 2008: Predicting linear B-cell epitopes using string kernels. Journal of Molecular Recognition: Jmr 21(4): 243-255
Porcu, G.ér.; Lehert, P.; Colella, C.; Giorgetti, C. 2013: Predicting live birth chances for women with multiple consecutive failing IVF cycles: a simple and accurate prediction for routine medical practice. Reproductive Biology and Endocrinology: Rb&e 11: 1
Nelson, S.M.; Lawlor, D.A. 2012: Predicting live birth outcomes after in vitro fertilisation. BJOG: an international journal of obstetrics and gynaecology 119(13): 1668; author reply 1668-9
Nelson, S.M.; Lawlor, D.A. 2011: Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilisation: a prospective study of 144,018 treatment cycles. Plos Medicine 8(1): E1000386
Garcea, G.; Ong, S.L.; Maddern, G.J. 2009: Predicting liver failure following major hepatectomy. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 41(11): 798-806
Kaufman, S.S.; Pehlivanova, M.; Fennelly, E.M.; Rekhtman, Y.M.; Gondolesi, G.E.; Little, C.A.; Matsumoto, C.S.; Fishbein, T.M. 2010: Predicting liver failure in parenteral nutrition-dependent short bowel syndrome of infancy. Journal of Pediatrics 156(4): 580
Marín Gabriel, J.C.; Solís Herruzo, J.A. 2008: Predicting liver fibrosis with non-invasive tests--a hope for the future. Revista Espanola de Enfermedades Digestivas: Organo Oficial de la Sociedad Espanola de Patologia Digestiva 100(10): 605-610
Ramay, H.R.; Jafri, M.S.; Lederer, W.J.; Sobie, E.A. 2010: Predicting local SR Ca(2+) dynamics during Ca(2+) wave propagation in ventricular myocytes. Biophysical Journal 98(11): 2515-2523
Pickup, M.; Field, D.L.; Rowell, D.M.; Young, A.G. 2012: Predicting local adaptation in fragmented plant populations: implications for restoration genetics. Evolutionary Applications 5(8): 913-924
Papageorgiou, K.I.; Cohen, V.M.L.; Bunce, C.; Kinsella, M.; Hungerford, J.L. 2011: Predicting local control of choroidal melanomas following ¹⁰⁶Ru plaque brachytherapy. British Journal of Ophthalmology 95(2): 166-170
Sang, S.; Yin, W.; Bi, P.; Zhang, H.; Wang, C.; Liu, X.; Chen, B.; Yang, W.; Liu, Q. 2014: Predicting local dengue transmission in Guangzhou, China, through the influence of imported cases, mosquito density and climate variability. Plos one 9(7): E102755
Gao, X.; Xu, J.; Li, S.C.; Li, M. 2009: Predicting local quality of a sequence-structure alignment. Journal of Bioinformatics and Computational Biology 7(5): 789-810
Groot, G.; Rees, H.; Pahwa, P.; Kanagaratnam, S.; Kinloch, M. 2011: Predicting local recurrence following breast-conserving therapy for early stage breast cancer: the significance of a narrow (≤ 2 mm) surgical resection margin. Journal of Surgical Oncology 103(3): 212-216
Kim, M.Y.; Cho, N.; Koo, H.R.; Yun, B.L.; Bae, M.S.; Chie, E.K.; Moon, W.K. 2013: Predicting local recurrence following breast-conserving treatment: parenchymal signal enhancement ratio (SER) around the tumor on preoperative MRi. Acta Radiologica 54(7): 731-738
Mamounas, T.P. 2013: Predicting locoregional recurrence after neoadjuvant chemotherapy in patients with breast cancer. Clinical Advances in Hematology and Oncology: H&o 11(3): 175-177
Hoonakker, P.; van Duivenbooden, C. 2012: Predicting long-term absenteeism from work in construction industry: a longitudinal study. Work 41(Suppl 1): 3765-3770
Dhoble, A.; Lahr, B.D.; Allison, T.G.; Bailey, K.R.; Thomas, R.J.; Lopez-Jimenez, F.; Kullo, I.J.; Gupta, B.; Kopecky, S.L. 2014: Predicting long-term cardiovascular risk using the mayo clinic cardiovascular risk score in a referral population. American Journal of Cardiology 114(5): 704-710
Haslam, N.; Koval, P. 2010: Predicting long-term citation impact of articles in social and personality psychology. Psychological Reports 106(3): 891-900
Wattmo, C.; Hansson, O.; Wallin, A.K.; Londos, E.; Minthon, L. 2008: Predicting long-term cognitive outcome with new regression models in donepezil-treated Alzheimer patients in a naturalistic setting. Dementia and Geriatric Cognitive Disorders 26(3): 203-211
Svitak, M.; Müller-Svitak, S.; Schuler, M.; Koch, A.; Rauh, E. 2012: Predicting long-term disability after one year for claimants with psychological disorders applying for vocational disability. Versicherungsmedizin 64(1): 8-11
Pinsky, B.W.; Lentine, K.L.; Ercole, P.R.; Salvalaggio, P.R.; Burroughs, T.E.; Schnitzler, M.A. 2012: Predicting long-term graft survival in adult kidney transplant recipients. Saudi Journal of Kidney Diseases and Transplantation: An Official Publication of the Saudi Center for Organ Transplantation Saudi Arabia 23(4): 693-700
Tanaka, S.; Sakata, R.; Marui, A.; Furukawa, Y.; Kita, T.; Kimura, T. 2012: Predicting long-term mortality after first coronary revascularization: – the Kyoto model –. Circulation Journal: Official Journal of the Japanese Circulation Society 76(2): 328-334
Roe, M.T.; Chen, A.Y.; Thomas, L.; Wang, T.Y.; Alexander, K.P.; Hammill, B.G.; Gibler, W.B.; Ohman, E.M.; Peterson, E.D. 2011: Predicting long-term mortality in older patients after non-ST-segment elevation myocardial infarction: the CRUSADE long-term mortality model and risk score. American Heart Journal 162(5): 875-883.E1
Flint, A.C.; Cullen, S.P.; Faigeles, B.S.; Rao, V.A. 2010: Predicting long-term outcome after endovascular stroke treatment: the totaled health risks in vascular events score. Ajnr. American Journal of Neuroradiology 31(7): 1192-1196
Starke, R.M.; Komotar, R.J.; Otten, M.L.; Schmidt, J.M.; Fernandez, L.D.; Rincon, F.; Gordon, E.; Badjatia, N.; Mayer, S.A.; Connolly, E.S. 2009: Predicting long-term outcome in poor grade aneurysmal subarachnoid haemorrhage patients utilising the Glasgow Coma Scale. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia 16(1): 26-31
Stein, A.; Desmond, C.; Garbarino, J.; Van IJzendoorn, M.H.; Barbarin, O.; Black, M.M.; Stein, A.D.; Hillis, S.D.; Kalichman, S.C.; Mercy, J.A.; Bakermans-Kranenburg, M.J.; Rapa, E.; Saul, J.R.; Dobrova-Krol, N.A.; Richter, L.M. 2014: Predicting long-term outcomes for children affected by HIV and AIDS: perspectives from the scientific study of children's development. Aids 28(Suppl 3): S261-S268
Griffin, M.L.; Amodeo, M. 2010: Predicting long-term outcomes for women physically abused in childhood: contribution of abuse severity versus family environment. Child Abuse and Neglect 34(10): 724-733
Rakowski, H.; Li, Q. 2014: Predicting long-term outcomes in asymptomatic or minimally symptomatic patients with HCM: back to basics. JACC. Cardiovascular Imaging 7(1): 37-39
Dowrick, C.; Shiels, C.; Page, H.; Ayuso-Mateos, J.L.; Casey, P.; Dalgard, O.S.; Dunn, G.; Lehtinen, V.; Salmon, P.; Whitehead, M. 2011: Predicting long-term recovery from depression in community settings in Western Europe: evidence from ODIN. Social Psychiatry and Psychiatric Epidemiology 46(2): 119-126
Kim, E.H.; Oh, M.C.; Lee, E.J.; Kim, S.H. 2012: Predicting long-term remission by measuring immediate postoperative growth hormone levels and oral glucose tolerance test in acromegaly. Neurosurgery 70(5): 1106-1113; Discussion 1113
Kalso, E.; Simpson, K.H.; Slappendel, R.; Dejonckheere, J.; Richarz, U. 2007: Predicting long-term response to strong opioids in patients with low back pain: findings from a randomized, controlled trial of transdermal fentanyl and morphine. Bmc Medicine 5: 39
Sell, L.; Bültmann, U.; Rugulies, R.; Villadsen, E.; Faber, A.; Søgaard, K. 2009: Predicting long-term sickness absence and early retirement pension from self-reported work ability. International Archives of Occupational and Environmental Health 82(9): 1133-1138
Cao, M.D.; Sitter, B.; Bathen, T.F.; Bofin, A.; Lønning, P.E.; Lundgren, S.; Gribbestad, I.S. 2012: Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. Nmr in Biomedicine 25(2): 369-378
Hannan, E.L. 2012: Predicting long-term survival for coronary artery bypass graft surgery and percutaneous coronary intervention: another important step forward. Circulation 125(12): 1475-1476
Girgis, R.E. 2011: Predicting long-term survival in pulmonary arterial hypertension: more than just pulmonary vascular resistance. Journal of the American College of Cardiology 58(24): 2520-2521
O'Connor, A.R.; Spencer, R.; Birch, E.E. 2007: Predicting long-term visual outcome in children with birth weight under 1001 g. Journal of Aapos: the Official Publication of the American Association for Pediatric Ophthalmology and Strabismus 11(6): 541-545
Carniato, L.; Schoups, G.; Seuntjens, P.; Van Nooten, T.; Simons, Q.; Bastiaens, L. 2012: Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models. Journal of Contaminant Hydrology 142-143: 93-108
Fay, T.B.; Yeates, K.O.; Wade, S.L.; Drotar, D.; Stancin, T.; Taylor, H.G. 2009: Predicting longitudinal patterns of functional deficits in children with traumatic brain injury. Neuropsychology 23(3): 271-282
Levesque, L.; Ducharme, F.; Zarit, S.H.; Lachance, L.; Giroux, F. 2008: Predicting longitudinal patterns of psychological distress in older husband caregivers: further analysis of existing data. Aging and Mental Health 12(3): 333-342
Liu, X.; Engel, C.C. 2012: Predicting longitudinal trajectories of health probabilities with random-effects multinomial logit regression. Statistics in Medicine 31(29): 4087-4101
Cao, S.; Giedroc, D.P.; Chen, S.-J. 2010: Predicting loop-helix tertiary structural contacts in RNA pseudoknots. Rna 16(3): 538-552
Morrow, S.A.; Drake, A.; Zivadinov, R.; Munschauer, F.; Weinstock-Guttman, B.; Benedict, R.H.B. 2010: Predicting loss of employment over three years in multiple sclerosis: clinically meaningful cognitive decline. Clinical Neuropsychologist 24(7): 1131-1145
Turcato, A.; Ramat, S. 2010: Predicting losses of balance during upright stance: evaluation of a novel approach based on wearable accelerometers. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2010: 4918-4921
Roberts, A.J.; Dew, A.; Bridger, R.; Etherington, J.; Kilminster, S. 2015: Predicting low back pain outcome following rehabilitation for low back pain. Journal of Back and Musculoskeletal Rehabilitation 28(1): 119-128
Curtis, J.R.; Yang, S.; Chen, L.; Park, G.S.; Bitman, B.; Wang, B.; Navarro-Millan, I.; Kavanaugh, A. 2012: Predicting low disease activity and remission using early treatment response to antitumour necrosis factor therapy in patients with rheumatoid arthritis: exploratory analyses from the TEMPO trial. Annals of the Rheumatic Diseases 71(2): 206-212
Stanek, E.J.; Calabrese, E.J. 2010: Predicting low dose effects for chemicals in high through-put studies. Dose-Response: a Publication of International Hormesis Society 8(3): 301-316
Zeitler, T.R.; Van Heest, T.; Sholl, D.S.; Allendorf, M.D.; Greathouse, J.A. 2013: Predicting low-pressure O(2) adsorption in nanoporous framework materials for sensing applications. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry 14(16): 3740-3750
Wright, G.A.; Pustina, A.A.; Mikat, R.P.; Kernozek, T.W. 2012: Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women. Journal of Strength and Conditioning Research 26(3): 648-655
Findlow, A.; Goulermas, J.Y.; Nester, C.; Howard, D.; Kenney, L.P.J. 2008: Predicting lower limb joint kinematics using wearable motion sensors. Gait and Posture 28(1): 120-126
Zhang, H.; Ma, C.; He, J. 2010: Predicting lower limb muscular activity during standing and squatting using spikes of primary motor cortical neurons in monkeys. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2010: 4124-4127
Walker, B.J.; Flack, S.H.; Bosenberg, A.T. 2011: Predicting lumbar plexus depth in children and adolescents. Anesthesia and Analgesia 112(3): 661-665
Ng, N.; Winkler, V.; Van Minh, H.; Tesfaye, F.; Wall, S.; Becher, H. 2009: Predicting lung cancer death in Africa and Asia: differences with WHO estimates. Cancer Causes and Control: Ccc 20(5): 721-730
Winkler, V.; Ng, N.; Tesfaye, F.; Becher, H. 2011: Predicting lung cancer deaths from smoking prevalence data. Lung Cancer 74(2): 170-177
Deppen, S.A.; Blume, J.D.; Aldrich, M.C.; Fletcher, S.A.; Massion, P.P.; Walker, R.C.; Chen, H.C.; Speroff, T.; Degesys, C.A.; Pinkerman, R.; Lambright, E.S.; Nesbitt, J.C.; Putnam, J.B.; Grogan, E.L. 2014: Predicting lung cancer prior to surgical resection in patients with lung nodules. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer 9(10): 1477-1484
Salim, R.; Zafran, N.; Nachum, Z.; Garmi, G.; Shalev, E. 2009: Predicting lung maturity in preterm rupture of membranes via lamellar bodies count from a vaginal pool: a cohort study. Reproductive Biology and Endocrinology: Rb&e 7: 112
Lee, L.; Ronellenfitsch, U.; Hofstetter, W.L.; Darling, G.; Gaiser, T.; Lippert, C.; Gilbert, S.; Seely, A.J.; Mulder, D.S.; Ferri, L.E. 2013: Predicting lymph node metastases in early esophageal adenocarcinoma using a simple scoring system. Journal of the American College of Surgeons 217(2): 191-199
Novotny, A.R.; Schuhmacher, C. 2008: Predicting lymph node metastases in early gastric cancer: radical resection or organ-sparing therapy?. Gastric Cancer: Official Journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association 11(3): 131-133
Bosch, S.L.; Nagtegaal, I.D. 2014: Predicting lymph node metastases in pT1 rectal cancer. Recent Results in Cancer Research. Fortschritte der Krebsforschung. Progres Dans les Recherches sur le Cancer 203: 15-21
Kwee, R.M.; Kwee, T.C. 2008: Predicting lymph node status in early gastric cancer. Gastric Cancer: Official Journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association 11(3): 134-148
Xue, N.; Huang, P.; Aronow, W.S.; Wang, Z.; Nair, C.K.; Zheng, Z.; Shen, X.; Yin, Y.; Huang, F.; Cosgrove, D. 2011: Predicting lymph node status in patients with early gastric carcinoma using double contrast-enhanced ultrasonography. Archives of Medical Science: Ams 7(3): 457-464
Wang, L.; Chen, L.; Liu, Z.; Zheng, M.; Gu, Q.; Xu, J. 2014: Predicting mTOR inhibitors with a classifier using recursive partitioning and Naïve Bayesian approaches. Plos one 9(5): E95221
Nielsen, M.; Mortensen, N.; Albertsen, M.; Folkenberg, J.; Bjarklev, A.; Bonacinni, D. 2004: Predicting macrobending loss for large-mode area photonic crystal fibers. Optics Express 12(8): 1775-1779
Pates, J.A.; McIntire, D.D.; Casey, B.M.; Leveno, K.J. 2008: Predicting macrosomia. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine 27(1): 39-43
Kassavou, A.; Turner, A.; Hamborg, T.; French, D.P. 2014: Predicting maintenance of attendance at walking groups: testing constructs from three leading maintenance theories. Health Psychology: Official Journal of the Division of Health Psychology American Psychological Association 33(7): 752-756
Carabini, L.M.; Zeeni, C.; Moreland, N.C.; Gould, R.W.; Hemmer, L.B.; Bebawy, J.F.; Koski, T.R.; McClendon, J.; Koht, A.; Gupta, D.K. 2014: Predicting major adverse cardiac events in spine fusion patients: is the revised cardiac risk index sufficient?. Spine 39(17): 1441-1448
Seear, M.D.; Scarfe, J.C.; LeBlanc, J.G. 2008: Predicting major adverse events after cardiac surgery in children. Pediatric Critical Care Medicine: a Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies 9(6): 606-611
Murphy, M.M.; Shah, S.A.; Simons, J.P.; Csikesz, N.G.; McDade, T.P.; Bodnari, A.; Ng, S.-C.; Zhou, Z.; Tseng, J.F. 2009: Predicting major complications after laparoscopic cholecystectomy: a simple risk score. Journal of Gastrointestinal Surgery: Official Journal of the Society for Surgery of the Alimentary Tract 13(11): 1929-1936
Ordovás, K.G.; Newman, T.B.; Westphalen, A.C. 2011: Predicting major coronary events with coronary calcium scoring and coronary CT angiography. Radiology 261(2): 661
Soedamah-Muthu, S.S.; Vergouwe, Y.; Costacou, T.; Miller, R.G.; Zgibor, J.; Chaturvedi, N.; Snell-Bergeon, J.K.; Maahs, D.M.; Rewers, M.; Forsblom, C.; Harjutsalo, V.; Groop, P.-H.; Fuller, J.H.; Moons, K.G.M.; Orchard, T.J. 2014: Predicting major outcomes in type 1 diabetes: a model development and validation study. Diabetologia 57(11): 2304-2314
Mitrofanova, A.; Kleinberg, S.; Carlton, J.; Kasif, S.; Mishra, B. 2010: Predicting malaria interactome classifications from time-course transcriptomic data along the intraerythrocytic developmental cycle. Artificial Intelligence in Medicine 49(3): 167-176
Nóbrega, L.H.C.; Paiva, F.J.P.; Nóbrega, M.L.C.; Mello, L.E.B.; Fonseca, H.A.F.; Costa, S.O.; Sousa, A.é G.P.; Leite, D.B.F.M.; Lima, J.G. 2007: Predicting malignant involvement in a thyroid nodule: role of ultrasonography. Endocrine Practice: Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists 13(3): 219-224
Shah, P.; Gao, F.; Edmundowicz, S.A.; Azar, R.R.; Early, D.S. 2009: Predicting malignant potential of gastrointestinal stromal tumors using endoscopic ultrasound. Digestive Diseases and Sciences 54(6): 1265-1269
Tetikkurt, U.S.; Ozaydin, I.Y.; Ceylan, S.; Gurbuz, Y.; Erdogan, N.; Oz, F. 2010: Predicting malignant potential of gastrointestinal stromal tumors: Role of p16 and E2F1 expression. Applied Immunohistochemistry and Molecular Morphology: Aimm 18(4): 338-343
Taymoori, P.; Berry, T.; Farhadifar, F. 2012: Predicting mammography stage of adoption among Iranian women. Journal of Education and Health Promotion 1: 13
Moshfeghi, M.; Rahimi, H.; Rahimi, H.; Nouri, M.; Bagheban, A.A. 2013: Predicting mandibular growth increment on the basis of cervical vertebral dimensions in Iranian girls. Progress in Orthodontics 14: 3
Koerhuis, C.L.; Veenstra, B.J.; van Dijk, J.J.; Delleman, N.J. 2009: Predicting marching capacity while carrying extremely heavy loads. Military Medicine 174(12): 1300-1307
Luo, S.; Chen, H.; Yue, G.; Zhang, G.; Zhaoyang, R.; Xu, D. 2008: Predicting marital satisfaction from self, partner, and couple characteristics: is it me, you, or us?. Journal of Personality 76(5): 1231-1266
Larsen, A.S.; Olson, D.H. 1989: Predicting marital satisfaction using prepare: a replication study*. Journal of Marital and Family Therapy 15(3): 311-322
Schindler, H.S.; Coley, R.L. 2012: Predicting marital separation: do parent-child relationships matter?. Journal of Family Psychology: Jfp: Journal of the Division of Family Psychology of the American Psychological Association 26(4): 499-508
Mitra, B.; Rainer, T.H.; Cameron, P.A. 2012: Predicting massive blood transfusion using clinical scores post-trauma. Vox Sanguinis 102(4): 324-330
Moyer, H.R.; Losken, A. 2012: Predicting mastectomy skin flap necrosis with indocyanine green angiography: the gray area defined. Plastic and Reconstructive Surgery 129(5): 1043-1048
Neece, C.; Baker, B. 2008: Predicting maternal parenting stress in middle childhood: the roles of child intellectual status, behaviour problems and social skills. Journal of Intellectual Disability Research: Jidr 52(12): 1114-1128
Keteyian, S.J.; Kitzman, D.; Zannad, F.; Landzberg, J.; Arnold, J.M.; Brubaker, P.; Brawner, C.A.; Bensimhon, D.; Hellkamp, A.S.; Ewald, G. 2012: Predicting maximal HR in heart failure patients on β-blockade therapy. Medicine and Science in Sports and Exercise 44(3): 371-376
Kendall, K.L.; Fukuda, D.H.; Smith, A.E.; Cramer, J.T.; Stout, J.R. 2012: Predicting maximal aerobic capacity (VO2max) from the critical velocity test in female collegiate rowers. Journal of Strength and Conditioning Research 26(3): 733-738
Li, K.; Hewson, D.J.; Duchêne, J.; Hogrel, J.-Y. 2010: Predicting maximal grip strength using hand circumference. Manual Therapy 15(6): 579-585
Beneke, R.; Heck, H.; Hebestreit, H.; Leithäuser, R.M. 2009: Predicting maximal lactate steady state in children and adults. Pediatric Exercise Science 21(4): 493-505
McNair, P.J.; Colvin, M.; Reid, D. 2011: Predicting maximal strength of quadriceps from submaximal performance in individuals with knee joint osteoarthritis. Arthritis Care and Research 63(2): 216-222
Czupryniak, L.; Pawlowski, M.; Kumor, A.; Szymanski, D.; Loba, J.; Strzelczyk, J. 2007: Predicting maximum Roux-en-Y gastric bypass-induced weight reduction--preoperative plasma leptin or body weight?. Obesity Surgery 17(2): 162-167
Potvin, J.R. 2012: Predicting maximum acceptable efforts for repetitive tasks: an equation based on duty cycle. Human Factors 54(2): 175-188
Pain, M.T.G.; Forrester, S.E. 2009: Predicting maximum eccentric strength from surface EMG measurements. Journal of Biomechanics 42(11): 1598-1603
Hollister, J.W.; Milstead, W.B.; Urrutia, M.A. 2011: Predicting maximum lake depth from surrounding topography. Plos one 6(9): E25764
Kempes, C.P.; West, G.B.; Crowell, K.; Girvan, M. 2011: Predicting maximum tree heights and other traits from allometric scaling and resource limitations. Plos one 6(6): E20551
Oliver, A.; Mendizabal, J.A.; Ripoll, G.; Albertí, P.; Purroy, A. 2010: Predicting meat yields and commercial meat cuts from carcasses of young bulls of Spanish breeds by the SEUROP method and an image analysis system. Meat Science 84(4): 628-633
Konstorum, A.; Sprowl, S.A.; Waterman, M.L.; Lander, A.D.; Lowengrub, J.S. 2013: Predicting mechanism of biphasic growth factor action on tumor growth using a multi-species model with feedback control. Journal of Coupled Systems and Multiscale Dynamics 1(4): 459-467
Lee, M.J.; Cizik, A.M.; Hamilton, D.; Chapman, J.R. 2014: Predicting medical complications after spine surgery: a validated model using a prospective surgical registry. Spine Journal: Official Journal of the North American Spine Society 14(2): 291-299
Chang, I-Chiu.; Hsu, H-Mei. 2012: Predicting medical staff intention to use an online reporting system with modified unified theory of acceptance and use of technology. Telemedicine Journal and E-Health: the Official Journal of the American Telemedicine Association 18(1): 67-73
Lambe, P.; Bristow, D. 2011: Predicting medical student performance from attributes at entry: a latent class analysis. Medical Education 45(3): 308-316
Jones, M.; Humphreys, J.; Prideaux, D. 2009: Predicting medical students' intentions to take up rural practice after graduation. Medical Education 43(10): 1001-1009
Gelb, S.R.; Shapiro, R.J.; Thornton, W.J.L. 2010: Predicting medication adherence and employment status following kidney transplant: the relative utility of traditional and everyday cognitive approaches. Neuropsychology 24(4): 514-526
Tennyson, D.H. 2009: Predicting medication costs and usage: expenditures in a juvenile detention facility. Journal of Correctional Health Care: the Official Journal of the National Commission on Correctional Health Care 15(2): 98
Pergolizzi, J.V.; Ben-Joseph, R.; Chang, C.-L.; Hess, G. 2015: Predicting medication persistence to buprenorphine transdermal system. Pain Practice: the Official Journal of World Institute of Pain 15(2): 140-149
Kim, M.M.; Howard, D.L.; Kaufman, J.S.; Holmes, D. 2008: Predicting medication use in an elderly hypertensive sample: revisiting the Established Populations for Epidemiologic Studies of the Elderly Study. Journal of the National Medical Association 100(12): 1386-1393
Zheng, P.; Griswold, M.D.; Hassold, T.J.; Hunt, P.A.; Small, C.L.; Ye, P. 2010: Predicting meiotic pathways in human fetal oogenesis. Biology of Reproduction 82(3): 543-551
Mar, V.; Wolfe, R.; Kelly, J.W. 2011: Predicting melanoma risk for the Australian population. Australasian Journal of Dermatology 52(2): 109-116
Ku, T.; Lu, P.; Chan, C.; Wang, T.; Lai, S.; Lyu, P.; Hsiao, N. 2009: Predicting melting temperature directly from protein sequences. Computational Biology and Chemistry 33(6): 445-450
Li, X.; Bo, H.; Zhang, X.C.; Hartsuck, J.A.; Tang, J. 2010: Predicting memapsin 2 (β-secretase) hydrolytic activity. Protein Science: a Publication of the Protein Society 19(11): 2175-2185
Hayat, M.; Khan, A. 2011: Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. Journal of Theoretical Biology 271(1): 10-17
Rodrigues, M.A.; Foster, J.K.; Verdile, G.; Joesbury, K.; Prince, R.; Devine, A.; Mehta, P.; Beilby, J.; Martins, R.N. 2010: Predicting memory decline as a risk factor for Alzheimer's disease in older post-menopausal women: quod erat demonstrandum?. International Psychogeriatrics 22(2): 332-335
Wahlheim, C.N. 2011: Predicting memory performance under conditions of proactive interference: immediate and delayed judgments of learning. Memory and Cognition 39(5): 827-838
Langbaum, J.B.S.; Rebok, G.W.; Bandeen-Roche, K.; Carlson, M.C. 2009: Predicting memory training response patterns: results from ACTIVE. Journals of Gerontology. Series B Psychological Sciences and Social Sciences 64(1): 14-23
Li, M.-X.; Kwan, J.S.H.; Bao, S.-Y.; Yang, W.; Ho, S.-L.; Song, Y.-Q.; Sham, P.C. 2013: Predicting mendelian disease-causing non-synonymous single nucleotide variants in exome sequencing studies. Plos Genetics 9(1): E1003143
Ramezani Tehrani, F.; Dólleman, M.; van Disseldorp, J.; Broer, S.L.; Azizi, F.; Solaymani-Dodaran, M.; Fauser, B.C.; Laven, J.S.E.; Eijkemans, M.J.C.; Broekmans, F. 2014: Predicting menopausal age with anti-Müllerian hormone: a cross-validation study of two existing models. Climacteric: the Journal of the International Menopause Society 17(5): 583-590
Wilhelm, K.; Wedgwood, L.; Parker, G.; Geerligs, L.; Hadzi-Pavlovic, D. 2010: Predicting mental health and well-being in adulthood. Journal of Nervous and Mental Disease 198(2): 85-90
Lelorain, S.; Tessier, P.; Florin, A.ès.; Bonnaud-Antignac, A.él. 2011: Predicting mental quality of life in breast cancer survivors using comparison participants. Journal of Psychosocial Oncology 29(4): 430-449
Heinz, G.H.; Hoffman, D.J.; Klimstra, J.D.; Stebbins, K.R. 2010: Predicting mercury concentrations in mallard eggs from mercury in the diet or blood of adult females and from duckling down feathers. Environmental toxicology and chemistry 29(2): 389-392
Weller, H. 2009: Predicting mesh density for adaptive modelling of the global atmosphere. Philosophical Transactions. Series A Mathematical Physical and Engineering Sciences 367(1907): 4523-4542
Hall, K.D. 2010: Predicting metabolic adaptation, body weight change, and energy intake in humans. American Journal of Physiology. Endocrinology and Metabolism 298(3): E449-E466
Frey, M.A.; Templin, T.; Ellis, D.; Gutai, J.; Podolski, C.-L. 2007: Predicting metabolic control in the first 5 yr after diagnosis for youths with type 1 diabetes: the role of ethnicity and family structure. Pediatric Diabetes 8(4): 220-227
Tepper, N.; Shlomi, T. 2010: Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26(4): 536-543
Van Berlo, R.J.P.; de Ridder, D.; Daran, J.-M.; Daran-Lapujade, P.A.S.; Teusink, B.; Reinders, M.J.T. 2011: Predicting metabolic fluxes using gene expression differences as constraints. Ieee/Acm Transactions on Computational Biology and Bioinformatics 8(1): 206-216
Faust, K.; van Helden, J. 2012: Predicting metabolic pathways by sub-network extraction. Methods in Molecular Biology 804: 107-130
Gao, Y.-F.; Chen, L.; Cai, Y.-D.; Feng, K.-Y.; Huang, T.; Jiang, Y. 2012: Predicting metabolic pathways of small molecules and enzymes based on interaction information of chemicals and proteins. Plos one 7(9): E45944
Weyand, P.G.; Smith, B.R.; Schultz, N.S.; Ludlow, L.W.; Puyau, M.R.; Butte, N.F. 2013: Predicting metabolic rate across walking speed: one fit for all body sizes?. Journal of Applied Physiology 115(9): 1332-1342
Liu, H.; Hsu, C.-H.; Lin, J.-D.; Hsieh, C.-H.; Lian, W.-C.; Wu, C.-Z.; Pei, D.; Chen, Y.-L. 2014: Predicting metabolic syndrome by using hematogram models in elderly women. Platelets 25(2): 97-101
Santoro, N.; Amato, A.; Grandone, A.; Brienza, C.; Savarese, P.; Tartaglione, N.; Marzuillo, P.; Perrone, L.; Miraglia Del Giudice, E. 2013: Predicting metabolic syndrome in obese children and adolescents: look, measure and ask. Obesity Facts 6(1): 48-56
Bielohuby, M.; Bodendorf, K.; Brandstetter, H.; Bidlingmaier, M.; Kienzle, E. 2010: Predicting metabolisable energy in commercial rat diets: physiological fuel values may be misleading. British Journal of Nutrition 103(10): 1525-1533
Zhu, D.; Zhong, Y.; Wu, H.; Ye, L.; Wang, J.; Li, Y.; Wei, Y.; Ren, L.; Xu, B.; Xu, J.; Qin, X. 2013: Predicting metachronous liver metastasis from colorectal cancer using serum proteomic fingerprinting. Journal of Surgical Research 184(2): 861-866
Passerini, A.; Lippi, M.; Frasconi, P. 2012: Predicting metal-binding sites from protein sequence. Ieee/Acm Transactions on Computational Biology and Bioinformatics 9(1): 203-213
Razavi, A.R.; Gill, H.; Ahlfeldt, H.; Shahsavar, N. 2007: Predicting metastasis in breast cancer: comparing a decision tree with domain experts. Journal of Medical Systems 31(4): 263-273
Ruf, C.G.; Linbecker, M.; Port, M.; Riecke, A.; Schmelz, H.U.; Wagner, W.; Meineke, V.; Abend, M. 2012: Predicting metastasized seminoma using gene expression. Bju International 110(2 Part 2): E14-E20
Hanazono, K.; Fukumoto, S.; Hirayama, K.; Takashima, K.; Yamane, Y.; Natsuhori, M.; Kadosawa, T.; Uchide, T. 2012: Predicting metastatic potential of gastrointestinal stromal tumors in dog by ultrasonography. Journal of Veterinary Medical Science 74(11): 1477-1482
Zhou, X.; Li, Z.; Dai, Z.; Zou, X. 2011: Predicting methylation status of human DNA sequences by pseudo-trinucleotide composition. Talanta 85(2): 1143-1147
Johnston, B.A.; Coghill, D.; Matthews, K.; Steele, J.D. 2015: Predicting methylphenidate response in attention deficit hyperactivity disorder: a preliminary study. Journal of Psychopharmacology 29(1): 24-30
Conklin, H.M.; Helton, S.; Ashford, J.; Mulhern, R.K.; Reddick, W.E.; Brown, R.; Bonner, M.; Jasper, B.W.; Wu, S.; Xiong, X.; Khan, R.B. 2010: Predicting methylphenidate response in long-term survivors of childhood cancer: a randomized, double-blind, placebo-controlled, crossover trial. Journal of Pediatric Psychology 35(2): 144-155
Lin, K.; Qian, Z.; Lu, L.; Lu, L.; Lai, L.; Gu, J.; Zeng, Z.; Li, H.; Cai, Y. 2010: Predicting miRNA's target from primary structure by the nearest neighbor algorithm. Molecular Diversity 14(4): 719-729
Song, X.; Cheng, L.; Zhou, T.; Guo, X.; Zhang, X.; Chen, Y.-p.P.; Han, P.; Sha, J. 2012: Predicting miRNA-mediated gene silencing mode based on miRNA-target duplex features. Computers in Biology and Medicine 42(1): 1-7
Albertini, M.C.; Olivieri, F.; Lazzarini, R.; Pilolli, F.; Galli, F.; Spada, G.; Accorsi, A.; Rippo, M.R.; Procopio, A.D. 2011: Predicting microRNA modulation in human prostate cancer using a simple String IDentifier (SID1.0). Journal of Biomedical Informatics 44(4): 615-620
Hsieh, C.-H.; Chang, D.T.-H.; Hsueh, C.-H.; Wu, C.-Y.; Oyang, Y.-J. 2010: Predicting microRNA precursors with a generalized Gaussian components based density estimation algorithm. Bmc Bioinformatics 11(Suppl 1): S52
Parker, B.J.; Wen, J. 2009: Predicting microRNA targets in time-series microarray experiments via functional data analysis. Bmc Bioinformatics 10(Suppl 1): S32
Van de Leemput, I.A.; Veraart, A.J.; Dakos, V.; de Klein, J.J.M.; Strous, M.; Scheffer, M. 2011: Predicting microbial nitrogen pathways from basic principles. Environmental Microbiology 13(6): 1477-1487
Hampson, D.; Crowther, J.; Bateman, I.; Kay, D.; Posen, P.; Stapleton, C.; Wyer, M.; Fezzi, C.; Jones, P.; Tzanopoulos, J. 2010: Predicting microbial pollution concentrations in UK rivers in response to land use change. Water Research 44(16): 4748-4759
Galyean, M.L.; Tedeschi, L.O. 2014: Predicting microbial protein synthesis in beef cattle: relationship to intakes of total digestible nutrients and crude protein. Journal of Animal Science 92(11): 5099-5111
Saylor, D.M.; Guyer, J.E.; Wheeler, D.; Warren, J.A. 2011: Predicting microstructure development during casting of drug-eluting coatings. Acta Biomaterialia 7(2): 604-613
Li, Y.C.; Shi, R.P.; Wang, C.P.; Liu, X.J.; Wang, Y. 2011: Predicting microstructures in polymer blends under two-step quench in two-dimensional space. Physical Review. e Statistical Nonlinear and Soft Matter Physics 83(4 Part 1): 041502
Neizel, M.; Futterer, S.; Steen, H.; Giannitsis, E.; Reinhardt, L.; Lossnitzer, D.; Lehrke, S.; Jaffe, A.S.; Katus, H.A. 2009: Predicting microvascular obstruction with cardiac troponin T after acute myocardial infarction: a correlative study with contrast-enhanced magnetic resonance imaging. Clinical Research in Cardiology: Official Journal of the German Cardiac Society 98(9): 555-562
Tokuda, Y.; Song, M.-H.; Oshima, H.; Usui, A.; Ueda, Y. 2008: Predicting midterm coronary artery bypass graft failure by intraoperative transit time flow measurement. Annals of Thoracic Surgery 86(2): 532-536
Kim, C.C.; Bogart, M.M.; Wee, S.A.; Burstein, R.; Arndt, K.A.; Dover, J.S. 2010: Predicting migraine responsiveness to botulinum toxin type a injections. Archives of Dermatology 146(2): 159-163
Wojcik, S.M. 2014: Predicting mild traumatic brain injury patients at risk of persistent symptoms in the Emergency Department. Brain Injury 28(4): 422-430
Tedeschi, L.O.; Fox, D.G. 2009: Predicting milk and forage intake of nursing calves. Journal of Animal Science 87(10): 3380-3391
Lo, R.Y.; Jagust, W.J.; Aisen, P.; Jack, C.R.; Toga, A.W.; Beckett, L.; Gamst, A.; Soares, H.; Green, R.C.; Montine, T.; Thomas, R.G.; Donohue, M.; Walter, S.; Dale, A.; Bernstein, M.; Felmlee, J.; Fox, N.; Thompson, P.; Schuff, N.; Alexander, G.; DeCarli, C.; Bandy, D.; Chen, K.; Morris, J.; Lee, V.M.-Y.; Korecka, M.; Crawford, K.; Neu, S.; Harvey, D.; Kornak, J.; Saykin, A.J.; Foroud, T.M.; Potkin, S.; Shen, L.; Buckholtz, N.; Kaye, J.; Dolen, S.; Quinn, J.; Schneider, L.; Pawluczyk, S.; Spann, B.M.; Brewer, J.; Vanderswag, H.; Heidebrink, J.L.; Lord, J.L.; Petersen, R.; Johnson, K.; Doody, R.S.; Villanueva-Meyer, J.; Chowdhury, M.; Stern, Y.; Honig, L.S.; Bell, K.L.; Morris, J.C.; Mintun, M.A.; Schneider, S.; Marson, D.; Griffith, R.; Cl 2012: Predicting missing biomarker data in a longitudinal study of Alzheimer disease. Neurology 78(18): 1376-1382
Crespo, I.; Krishna, A.; Le Béchec, A.; del Sol, A. 2013: Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states. Nucleic Acids Research 41(1): E8
Fielding, S.; Fayers, P.; Ramsay, C. 2010: Predicting missing quality of life data that were later recovered: an empirical comparison of approaches. Clinical Trials 7(4): 333-342
García, S.; Pis, J.J.; Rubiera, F.; Pevida, C. 2013: Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture. Langmuir 29(20): 6042-6052
Ortiz, A.él.U.; Springuel-Huet, M.-A.; Coudert, F.ço.-X.; Fuchs, A.H.; Boutin, A. 2012: Predicting mixture coadsorption in soft porous crystals: experimental and theoretical Study of CO2/CH4 in MIL-53(Al). Langmuir 28(1): 494-498
Kalu, C.A.; Umeora, O.U.; Egwuatu, E.V.; Okwor, A. 2012: Predicting mode of delivery using mid-pregnancy ultrasonographic measurement of cervical length. Nigerian Journal of Clinical Practice 15(3): 338-343
Annett, R.D.; Bender, B.G.; Skipper, B.; Allen, C. 2010: Predicting moderate improvement and decline in pediatric asthma quality of life over 24 months. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment Care and Rehabilitation 19(10): 1517-1527
Russom, C.L.; Bradbury, S.P.; Broderius, S.J.; Hammermeister, D.J.; Drummond, R.A.; Veith, G.D. 2013: Predicting modes of toxic action from chemical structure. Environmental Toxicology and Chemistry 32(7): 1441-1442
Ray, D.; Nepstad, D.; Brando, P. 2010: Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger. New Phytologist 187(3): 720-732
Hoffmann, R.; Schleyer, P.v.R.é; Schaefer, H.F. 2008: Predicting molecules--more realism, please!. Angewandte Chemie 47(38): 7164-7167
McGrath, S.P.; Micó, C.; Zhao, F.J.; Stroud, J.L.; Zhang, H.; Fozard, S. 2010: Predicting molybdenum toxicity to higher plants: estimation of toxicity threshold values. Environmental Pollution 158(10): 3085-3094
McGrath, S.P.; Micó, C.; Curdy, R.; Zhao, F.J. 2010: Predicting molybdenum toxicity to higher plants: influence of soil properties. Environmental Pollution 158(10): 3095-3102
Buford, W.L.; Andersen, C.R. 2006: Predicting moment arms in diarthroidal joints - 3D computer simulation capability and muscle-tendon model validation. Conference Proceedings: . Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2006: 3407-3410
Hsu, K-Yu.; Chau, G-Yang.; Lui, W-Yiu.; Tsay, S-Haw.; King, K-Liang.; Wu, C-Wun. 2009: Predicting morbidity and mortality after hepatic resection in patients with hepatocellular carcinoma: the role of Model for End-Stage Liver Disease score. World Journal of Surgery 33(11): 2412-2419
Kouijzer, S.; Michels, J.J.; van den Berg, M.; Gevaerts, V.S.; Turbiez, M.; Wienk, M.M.; Janssen, R.é A.J. 2013: Predicting morphologies of solution processed polymer:fullerene blends. Journal of the American Chemical Society 135(32): 12057-12067
Murphy, B.; Rogerson, M.; Worcester, M.; Elliott, P.; Higgins, R.; Le Grande, M.; Turner, A.; Goble, A. 2013: Predicting mortality 12 years after an acute cardiac event: comparison between inhospital and 2-month assessment of depressive symptoms in women. Journal of Cardiopulmonary Rehabilitation and Prevention 33(3): 160-167
Iyer, K.S.; Iyer, P.U. 2015: Predicting mortality after congenital heart surgeries: evaluation of the Aristotle and Risk Adjustment in Congenital Heart Surgery-1 risk prediction scoring systems: a retrospective single center analysis of 1150 patients. Annals of Cardiac Anaesthesia 17(4): 271-272
Matchett, S.C.; Castaldo, J.; Wasser, T.E.; Baker, K.; Mathiesen, C.; Rodgers, J. 2006: Predicting mortality after intracerebral hemorrhage: comparison of scoring systems and influence of withdrawal of care. Journal of Stroke and Cerebrovascular Diseases: the Official Journal of National Stroke Association 15(4): 144-150
Barnes, S.; Gott, M.; Payne, S.; Parker, C.; Seamark, D.; Gariballa, S.; Small, N. 2008: Predicting mortality among a general practice-based sample of older people with heart failure. Chronic Illness 4(1): 5-12
Emukule, G.O.; McMorrow, M.; Ulloa, C.; Khagayi, S.; Njuguna, H.N.; Burton, D.; Montgomery, J.M.; Muthoka, P.; Katz, M.A.; Breiman, R.F.; Mott, J.A. 2014: Predicting mortality among hospitalized children with respiratory illness in Western Kenya, 2009-2012. PloS one 9(3): e92968
Abisheganaden, J.; Ding, Y.Yoong.; Chong, W-Fung.; Heng, B-Hoon.; Lim, T.Keang. 2012: Predicting mortality among older adults hospitalized for community-acquired pneumonia: an enhanced confusion, urea, respiratory rate and blood pressure score compared with pneumonia severity index. Respirology 17(6): 969-975
Kerbauy, F.áb.R.; Morelli, L.R.; de Andrade, C.áu.T.; Lisboa, L.F.; Cendoroglo Neto, M.; Hamerschlak, N. 2012: Predicting mortality and cost of hematopoietic stem-cell transplantation. Einstein 10(1): 82-85
Gale, C.P.; White, J.E.S.; Hunter, A.; Owen, J.; Allen, J.; Watson, J.; Holbrook, I.; Durham, N.P.; Pye, M.P. 2011: Predicting mortality and hospital admission in patients with COPD: significance of NT pro-BNP, clinical and echocardiographic assessment. Journal of Cardiovascular Medicine 12(9): 613-618
Pepler, P.T.; Uys, D.W.; Nel, D.G. 2012: Predicting mortality and length-of-stay for neonatal admissions to private hospital neonatal intensive care units: a Southern African retrospective study. African Health Sciences 12(2): 166-173
Schoe, A.; Schippers, E.F.; Ebmeyer, S.; Struck, J.; Klautz, R.J.M.; de Jonge, E.; van Dissel, J.T. 2014: Predicting mortality and morbidity after elective cardiac surgery using vasoactive and inflammatory biomarkers with and without the EuroSCORE model. Chest 146(5): 1310-1318
Conway, B.; Webster, A.; Ramsay, G.; Morgan, N.; Neary, J.; Whitworth, C.; Harty, J. 2009: Predicting mortality and uptake of renal replacement therapy in patients with stage 4 chronic kidney disease. Nephrology Dialysis Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 24(6): 1930-1937
Wildman, M.J.; Sanderson, C.; Groves, J.; Reeves, B.C.; Ayres, J.; Harrison, D.; Young, D.; Rowan, K. 2009: Predicting mortality for patients with exacerbations of COPD and Asthma in the COPD and Asthma Outcome Study (CAOS). Qjm: Monthly Journal of the Association of Physicians 102(6): 389-399
Fei, M.W.; Kim, E.J.; Sant, C.A.; Jarlsberg, L.G.; Davis, J.L.; Swartzman, A.; Huang, L. 2009: Predicting mortality from HIV-associated Pneumocystis pneumonia at illness presentation: an observational cohort study. Thorax 64(12): 1070-1076
Taylor, S.L.; Lawless, M.; Curri, T.; Sen, S.; Greenhalgh, D.G.; Palmieri, T.L. 2014: Predicting mortality from burns: the need for age-group specific models. Burns: Journal of the International Society for Burn Injuries 40(6): 1106-1115
Rodríguez, M. 2013: Predicting mortality from head injury: experience of Sancti Spíritus Province, Cuba. Medicc Review 15(3): 30-33
Cross, H.D. 2014: Predicting mortality from noncardiac surgery. Annals of Surgery 259(1): E1
Nugent, J.; Edmonds, A.; Lusiama, J.; Thompson, D.; Behets, F. 2014: Predicting mortality in HIV-infected children initiating highly active antiretroviral therapy in a resource-deprived setting. Pediatric Infectious Disease Journal 33(11): 1148-1155
Cárdenas, Aés.; Ginès, P. 2008: Predicting mortality in cirrhosis--serum sodium helps. New England Journal of Medicine 359(10): 1060-1062
Mohan, A.; Bollineni, S. 2007: Predicting mortality in critically ill obstetric patients requiring intensive care unit admission in India. Indian Journal of Medical Sciences 61(4): 175-177
Timmermans, J.; Nicol, A.; Kairinos, N.; Teijink, J.; Prins, M.; Navsaria, P. 2010: Predicting mortality in damage control surgery for major abdominal trauma. South African Journal of Surgery. Suid-Afrikaanse Tydskrif Vir Chirurgie 48(1): 6-9
Riquelme, R.; Jiménez, P.; Videla, A.J.; Lopez, H.; Chalmers, J.; Singanayagam, A.; Riquelme, M.; Peyrani, P.; Wiemken, T.; Arbo, G.; Benchetrit, G.; Rioseco, M.L.; Ayesu, K.; Klotchko, A.; Marzoratti, L.; Raya, M.; Figueroa, S.; Saavedra, F.; Pryluka, D.; Inzunza, C.; Torres, A.; Alvare, P.; Fernandez, P.; Barros, M.; Gomez, Y.; Contreras, C.; Rello, J.; Bordon, J.; Feldman, C.; Arnold, F.; Nakamatsu, R.; Riquelme, J.; Blasi, F.; Aliberti, S.; Cosentini, R.; Lopardo, G.; Gnoni, M.; Welte, T.; Saad, M.; Guardiola, J.; Ramirez, J. 2011: Predicting mortality in hospitalized patients with 2009 H1N1 influenza pneumonia. International Journal of Tuberculosis and Lung Disease: the Official Journal of the International Union Against Tuberculosis and Lung Disease 15(4): 542-546
Wagner, M.; Ansell, D.; Kent, D.M.; Griffith, J.L.; Naimark, D.; Wanner, C.; Tangri, N. 2011: Predicting mortality in incident dialysis patients: an analysis of the United Kingdom Renal Registry. American Journal of Kidney Diseases: the Official Journal of the National Kidney Foundation 57(6): 894-902
Nakwan, N.; Nakwan, N.; Wannaro, J. 2011: Predicting mortality in infants with persistent pulmonary hypertension of the newborn with the Score for Neonatal Acute Physiology-Version Ii (SNAP-II) in Thai neonates. Journal of Perinatal Medicine 39(3): 311-315
Wang, Q.; Mou, S.; Xu, W.; Qi, C.; Ni, Z. 2013: Predicting mortality in microscopic polyangiitis with renal involvement: a survival analysis based on 64 patients. Renal Failure 35(1): 82-87
Garcia, L.; Messaris, E. 2013: Predicting mortality in patients admitted with sepsis using endotoxin activity: will it help us see through the crystal ball?*. Critical Care Medicine 41(6): 1575-1576
Budinger, G.R.S.; Walley, K.R. 2011: Predicting mortality in patients with acute lung injury. American Journal of Respiratory and Critical Care Medicine 184(4): 394-395
Chiu, P.W.Y.; Ng, E.K.W.; Cheung, F.K.Y.; Chan, F.K.L.; Leung, W.K.; Wu, J.C.Y.; Wong, V.W.S.; Yung, M.Y.; Tsoi, K.; Lau, J.Y.W.; Sung, J.J.Y.; Chung, S.S.C. 2009: Predicting mortality in patients with bleeding peptic ulcers after therapeutic endoscopy. Clinical Gastroenterology and Hepatology: the Official Clinical Practice Journal of the American Gastroenterological Association 7(3): 311-316; Quiz 253
Ronan, D.; Nathwani, D.; Davey, P.; Barlow, G. 2010: Predicting mortality in patients with community-acquired pneumonia and low CURB-65 scores. European Journal of Clinical Microbiology and Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 29(9): 1117-1124
Van Diepen, M.; Schroijen, M.A.; Dekkers, O.M.; Rotmans, J.I.; Krediet, R.T.; Boeschoten, E.W.; Dekker, F.W. 2014: Predicting mortality in patients with diabetes starting dialysis. Plos one 9(3): E89744
Marmo, R.; Koch, M.; Cipolletta, L.; Bianco, M.A.; Grossi, E.; Rotondano, G.; Pera, A.; Rocca, R.; Dezi, A.; Fasoli, R.; Brunati, S.; Lorenzini, I.; Germani, U.; Giorgio, P.; Imperiali, G.; Minoli, G.; Barberani, F.; Boschetto, S.; Martorano, M.; Gatto, G.; Amuso, M.; Pastorelli, A.; Torre, E.S.; Triossi, O.; Buzzi, A.; Cestari, R.; Della Casa, D.; Proietti, M.; Tanzilli, A.; Aragona, G.; Giangregorio, F.; Allegretta, L.; Tronci, S.; Michetti, P.; Romagnoli, P.; Nucci, A.; Rogai, F.; Piubello, W.; Tebaldi, M.; Bonfante, F.; Casadei, A.; Cortini, C.; Chiozzini, G.; Girardi, L.; Leoci, C.; Bagnalasta, G.; Segato, S.; Chianese, G.; Salvagnini, M.; Pandolfo, N.; Dezi, A.; Casetti, T.; Lorenzini, I.; Germani, U.; Imperiali, G.; Barberani, I.S.F. 2014: Predicting mortality in patients with in-hospital nonvariceal upper Gi bleeding: a prospective, multicenter database study. Gastrointestinal Endoscopy 79(5): 741-749.E1
Kofoed, K.; Eugen-Olsen, J.; Petersen, J.; Larsen, K.; Andersen, O. 2008: Predicting mortality in patients with systemic inflammatory response syndrome: an evaluation of two prognostic models, two soluble receptors, and a macrophage migration inhibitory factor. European Journal of Clinical Microbiology and Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 27(5): 375-383
Mirsaeidi, M.; Peyrani, P.; Ramirez, J.A.; Allen, M.; Nakamatsu, R.; Arnold, F.; Wiemken, T.L.; Zervos, M.; Haque, N.; Kett, D.; Cano, E.; Mangino, J.; Myers, C.; Pell, L.; Taylor, D.; Ford, K.; Scerpella, E. 2009: Predicting mortality in patients with ventilator-associated pneumonia: the APACHE Ii score versus the new IBMP-10 score. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 49(1): 72-77
Kelly, P.J.; Clarke, P.M.; Hayes, A.J.; Gerdtham, U-G.; Cederholm, J.; Nilsson, P.; Eliasson, B.; Gudbjornsdottir, S. 2014: Predicting mortality in people with type 2 diabetes mellitus after major complications: a study using Swedish National Diabetes Register data. Diabetic Medicine: a Journal of the British Diabetic Association 31(8): 954-962
Juffermans, N.P. 2013: Predicting mortality in the critically ill: a tricky enterprise. Netherlands Journal of Medicine 71(9): 447
Brito, V.; Niederman, M.S. 2010: Predicting mortality in the elderly with community-acquired pneumonia: should we design a new car or set a new 'speed limit'?. Thorax 65(11): 944-945
Crawford, E.F.; Drescher, K.D.; Rosen, C.S. 2009: Predicting mortality in veterans with posttraumatic stress disorder thirty years after Vietnam. Journal of Nervous and Mental Disease 197(4): 260-265
Park, B.S.; Yoon, J.S.; Moon, J.S.; Won, K.C.; Lee, H.W. 2013: Predicting mortality of critically ill patients by blood glucose levels. Diabetes and Metabolism Journal 37(5): 385-390
Nahleh, Z.; Botrus, G.; Dwivedi, A.; Badri, N.; Otoukesh, S.; Diab, N.; Biswas, S.; Jennings, M.; Elzamly, S. 2018: Clinico-pathologic disparities of breast cancer in Hispanic/Latina women. Breast Disease 37(3): 147-154
Wu, P.-H.; Lin, Y.-T.; Lee, T.-C.; Lin, M.-Y.; Kuo, M.-C.; Chiu, Y.-W.; Hwang, S.-J.; Chen, H.-C. 2013: Predicting mortality of incident dialysis patients in Taiwan--a longitudinal population-based study. Plos one 8(4): E61930
Chen, L-Kung.; Peng, L-Ning.; Lin, M-Hsien.; Lai, H-Yun.; Hwang, S-Jang.; Lan, C-Fu. 2010: Predicting mortality of older residents in long-term care facilities: comorbidity or care problems?. Journal of the American Medical Directors Association 11(8): 567-571
Pijpers, E.; Ferreira, I.; van de Laar, R.J.J.; Stehouwer, C.D.A.; Nieuwenhuijzen Kruseman, A.C. 2009: Predicting mortality of psychogeriatric patients: a simple prognostic frailty risk score. Postgraduate Medical Journal 85(1007): 464-469
Ebell, M.H. 2008: Predicting mortality risk in patients undergoing bariatric surgery. American Family Physician 77(2): 220-221
Ebell, M.H. 2007: Predicting mortality risk in patients with acute exacerbations of heart failure. American Family Physician 75(8): 1231-1233
Porter, L.F.; Witham, M.D.; Fraser, C.G.; MacWalter, R.S. 2010: Predicting mortality using two renal function estimation methods in hospitalised stroke patients. International Journal of Cardiology 139(3): 307-309
Reis Miranda, D.; van Thiel, R.; Gommers, D. 2013: Predicting mortality while on veno-venous extracorporeal membrane oxygenation. Intensive Care Medicine 39(9): 1669
Schuetz, P.; Koller, M.; Christ-Crain, M.; Steyerberg, E.; Stolz, D.; Müller, C.; Bucher, H.C.; Bingisser, R.; Tamm, M.; Müller, B. 2008: Predicting mortality with pneumonia severity scores: importance of model recalibration to local settings. Epidemiology and Infection 136(12): 1628-1637
Churcher, T.S.; Bousema, T.; Walker, M.; Drakeley, C.; Schneider, P.; Ouédraogo, A.é L.; Basáñez, M.ía.-G. 2013: Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. Elife 2: E00626
Bayrak, C.S.; Erman, B. 2012: Predicting most probable conformations of a given peptide sequence in the random coil state. Molecular Biosystems 8(11): 3010-3016
Hamilton, K.; Daniels, L.; White, K.M.; Murray, N.; Walsh, A. 2011: Predicting mothers' decisions to introduce complementary feeding at 6 months. An investigation using an extended theory of planned behaviour. Appetite 56(3): 674-681
Spittle, A.J.; Boyd, R.N.; Inder, T.E.; Doyle, L.W. 2009: Predicting motor development in very preterm infants at 12 months' corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics 123(2): 512-517
Meyer, T.; Peters, J.; Zander, T.O.; Schölkopf, B.; Grosse-Wentrup, M. 2014: Predicting motor learning performance from Electroencephalographic data. Journal of Neuroengineering and Rehabilitation 11: 24
Martinez-Biarge, M.; Diez-Sebastian, J.; Kapellou, O.; Gindner, D.; Allsop, J.M.; Rutherford, M.A.; Cowan, F.M. 2011: Predicting motor outcome and death in term hypoxic-ischemic encephalopathy. Neurology 76(24): 2055-2061
Elliott, M.A. 2010: Predicting motorcyclists' intentions to speed: effects of selected cognitions from the theory of planned behaviour, self-identity and social identity. Accident; Analysis and Prevention 42(2): 718-725
Li, S.S.; Wang, H.; Smith, A.; Zhang, B.; Zhang, X.C.; Schoch, G.; Geraghty, D.; Hansen, J.A.; Zhao, L.P. 2011: Predicting multiallelic genes using unphased and flanking single nucleotide polymorphisms. Genetic Epidemiology 35(2): 85-92
Bishop, N. 2011: Predicting multiple DUi offenders using the Florida DRi. Substance use and Misuse 46(5): 696-703
Burkowski, F.J.; Wong, W.W.L. 2009: Predicting multiple binding modes using a kernel method based on a vector space model molecular descriptor. International Journal of Computational Biology and Drug Design 2(1): 58-80
Speck-Planche, A.; Kleandrova, V.V.; Luan, F.; Cordeiro, M.N.ál.D.S. 2012: Predicting multiple ecotoxicological profiles in agrochemical fungicides: a multi-species chemoinformatic approach. Ecotoxicology and Environmental Safety 80: 308-313
Wallach, I.; Lilien, R. 2009: Predicting multiple ligand binding modes using self-consistent pharmacophore hypotheses. Journal of Chemical Information and Modeling 49(9): 2116-2128
Lausevic, Z.; Lausevic, M.; Trbojevic-Stankovic, J.; Krstic, S.; Stojimirovic, B. 2008: Predicting multiple organ failure in patients with severe trauma. Canadian Journal of Surgery. Journal Canadien de Chirurgie 51(2): 97-102
Heussinger, N.; Kontopantelis, E.; Rompel, O.; Paulides, M.; Trollmann, R. 2013: Predicting multiple sclerosis following isolated optic neuritis in children. European Journal of Neurology 20(9): 1292-1296
Aftab, Z.; Robert, T.; Wieber, P-Brice. 2012: Predicting multiple step placements for human balance recovery tasks. Journal of Biomechanics 45(16): 2804-2809
Jiang, J.Q.; Wu, M. 2012: Predicting multiplex subcellular localization of proteins using protein-protein interaction network: a comparative study. Bmc Bioinformatics 13(Suppl 10): S20
Becker, M.F.; Ma, C.; Walser, R.M. 1991: Predicting multipulse laser-induced failure for molybdenum metal mirrors. Applied Optics 30(36): 5239-5246
Du, P.; Xu, C. 2013: Predicting multisite protein subcellular locations: progress and challenges. Expert Review of Proteomics 10(3): 227-237
Curtis, N.; Jones, M.E.H.; Evans, S.E.; Shi, J.; O'Higgins, P.; Fagan, M.J. 2010: Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia). Journal of the Royal Society Interface 7(42): 153-160
White, S.C.; Winter, D.A. 1992: Predicting muscle forces in gait from EMG signals and musculotendon kinematics. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology 2(4): 217-231
Kesar, T.M.; Ding, J.; Wexler, A.S.; Perumal, R.; Maladen, R.; Binder-Macleod, S.A. 2008: Predicting muscle forces of individuals with hemiparesis following stroke. Journal of Neuroengineering and Rehabilitation 5: 7
Al-Gindan, Y.Y.; Hankey, C.R.; Leslie, W.; Govan, L.; Lean, M.E.J. 2014: Predicting muscle mass from anthropometry using magnetic resonance imaging as reference: a systematic review. Nutrition Reviews 72(2): 113-126
Stavness, I.; Hannam, A.G.; Lloyd, J.E.; Fels, S. 2010: Predicting muscle patterns for hemimandibulectomy models. Computer Methods in Biomechanics and Biomedical Engineering 13(4): 483-491
Russo, F.A.; Vempala, N.N.; Sandstrom, G.M. 2013: Predicting musically induced emotions from physiological inputs: linear and neural network models. Frontiers in Psychology 4: 468
Leong, M.K.; Lin, S.-W.; Chen, H.-B.; Tsai, F.-Y. 2010: Predicting mutagenicity of aromatic amines by various machine learning approaches. Toxicological Sciences: An Official Journal of the Society of Toxicology 116(2): 498-513
Wang, X.; He, X.; Zhang, J.Z.H. 2013: Predicting mutation-induced Stark shifts in the active site of a protein with a polarized force field. Journal of Physical Chemistry. a 117(29): 6015-6023
Pillmann, H.; Hatje, K.; Odronitz, F.; Hammesfahr, B.ör.; Kollmar, M. 2011: Predicting mutually exclusive spliced exons based on exon length, splice site and reading frame conservation, and exon sequence homology. Bmc Bioinformatics 12: 270
Garcia, D.; Ramos, A.J.; Sanchis, V.; Marín, S. 2009: Predicting mycotoxins in foods: a review. Food Microbiology 26(8): 757-769
Peterson, E.J.; Izad, O.; Tyler, D.J. 2011: Predicting myelinated axon activation using spatial characteristics of the extracellular field. Journal of Neural Engineering 8(4): 046030
Crivori, P.; Pennella, G.; Magistrelli, M.; Grossi, P.; Giusti, A.M. 2011: Predicting myelosuppression of drugs from in silico models. Journal of Chemical Information and Modeling 51(2): 434-445
Park, S-Mi.; Hong, S-Jun.; Kim, Y-Hyun.; Ahn, C-Min.; Lim, D-Sun.; Shim, W-Joo. 2010: Predicting myocardial functional recovery after acute myocardial infarction: relationship between myocardial strain and coronary flow reserve. Korean Circulation Journal 40(12): 639-644
Mann, K.; Vollstädt-Klein, S.; Reinhard, I.; Leménager, T.; Fauth-Bühler, M.; Hermann, D.; Hoffmann, S.; Zimmermann, U.S.; Kiefer, F.; Heinz, A.; Smolka, M.N. 2014: Predicting naltrexone response in alcohol-dependent patients: the contribution of functional magnetic resonance imaging. Alcoholism Clinical and Experimental Research 38(11): 2754-2762
Chandler, S. 2008: Predicting naming latencies with an analogical model. Journal of Psycholinguistic Research 37(4): 259-268
Bealing, C.R.; Baumgardner, W.J.; Choi, J.J.; Hanrath, T.; Hennig, R.G. 2012: Predicting nanocrystal shape through consideration of surface-ligand interactions. Acs Nano 6(3): 2118-2127
Johnson, A.C.; Yoshitani, J.; Tanaka, H.; Suzuki, Y. 2011: Predicting national exposure to a point source chemical: Japan and endocrine disruption as an example. Environmental Science and Technology 45(3): 1028-1033
Won, H-Hee.; Myung, W.; Song, G-Young.; Lee, W-Hee.; Kim, J-Won.; Carroll, B.J.; Kim, D.Kwan. 2013: Predicting national suicide numbers with social media data. Plos one 8(4): E61809
Peng, C.; Nietert, P.J.; Cotton, P.B.; Lackland, D.T.; Romagnuolo, J. 2013: Predicting native papilla biliary cannulation success using a multinational Endoscopic Retrograde Cholangiopancreatography (ERCP) Quality Network. Bmc Gastroenterology 13: 147
Dashti, Y.; Grkovic, T.; Quinn, R.J. 2014: Predicting natural product value, an exploration of anti-TB drug space. Natural Product Reports 31(8): 990-998
Tucker, B.; Netto, K.; Hampson, G.; Oppermann, B.; Aisbett, B. 2012: Predicting neck pain in Royal Australian Air Force fighter pilots. Military Medicine 177(4): 444-450
Kato, R.; Hasegawa, K.; Achiwa, Y.; Okamoto, H.; Torii, Y.; Oe, S.; Udagawa, Y. 2011: Predicting nedaplatin sensitivity of cervical cancer using the histoculture drug response assay. European Journal of Gynaecological Oncology 32(4): 381-386
Charles, P.G.P. 2008: Predicting need for ICU in community-acquired pneumonia. Chest 133(2): 587; Author Reply 588
Noticewala, M.S.; Nyce, J.D.; Wang, W.; Geller, J.A.; Macaulay, W. 2012: Predicting need for allogeneic transfusion after total knee arthroplasty. Journal of Arthroplasty 27(6): 961-967
Gorelick, M.; Scribano, P.V.; Stevens, M.W.; Schultz, T.; Shults, J. 2008: Predicting need for hospitalization in acute pediatric asthma. Pediatric Emergency Care 24(11): 735-744
Vasoo, S.; Singh, K.; Trenholme, G.M. 2010: Predicting need for hospitalization of patients with pandemic (H1N1) 2009, Chicago, Illinois, USA. Emerging Infectious Diseases 16(10): 1594-1597
Biddiss, E.; Brownsell, S.; Hawley, M.S. 2009: Predicting need for intervention in individuals with congestive heart failure using a home-based telecare system. Journal of Telemedicine and Telecare 15(5): 226-231
Thygesen, E.; Saevareid, H.I.; Lindstrom, T.C.; Nygaard, H.A.; Engedal, K. 2009: Predicting needs for nursing home admission - does sense of coherence delay nursing home admission in care dependent older people? a longitudinal study. International Journal of Older people Nursing 4(1): 12-21
Mohebbi, H.Ali.; Mehrvarz, S.; Kashani, M.Towliat.; Kabir, A.; Moharamzad, Y. 2008: Predicting negative appendectomy by using demographic, clinical, and laboratory parameters: a cross-sectional study. International Journal of Surgery 6(2): 115-118
Bradshaw, C.P.; Schaeffer, C.M.; Petras, H.; Ialongo, N. 2010: Predicting negative life outcomes from early aggressive-disruptive behavior trajectories: gender differences in maladaptation across life domains. Journal of Youth and Adolescence 39(8): 953-966
Murphy, J.; Boyle, F. 2010: Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review. Computers in Biology and Medicine 40(4): 408-418
Ruano, R.; Aubry, M.-C.; Dumez, Y.; Zugaib, M.; Benachi, A. 2008: Predicting neonatal deaths and pulmonary hypoplasia in isolated congenital diaphragmatic hernia using the sonographic fetal lung volume-body weight ratio. AJR. American Journal of Roentgenology 190(5): 1216-1219
Randev, S.; Grover, N. 2010: Predicting neonatal hyperbilirubinemia using first day serum bilirubin levels. Indian Journal of Pediatrics 77(2): 147-150
Manktelow, B.N.; Draper, E.S.; Field, D.J. 2010: Predicting neonatal mortality among very preterm infants: a comparison of three versions of the CRIB score. Archives of Disease in Childhood. Fetal and Neonatal Edition 95(1): F9
Dadkhah, F.; Kashanian, M.; Bonyad, Z.; Larijani, T. 2013: Predicting neonatal weight of more than 4000 g using fetal abdominal circumference measurement by ultrasound at 38-40 weeks of pregnancy: a study in Iran. Journal of Obstetrics and Gynaecology Research 39(1): 170-174
Herdes, C.; Ferreiro-Rangel, C.Augusto.; Düren, T. 2011: Predicting neopentane isosteric enthalpy of adsorption at zero coverage in MCM-41. Langmuir 27(11): 6738-6743
Clarisse, O.; Dimock, B.; Hintelmann, H.; Best, E.P.H. 2011: Predicting net mercury methylation in sediments using diffusive gradient in thin films measurements. Environmental Science and Technology 45(4): 1506-1512
Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. 2013: Predicting network activity from high throughput metabolomics. Plos Computational Biology 9(7): E1003123
Niu, B.; Zhang, Y.; Ding, J.; Lu, Y.; Wang, M.; Lu, W.; Yuan, X.; Yin, J. 2014: Predicting network of drug-enzyme interaction based on machine learning method. Biochimica et Biophysica Acta 1844(1 Part B): 214-223
Meyer, C.; Morren, G.; Muehlsteff, J.; Heiss, C.; Lauer, T.; Schauerte, P.; Rassaf, T.; Purerfellner, H.; Kelm, M. 2011: Predicting neurally mediated syncope based on pulse arrival time: algorithm development and preliminary results. Journal of Cardiovascular Electrophysiology 22(9): 1042-1048
Anderson, V.A.; Spencer-Smith, M.M.; Coleman, L.; Anderson, P.J.; Greenham, M.; Jacobs, R.; Lee, K.J.; Leventer, R.J. 2014: Predicting neurocognitive and behavioural outcome after early brain insult. Developmental Medicine and Child Neurology 56(4): 329-336
Grimmer, I.; Metze, B.C.; Walch, E.; Scholz, T.; Bührer, C. 2010: Predicting neurodevelopmental impairment in preterm infants by standardized neurological assessments at 6 and 12 months corrected age. Acta Paediatrica 99(4): 526-530
Liao, W.; Wen, E.-y.; Li, C.; Chang, Q.; Lv, K.-l.; Yang, W.; He, Z.-m.; Zhao, C.-m. 2012: Predicting neurodevelopmental outcomes for at-risk infants: reliability and predictive validity using a Chinese version of the INFANIB at 3, 7 and 10 months. Bmc Pediatrics 12: 72
Drozdov, I.; Kidd, M.; Nadler, B.; Camp, R.L.; Mane, S.M.; Hauso, O.; Gustafsson, B.I.; Modlin, I.M. 2009: Predicting neuroendocrine tumor (carcinoid) neoplasia using gene expression profiling and supervised machine learning. Cancer 115(8): 1638-1650
Golan, E.; Barrett, K.; Alali, A.S.; Duggal, A.; Jichici, D.; Pinto, R.; Morrison, L.; Scales, D.C. 2014: Predicting neurologic outcome after targeted temperature management for cardiac arrest: systematic review and meta-analysis. Critical Care Medicine 42(8): 1919-1930
Josephson, S.A. 2010: Predicting neurologic outcomes after cardiac arrest: the crystal ball becomes cloudy. Annals of Neurology 67(3): A5-A6
Oddo, M.; Rossetti, A.O. 2011: Predicting neurological outcome after cardiac arrest. Current Opinion in Critical Care 17(3): 254-259
Brown, J.M.; Bourdeaux, C.P. 2011: Predicting neurological outcome in post cardiac arrest patients treated with hypothermia. Resuscitation 82(6): 653-654
Kaabouch, N.; Hu, W.-C.; Chen, Y.; Anderson, J.W.; Ames, F.; Paulson, R. 2010: Predicting neuropathic ulceration: analysis of static temperature distributions in thermal images. Journal of Biomedical Optics 15(6): 061715
Smith, W.Cairns.S.; Nicholls, P.G.; Das, L.; Barkataki, P.; Suneetha, S.; Suneetha, L.; Jadhav, R.; Sundar Rao, P.S.S.; Wilder-Smith, E.P.; Lockwood, D.N.J.; van Brakel, W.H. 2009: Predicting neuropathy and reactions in leprosy at diagnosis and before incident events-results from the INFIR cohort study. Plos Neglected Tropical Diseases 3(8): E500
Lin, H.J.; Ruiz-Correa, S.; Shapiro, L.G.; Speltz, M.L.; Cunningham, M.L.; Sze, R.W. 2006: Predicting neuropsychological development from skull imaging. Conference Proceedings: . Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2006: 3450-3455
Ryan, J.J.; Glass, L.A.; Bartels, J.M.; Bergner, C.M.; Paolo, A.M. 2009: Predicting neuropsychological test performance on the basis of temporal orientation. Neuropsychology Development and Cognition. Section B Aging Neuropsychology and Cognition 16(3): 330-337
Leversen, K.Tyborg.; Sommerfelt, K.; Rønnestad, A.; Kaaresen, P.Ivar.; Farstad, T.; Skranes, J.; Støen, R.; Elgen, I.Bircow.; Rettedal, S.; Eide, G.Egil.; Irgens, L.M.; Markestad, T. 2010: Predicting neurosensory disabilities at two years of age in a national cohort of extremely premature infants. Early human development 86(9): 581-586
Lysenko, M.G.; Wong, H.I.; Maldonado, G.I. 1999: Predicting neutron diffusion eigenvalues with a query-based adaptive neural architecture. IEEE Transactions on Neural Networks 10(4): 790-800
Ramozzi, R.; Chéron, N.; El Kaïm, L.; Grimaud, L.; Fleurat-Lessard, P. 2014: Predicting new Ugi-smiles couplings: a combined experimental and theoretical study. Chemistry 20(29): 9094-9099
Sears, M.R. 2012: Predicting new and persistent asthma. American Journal of Respiratory and Critical Care Medicine 186(6): 469-470
Jena, A.B.; Karaca-Mandic, P.; Weaver, L.; Seabury, S.A. 2013: Predicting new diagnoses of HIV infection using internet search engine data. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 56(9): 1352-1353
Dakshanamurthy, S.; Issa, N.T.; Assefnia, S.; Seshasayee, A.; Peters, O.J.; Madhavan, S.; Uren, A.; Brown, M.L.; Byers, S.W. 2012: Predicting new indications for approved drugs using a proteochemometric method. Journal of Medicinal Chemistry 55(15): 6832-6848
Chen, L.-K.; Peng, L.-N.; Lin, M.-H.; Lai, H.-Y.; Hwang, S.-J.; Chiou, S.-T. 2009: Predicting new onset diabetes mellitus in older taiwanese: metabolic syndrome or impaired fasting glucose?. Journal of Atherosclerosis and Thrombosis 16(5): 627-632
Cohen, M.L. 1986: Predicting new solids and superconductors. Science 234(4776): 549-553
Pyykkö, P. 2012: Predicting new, simple inorganic species by quantum chemical calculations: some successes. Physical Chemistry Chemical Physics: Pccp 14(43): 14734-14742
Kleinjan, M.; Vitaro, F.; Wanner, B.; Brug, J.; Van den Eijnden, R.J.J.M.; Engels, R.C.M.E. 2012: Predicting nicotine dependence profiles among adolescent smokers: the roles of personal and social-environmental factors in a longitudinal framework. Bmc Public Health 12: 196
Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, F.; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D. 2014: Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter. Environmental Pollution 184: 271-282
Wang, Y.; Huang, J.-F.; Wang, F.-M.; Liu, Z.-Y. 2008: Predicting nitrogen concentrations from hyperspectral reflectance at hyperspectral reflectance at leaf and canopy for rape. Guang Pu Xue Yu Guang Pu Fen Xi 28(2): 273-277
Zhang, T.; Yang, X. 2013: Predicting nitrogen loading with land-cover composition: how can watershed size affect model performance?. Environmental Management 51(1): 96-107
Tarrega, J.; Anton, A.; Guell, R.; Mayos, M.; Samolski, D.; Marti, S.; Farrero, E.; Prats, E.; Sanchis, J. 2011: Predicting nocturnal hypoventilation in hypercapnic chronic obstructive pulmonary disease patients undergoing long-term oxygen therapy. Respiration; International Review of Thoracic Diseases 82(1): 4-9
Hsiang, D.J.; Yamamoto, M.; Mehta, R.S.; Su, M.-Y.; Baick, C.H.; Lane, K.T.; Butler, J.A. 2007: Predicting nodal status using dynamic contrast-enhanced magnetic resonance imaging in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy with and without sequential trastuzumab. Archives of Surgery 142(9): 855
Mostafavi, S.; Goldenberg, A.; Morris, Q. 2011: Predicting node characteristics from molecular networks. Methods in Molecular Biology 781: 399-414
Korenberg, M.J.; Dicken, B.J.; Damaraju, S.; Graham, K.; Cass, C.E. 2009: Predicting node positivity in gastric cancer from gene expression profiles. Biotechnology Letters 31(9): 1381-1388
Luthi, F.ço.; Deriaz, O.; Vuistiner, P.; Burrus, C.; Hilfiker, R. 2014: Predicting non return to work after orthopaedic trauma: the Wallis Occupational Rehabilitation RisK (WORRK) model. Plos one 9(4): E94268
Galema-Boers, J.M.H.; Lenzen, M.J.; van Domburg, R.T.; Roeters van Lennep, J.; van Bruchem-van de Scheur, G.G.; Sijbrands, E.J.; Langendonk, J.G. 2014: Predicting non-adherence in patients with familial hypercholesterolemia. European Journal of Clinical Pharmacology 70(4): 391-397
Dumas, F.; Farhenbruch, C.; Hambly, C.; Donohoe, R.T.; Carli, P.; Cariou, A.; Rea, T.D. 2012: Predicting non-cardiac aetiology: a strategy to allocate rescue breathing during bystander CPR. Resuscitation 83(1): 134-137
Mayordomo-Colunga, J.; Pons, M.í; López, Y.; José Solana, M.; Rey, C.; Martínez-Camblor, P.; Rodríguez-Núñez, A.; López-Herce, J.ús.; Medina, A.; Abadesso, C.; Angeles García-Teresa, M.; Gáboli, M.; García-López, M.; González-Sánchez, M.ía.; Madurga-Revilla, P.; González-Calvar, A.; Oñate, E. 2013: Predicting non-invasive ventilation failure in children from the SpO₂/FiO₂ (SF) ratio. Intensive Care Medicine 39(6): 1095-1103
Van Asten, F.; Rovers, M.M.; Lechanteur, Y.T.E.; Smailhodzic, D.; Muether, P.S.; Chen, J.; den Hollander, A.I.; Fauser, S.; Hoyng, C.B.; van der Wilt, G.J.; Klevering, B.J. 2014: Predicting non-response to ranibizumab in patients with neovascular age-related macular degeneration. Ophthalmic Epidemiology 21(6): 347-355
Coufal, O.; Pavlík, T.ás.; Fabian, P.; Bori, R.; Boross, G.áb.; Sejben, I.án.; Maráz, R.ób.; Koca, J.; Krejcí, E.; Horáková, I.; Foltinová, V.; Vrtelová, P.ín.; Chrenko, V.; Eliza Tekle, W.; Rajtár, M.ár.; Svébis, M.ál.; Fait, V.; Cserni, G.áb. 2009: Predicting non-sentinel lymph node status after positive sentinel biopsy in breast cancer: what model performs the best in a Czech population?. Pathology Oncology Research: Por 15(4): 733-740
Sanjuán, A.; Escaramís, G.; Vidal-Sicart, S.; Illa, M.; Zanón, G.; Pahisa, J.; Rubí, S.à; Velasco, M.ín.; Santamaría, G.; Farrús, B.; Muñoz, M.; García, Y.; Fernández, P.L.ís.; Pons, F. 2010: Predicting non-sentinel lymph node status in breast cancer patients with sentinel lymph node involvement: evaluation of two scoring systems. Breast Journal 16(2): 134-140
Hayhurst, C.; Monsalves, E.; Bernstein, M.; Gentili, F.; Heydarian, M.; Tsao, M.; Schwartz, M.; van Prooijen, M.; Millar, B.-A.; Ménard, C.; Kulkarni, A.V.; Laperriere, N.; Zadeh, G. 2012: Predicting nonauditory adverse radiation effects following radiosurgery for vestibular schwannoma: a volume and dosimetric analysis. International Journal of Radiation Oncology Biology Physics 82(5): 2041-2046
Lin, I.-C.; Lilienfeld, O.A.v.; Coutinho-Neto, M.íc.D.; Tavernelli, I.; Rothlisberger, U. 2007: Predicting noncovalent interactions between aromatic biomolecules with London-dispersion-corrected DFT. Journal of Physical Chemistry. B 111(51): 14346-14354
Girault, C.; Esquinas, A.M.; Terzi, N.; Nicolas, T. 2013: Predicting noninvasive mechanical ventilation outcome: early may be too early!. Respiratory Care 58(2): E15-E16
Arques, S. 2008: Predicting noninvasively left ventricular filling pressures. American Journal of Cardiology 102(3): 371-372
Wu, F.; Gaohua, L.; Zhao, P.; Jamei, M.; Huang, S.-M.; Bashaw, E.D.; Lee, S.-C. 2014: Predicting nonlinear pharmacokinetics of omeprazole enantiomers and racemic drug using physiologically based pharmacokinetic modeling and simulation: application to predict drug/genetic interactions. Pharmaceutical Research 31(8): 1919-1929
Fernandez-Gomez, J.; Madero, R.; Solsona, E.; Unda, M.; Martinez-Piñeiro, L.; Gonzalez, M.; Portillo, J.; Ojea, A.; Pertusa, C.; Rodriguez-Molina, J.; Camacho, J.E.; Rabadan, M.; Astobieta, A.; Montesinos, M.; Isorna, S.; Muntañola, P.; Gimeno, A.; Blas, M.; Martinez-Piñeiro, J.A. 2009: Predicting nonmuscle invasive bladder cancer recurrence and progression in patients treated with bacillus Calmette-Guerin: the CUETO scoring model. Journal of Urology 182(5): 2195-2203
Stormark, K.M.; Heiervang, E.; Heimann, M.; Lundervold, A.; Gillberg, C. 2008: Predicting nonresponse bias from teacher ratings of mental health problems in primary school children. Journal of Abnormal Child Psychology 36(3): 411-419
Halliday-Boykins, C.A.; Schaeffer, C.M.; Henggeler, S.W.; Chapman, J.E.; Cunningham, P.B.; Randall, J.; Shapiro, S.B. 2010: Predicting nonresponse to juvenile drug court interventions. Journal of Substance Abuse Treatment 39(4): 318-328
Cody, H.S.; Van Zee, K.J. 2008: Predicting nonsentinel node metastases in sentinel node-positive breast cancer: what have we learned, can we do better, and do we need to?. Annals of Surgical Oncology 15(11): 2998-3002
Petukh, M.; Zhenirovskyy, M.; Li, C.; Li, L.; Wang, L.; Alexov, E. 2012: Predicting nonspecific ion binding using DelPhi. Biophysical Journal 102(12): 2885-2893
Ganapathi, A.; McCarron, J.A.; Chen, X.; Iannotti, J.P. 2011: Predicting normal glenoid version from the pathologic scapula: a comparison of 4 methods in 2- and 3-dimensional models. Journal of Shoulder and Elbow Surgery 20(2): 234-244
Dudai, Y. 2009: Predicting not to predict too much: how the cellular machinery of memory anticipates the uncertain future. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences 364(1521): 1255-1262
Meyer, I.M. 2008: Predicting novel RNA-RNA interactions. Current Opinion in Structural Biology 18(3): 387-393
Vanni, S.; Neri, M.; Tavernelli, I.; Rothlisberger, U. 2011: Predicting novel binding modes of agonists to β adrenergic receptors using all-atom molecular dynamics simulations. Plos Computational Biology 7(1): E1001053
Helmy, M.; Gohda, J.; Inoue, J.-I.; Tomita, M.; Tsuchiya, M.; Selvarajoo, K. 2009: Predicting novel features of toll-like receptor 3 signaling in macrophages. Plos one 4(3): E4661
Done, B.; Khatri, P.; Done, A.; Drăghici, S. 2010: Predicting novel human gene ontology annotations using semantic analysis. Ieee/Acm Transactions on Computational Biology and Bioinformatics 7(1): 91-99
Schuster, S.; de Figueiredo, L.ís.F.; Kaleta, C. 2010: Predicting novel pathways in genome-scale metabolic networks. Biochemical Society Transactions 38(5): 1202-1205
Dror, I.; Shazman, S.; Mukherjee, S.; Zhang, Y.; Glaser, F.; Mandel-Gutfreund, Y. 2012: Predicting nucleic acid binding interfaces from structural models of proteins. Proteins 80(2): 482-489
Wu, J.; Zhang, Y.; Mu, Z. 2014: Predicting nucleosome positioning based on geometrically transformed Tsallis entropy. Plos one 9(11): E109395
Scipioni, A.; De Santis, P. 2011: Predicting nucleosome positioning in genomes: physical and bioinformatic approaches. Biophysical Chemistry 155(2-3): 53-64
Xi, L.; Fondufe-Mittendorf, Y.; Xia, L.; Flatow, J.; Widom, J.; Wang, J.-P. 2010: Predicting nucleosome positioning using a duration Hidden Markov Model. Bmc Bioinformatics 11: 346
Zhang, Z.; Zhang, Y.; Gutman, I. 2012: Predicting nucleosome positions in yeast: using the absolute frequency. Journal of Biomolecular Structure and Dynamics 29(5): 1081-1088
Teif, V.B.; Rippe, K. 2009: Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Research 37(17): 5641-5655
Lai, H.-W.; Huang, R.-H.; Wu, Y.-T.; Chen, C.-J.; Chen, S.-T.; Lin, Y.-J.; Chen, D.-R.; Lee, C.-W.; Wu, H.-K.; Lin, H.-Y.; Kuo, S.-J. 2018: Clinicopathologic factors related to surgical margin involvement, reoperation, and residual cancer in primary operable breast cancer - An analysis of 2050 patients. European Journal of Surgical Oncology: the Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 44(11): 1725-1735
Hansen, N.; Sverke, M.; Näswall, K. 2009: Predicting nurse burnout from demands and resources in three acute care hospitals under different forms of ownership: a cross-sectional questionnaire survey. International Journal of Nursing Studies 46(1): 95-106
Norten, A. 2012: Predicting nurses' acceptance of radiofrequency identification technology. Computers Informatics Nursing: Cin 30(10): 531-537; Quiz: 538-539
James, M.L.; Wiley, E.; Fries, B.E. 2007: Predicting nursing facility transition candidates using AID: a case study. Gerontologist 47(5): 625-632
Gaugler, J.E.; Duval, S.; Anderson, K.A.; Kane, R.L. 2007: Predicting nursing home admission in the U.S: a meta-analysis. Bmc Geriatrics 7: 13
Squires, A.; Beltrán-Sánchez, H. 2009: Predicting nursing human resources: an exploratory study. Policy Politics and Nursing Practice 10(2): 101-109
Wagner, C.M. 2010: Predicting nursing turnover with catastrophe theory. Journal of Advanced Nursing 66(9): 2071-2084
Herwig, A.; Schneider, W.X. 2014: Predicting object features across saccades: evidence from object recognition and visual search. Journal of Experimental Psychology. General 143(5): 1903-1922
Lee, T.; Hammad, M.; Chan, T.C.Y.; Craig, T.; Sharpe, M.B. 2013: Predicting objective function weights from patient anatomy in prostate IMRT treatment planning. Medical Physics 40(12): 121706
Sebire, S.J.; Standage, M.; Vansteenkiste, M. 2011: Predicting objectively assessed physical activity from the content and regulation of exercise goals: evidence for a mediational model. Journal of Sport and Exercise Psychology 33(2): 175-197
Schrock, J.W.; Laskey, S.; Cydulka, R.K. 2008: Predicting observation unit treatment failures in patients with skin and soft tissue infections. International Journal of Emergency Medicine 1(2): 85-90
Hoexter, M.Q.; Miguel, E.C.; Diniz, J.B.; Shavitt, R.G.; Busatto, G.F.; Sato, J.ão.R. 2013: Predicting obsessive-compulsive disorder severity combining neuroimaging and machine learning methods. Journal of Affective Disorders 150(3): 1213-1216
Sharkey, K.M.; Machan, J.T.; Tosi, C.; Roye, G.D.; Harrington, D.; Millman, R.P. 2010: Predicting obstructive sleep apnea among women candidates for bariatric surgery. Journal of Women's Health 19(10): 1833-1841
Alcock, C.; Layer, G.T. 2010: Predicting occult malignancy in nipple discharge. ANZ Journal of Surgery 80(9): 646-649
Tsivian, M.; Moreira, D.M.; Caso, J.R.; Mouraviev, V.; Madden, J.F.; Bratslavsky, G.; Robertson, C.N.; Albala, D.M.; Polascik, T.J. 2010: Predicting occult multifocality of renal cell carcinoma. European Urology 58(1): 118-126
Suarthana, E.; Meijer, E.; Grobbee, D.E.; Heederik, D. 2009: Predicting occupational diseases. Occupational and Environmental Medicine 66(11): 713-714
Stanley, J.C. 1968: Predicting occupational success. Science 160(3824): 139
Zhang, Y. 2008: Predicting occurrences of acute hypoglycemia during insulin therapy in the intensive care unit. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2008: 3297-3300
Shaw, A.J.; Balls, M.; Clothier, R.H.; Bateman, N.D. 1991: Predicting ocular irritancy and recovery from injury using Madin-Darby canine kidney cells. Toxicology in Vitro: An International Journal Published in Association with Bibra 5(5-6): 569-571
Park, C.Y.; Oh, J.-H.; Chuck, R.S. 2013: Predicting ocular residual astigmatism using corneal and refractive parameters: a myopic eye study. Current Eye Research 38(8): 851-861
Snitz, K.; Yablonka, A.; Weiss, T.; Frumin, I.; Khan, R.M.; Sobel, N. 2013: Predicting odor perceptual similarity from odor structure. Plos Computational Biology 9(9): E1003184
Haddad, R.; Medhanie, A.; Roth, Y.; Harel, D.; Sobel, N. 2010: Predicting odor pleasantness with an electronic nose. Plos Computational Biology 6(4): E1000740
Bachtiar, L.R.; Unsworth, C.P.; Newcomb, R.D.; Crampin, E.J. 2011: Predicting odorant chemical class from odorant descriptor values with an assembly of multi-layer perceptrons. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2011: 2756-2759
Szabó, G.T.ás.; Herényi, G.; Szabó, G. 2007: Predicting of growth tendency with cephalometry. Cephalometric research comparing orthodontic treatment cases with four premolar extraction. Fogorvosi Szemle 100(1): 11-15
Mohebi, S.; Azadbakht, L.; Feizi, A.; Sharifirad, G.; Hozori, M. 2014: Predicting of perceived self efficacy in the amount of macronutrients intake in women with metabolic syndrome - 2012. Journal of Education and Health Promotion 3: 21
Kazemi, E.; Hosseini, S.M.; Bahrampour, A.; Faghihimani, E.; Amini, M. 2014: Predicting of trend of hemoglobin a1c in type 2 diabetes: a longitudinal linear mixed model. International Journal of Preventive Medicine 5(10): 1274-1280
Scialfa, C.; Ference, J.; Boone, J.; Tay, R.; Hudson, C. 2010: Predicting older adults' driving difficulties using the Roadwise Review. Journals of Gerontology. Series B Psychological Sciences and Social Sciences 65(4): 434-437
Classen, S.; Wang, Y.; Crizzle, A.M.; Winter, S.M.; Lanford, D.N. 2013: Predicting older driver on-road performance by means of the useful field of view and trail making test part B. American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association 67(5): 574-582
Schmuker, M.; de Bruyne, M.; Hähnel, M.; Schneider, G. 2007: Predicting olfactory receptor neuron responses from odorant structure. Chemistry Central Journal 1: 11
Brockamp, T.; Nienaber, U.; Mutschler, M.; Wafaisade, A.; Peiniger, S.; Lefering, R.; Bouillon, B.; Maegele, M. 2012: Predicting on-going hemorrhage and transfusion requirement after severe trauma: a validation of six scoring systems and algorithms on the TraumaRegister DGU. Critical Care 16(4): R129
Hoggarth, P.A.; Innes, C.R.H.; Dalrymple-Alford, J.C.; Jones, R.D. 2013: Predicting on-road assessment pass and fail outcomes in older drivers with cognitive impairment using a battery of computerized sensory-motor and cognitive tests. Journal of the American Geriatrics Society 61(12): 2192-2198
Marek, R.J.; Ben-Porath, Y.S.; Merrell, J.; Ashton, K.; Heinberg, L.J. 2014: Predicting one and three month postoperative Somatic Concerns, Psychological Distress, and Maladaptive Eating Behaviors in bariatric surgery candidates with the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF). Obesity Surgery 24(4): 631-639
Schwingel, P.A.; Porto, Y.C.; Dias, M.C.M.; Moreira, M.ôn.M.; Zoppi, C.áu.C. 2009: Predicting one repetition maximum equations accuracy in paralympic rowers with motor disabilities. Journal of Strength and Conditioning Research 23(3): 1045-1050
Parker, G. 2010: Predicting onset of bipolar disorder from subsyndromal symptoms: a signal question?. British Journal of Psychiatry: the Journal of Mental Science 196(2): 87-88
Creemers, H.E.; van Lier, P.A.C.; Vollebergh, W.A.M.; Ormel, J.; Verhulst, F.C.; Huizink, A.C. 2009: Predicting onset of cannabis use in early adolescence: the interrelation between high-intensity pleasure and disruptive behavior. the TRAILS Study. Journal of Studies on Alcohol and Drugs 70(6): 850-858
Takao, D.; Ibara, S.; Tokuhisa, T.; Ishihara, C.; Maede, Y.; Matsui, T.; Tokumasu, H.; Sato, K.; Hirakawa, E.; Kabayama, C.; Yamamoto, M. 2014: Predicting onset of chronic lung disease using cord blood cytokines. Pediatrics International: Official Journal of the Japan Pediatric Society 56(4): 566-570
Yamaguchi, M.; Fukami, T.; Asakura, H.; Takeshita, T. 2015: Predicting onset of labor from echogenicity of the cervical gland area on vaginal ultrasonography at term. Journal of Perinatal Medicine 43(5): 577-584
Waki, K.; Sugawara, Y.; Mizuta, K.; Taniguchi, M.; Ozawa, M.; Hirata, M.; Nozawa, M.; Kaneko, J.; Takahashi, K.; Kadowaki, T.; Terasaki, P.I.; Kokudo, N. 2013: Predicting operational tolerance in pediatric living-donor liver transplantation by absence of HLA antibodies. Transplantation 95(1): 177-183
Sim, A.Y.; Bowman, M.; Hopman, W.; Engen, D.; Silva, M.; James, P. 2014: Predicting operative bleeding in elective pediatric surgeries using the Pediatric Bleeding Questionnaire (PBQ). Journal of Pediatric Hematology/Oncology 36(4): E246-E247
Ialenti, M.N.; Lonner, B.S.; Verma, K.; Dean, L.; Valdevit, A.; Errico, T. 2013: Predicting operative blood loss during spinal fusion for adolescent idiopathic scoliosis. Journal of Pediatric Orthopedics 33(4): 372-376
Fedoruk, L.M.; Tribble, C.G.; Kern, J.A.; Peeler, B.B.; Kron, I.L. 2007: Predicting operative mortality after surgery for ischemic cardiomyopathy. Annals of Thoracic Surgery 83(6): 2029-2035; Discussion 2035
Turk, D.C.; Swanson, K.S.; Gatchel, R.J. 2008: Predicting opioid misuse by chronic pain patients: a systematic review and literature synthesis. Clinical Journal of Pain 24(6): 497-508
El Solh, A.; Akinnusi, M.; Patel, A.; Bhat, A.; TenBrock, R. 2009: Predicting optimal CPAP by neural network reduces titration failure: a randomized study. Sleep and Breathing 13(4): 325-330
Akahoshi, T.; Akashiba, T.; Kawahara, S.; Uematsu, A.; Nagaoka, K.; Kiyofuji, K.; Okamoto, N.; Hattori, T.; Takahashi, N.; Hashimoto, S. 2009: Predicting optimal continuous positive airway pressure in Japanese patients with obstructive sleep apnoea syndrome. Respirology 14(2): 245-250
Kanu, A.B.; Gribb, M.M.; Hill, H.H. 2008: Predicting optimal resolving power for ambient pressure ion mobility spectrometry. Analytical Chemistry 80(17): 6610-6619
Sinha, V.K.; De Buck, S.S.; Fenu, L.A.; Smit, J.W.; Nijsen, M.; Gilissen, R.A.H.J.; Van Peer, A.; Lavrijsen, K.; Mackie, C.E. 2008: Predicting oral clearance in humans: how close can we get with allometry?. Clinical Pharmacokinetics 47(1): 35-45
Dempsey, A.R.; Johnson, S.S.; Westhoff, C.L. 2011: Predicting oral contraceptive continuation using the transtheoretical model of health behavior change. Perspectives on Sexual and Reproductive Health 43(1): 23-29
Rayan, A.; Marcus, D.; Goldblum, A. 2010: Predicting oral druglikeness by iterative stochastic elimination. Journal of Chemical Information and Modeling 50(3): 437-445
Aguilar-Díaz, J.E.; García-Montoya, E.; Suñe-Negre, J.é M.ía.; Pérez-Lozano, P.; Miñarro, M.; Ticó, J.é R.ón. 2012: Predicting orally disintegrating tablets formulations of ibuprophen tablets: an application of the new SeDeM-ODT expert system. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik E.V 80(3): 638-648
Németh, L.ác.J.; Hegedüs, Z.óf.; Martinek, T.ás.A. 2014: Predicting order and disorder for β-peptide foldamers in water. Journal of Chemical Information and Modeling 54(10): 2776-2783
Tekpinar, M.; Zheng, W. 2010: Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model. Proteins 78(11): 2469-2481
De Campos-Lobato, L.F.; Campos-Lobato, L.F.; Wells, B.; Wick, E.; Pronty, K.; Kiran, R.; Remzi, F.; Vogel, J.D. 2009: Predicting organ space surgical site infection with a nomogram. Journal of Gastrointestinal Surgery: Official Journal of the Society for Surgery of the Alimentary Tract 13(11): 1986-1992
Warren, J.J.; Mayer, J.M. 2010: Predicting organic hydrogen atom transfer rate constants using the Marcus cross relation. Proceedings of the National Academy of Sciences of the United States of America 107(12): 5282-5287
Huey, R.B.; Kearney, M.R.; Krockenberger, A.; Holtum, J.A.M.; Jess, M.; Williams, S.E. 2012: Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences 367(1596): 1665-1679
Dávila, M.C.; Finkelstein, M.A. 2010: Predicting organizational citizenship behavior from the functional analysis and role identity perspectives: further evidence in Spanish employees. Spanish Journal of Psychology 13(1): 277-283
Yock, A.D.; Rao, A.; Dong, L.; Beadle, B.M.; Garden, A.S.; Kudchadker, R.J.; Court, L.E. 2014: Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models. Medical Physics 41(5): 051705
Giuggioli, L.; Potts, J.R.; Harris, S. 2012: Predicting oscillatory dynamics in the movement of territorial animals. Journal of the Royal Society Interface 9(72): 1529-1543
Timmer, M.H.M.; Samson, M.M.; Monninkhof, E.M.; De Ree, B.; Verhaar, H.J.J. 2009: Predicting osteoporosis in patients with a low-energy fracture. Archives of Gerontology and Geriatrics 49(1): E32-E35
Gammage, K.L.; Klentrou, P. 2011: Predicting osteoporosis prevention behaviors: health beliefs and knowledge. American Journal of Health Behavior 35(3): 371-382
Varda, B.K.; Schmid, M.; Trinh, Q.-D. 2014: Predicting other-cause mortality: the minimalistic approach. European Urology 66(6): 1010-1011
Sparenberg, P.; Springer, A.; Prinz, W. 2012: Predicting others' actions: evidence for a constant time delay in action simulation. Psychological Research 76(1): 41-49
Natale, E.; Senna, I.; Bolognini, N.; Quadrelli, E.; Addabbo, M.; Macchi Cassia, V.; Turati, C. 2014: Predicting others' intention involves motor resonance: EMG evidence from 6- and 9-month-old infants. Developmental Cognitive Neuroscience 7: 23-29
Wilfond, B. 2012: Predicting our future: lessons from Winnie-the-Pooh. Hastings Center Report 42(4): 3
Alvarez, C.A.; Clark, C.A.; Zhang, S.; Halm, E.A.; Shannon, J.J.; Girod, C.E.; Cooper, L.; Amarasingham, R. 2013: Predicting out of intensive care unit cardiopulmonary arrest or death using electronic medical record data. Bmc Medical Informatics and Decision Making 13: 28
Sheppard, J.P.; Holder, R.; Nichols, L.; Bray, E.; Hobbs, F.D.Richard.; Mant, J.; Little, P.; Williams, B.; Greenfield, S.; McManus, R.J. 2014: Predicting out-of-office blood pressure level using repeated measurements in the clinic: an observational cohort study. Journal of Hypertension 32(11): 2171-8; Discussion 2178
Albino, F.P.; Koltz, P.F.; Girotto, J.A. 2010: Predicting out-of-pocket costs in the surgical management of orofacial clefts. Plastic and Reconstructive Surgery 126(4): 188e-189e
Buckeridge, D.L.; Okhmatovskaia, A.; Tu, S.; O'Connor, M.; Nyulas, C.; Musen, M.A. 2008: Predicting outbreak detection in public health surveillance: quantitative analysis to enable evidence-based method selection. AMIA .. Annual Symposium Proceedings. AMIA Symposium 2008: 76-80
De Vadder, K.; Van De Bruaene, A.; Gewillig, M.; Meyns, B.; Troost, E.; Budts, W. 2014: Predicting outcome after Fontan palliation: a single-centre experience, using simple clinical variables. Acta Cardiologica 69(1): 7-14
He, Y.; Li, T.; Li, T.; Schonewille, W.J.; Greving, J.P.; Kappelle, L.J.; Algra, A. 2012: Predicting outcome after acute basilar artery occlusion based on admission characteristics. Neurology 79(13): 1410; author reply 1410
Appelboom, G.; Hwang, B.Y.; Bruce, S.S.; Piazza, M.A.; Kellner, C.P.; Meyers, P.M.; Connolly, E.S. 2012: Predicting outcome after arteriovenous malformation-associated intracerebral hemorrhage with the original ICH score. World Neurosurgery 78(6): 646-650
Maia, B.; Roque, R.; Amaral-Silva, A.; Lourenço, S.ón.; Bento, L.ís.; Alcântara, J.ão. 2013: Predicting outcome after cardiopulmonary arrest in therapeutic hypothermia patients: clinical, electrophysiological and imaging prognosticators. Acta Medica Portuguesa 26(2): 93-97
Forsyth, R.; Kirkham, F. 2012: Predicting outcome after childhood brain injury. Cmaj: Canadian Medical Association Journal 184(11): 1257-1264
Zheng, K.; Tan, J.-X.; Li, F.; Li, H.-Y.; Zeng, X.-H.; Ma, B.-L.; Ou, J.-H.; Li, H.; Yang, S.-S.; Jiang, A.-M.; Ni, Q.; Liu, J.-L.; Liu, J.-P.; Zheng, H.; Yue-Yang; Ling, R.; He, J.-J.; Li, Z.-G.; Zeng, J.; Zou, T.-N.; Jiang, J.; Song, Z.-J.; Liu, Q.-L.; Ren, G.-S. 2018: Clinicopathologic Factors Related to the Histological Tumor Grade of Breast Cancer in Western China: An Epidemiological Multicenter Study of 8619 Female Patients. Translational Oncology 11(4): 1023-1033
Shepard, R.K.; Ellenbogen, K.A. 2009: Predicting outcome after implantable cardioverter-defibrillator therapy: a new piece to the puzzle?. Journal of the American College of Cardiology 54(9): 829-831
Sofijanova, A.; Piperkova, K.; Al Khalili, D. 2012: Predicting outcome after severe brain injury in risk neonates using the serum S100B biomarker: results using single (24 h) time-point. Prilozi 33(1): 147-156
Berger, R.P. 2011: Predicting outcome after severe pediatric traumatic brain injury: making progress one baby step at a time. Pediatric Critical Care Medicine: a Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies 12(3): 362-364
Rainey, T.; Lesko, M.; Sacho, R.; Lecky, F.; Childs, C. 2009: Predicting outcome after severe traumatic brain injury using the serum S100B biomarker: results using a single (24h) time-point. Resuscitation 80(3): 341-345
Gialanella, B.; Bertolinelli, M.; Lissi, M.; Prometti, P. 2011: Predicting outcome after stroke: the role of aphasia. Disability and Rehabilitation 33(2): 122-129
Gialanella, B.; Santoro, R.; Ferlucci, C. 2013: Predicting outcome after stroke: the role of basic activities of daily living predicting outcome after stroke. European Journal of Physical and Rehabilitation Medicine 49(5): 629-637
Raj, R.; Siironen, J.; Kivisaari, R.; Hernesniemi, J.; Skrifvars, M.B. 2014: Predicting outcome after traumatic brain injury: development of prognostic scores based on the IMPACT and the APACHE Ii. Journal of Neurotrauma 31(20): 1721-1732
Rimington, H.; Weinman, J.; Chambers, J.B. 2010: Predicting outcome after valve replacement. Heart 96(2): 118-123
Schwab, F.J.; Lafage, V.; Farcy, J.-P.; Bridwell, K.H.; Glassman, S.; Shainline, M.R. 2008: Predicting outcome and complications in the surgical treatment of adult scoliosis. Spine 33(20): 2243-2247
Hope, T.M.H.; Seghier, M.L.; Leff, A.P.; Price, C.J. 2013: Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage. Clinical 2: 424-433
Park, J.O.; Qin, L.-X.; Prete, F.P.; Antonescu, C.; Brennan, M.F.; Singer, S. 2009: Predicting outcome by growth rate of locally recurrent retroperitoneal liposarcoma: the one centimeter per month rule. Annals of Surgery 250(6): 977-982
De Ruysscher, D. 2013: Predicting outcome by images?. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 19(13): 3334-3336
Farooq, N.; Patterson, A.J.; Walsh, S.R.; Prytherch, D.R.; Justin, T.A.; Tang, T.Y. 2011: Predicting outcome following colorectal cancer surgery using a colorectal biochemical and haematological outcome model (Colorectal BHOM). Colorectal Disease: the Official Journal of the Association of Coloproctology of Great Britain and Ireland 13(11): 1237-1241
Grant, N.; Hotopf, M.; Breen, G.; Cleare, A.; Grey, N.; Hepgul, N.; King, S.; Moran, P.; Pariante, C.M.; Wingrove, J.; Young, A.H.; Tylee, A.é 2014: Predicting outcome following psychological therapy in IAPT (PROMPT): a naturalistic project protocol. Bmc Psychiatry 14: 170
Kowal, R.C. 2009: Predicting outcome from AF ablation: size of the chamber, or is tissue the issue?. Journal of Cardiovascular Electrophysiology 20(9): 1011-1013
Yacoub, S.; Wills, B. 2014: Predicting outcome from dengue. Bmc Medicine 12: 147
Saubermann, A.J. 2010: Predicting outcome from past performance. Anesthesiology 112(5): 1065-1066
Bodart, O.; Laureys, S. 2014: Predicting outcome from subacute unresponsive wakefulness syndrome or vegetative state. Critical Care 18(2): 132
van Bragt, P.J.; van Ginneken, B.T.; Westendorp, T.; Heijenbrok-Kal, M.H.; Wijffels, M.P.; Ribbers, G.M. 2014: Predicting outcome in a postacute stroke rehabilitation programme. International Journal of Rehabilitation Research. Internationale Zeitschrift für Rehabilitationsforschung. Revue Internationale de Recherches de Readaptation 37(2): 110-117
MacQuillan, G. 2007: Predicting outcome in acute liver failure: are we there yet?. Liver Transplantation: Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 13(9): 1209-1211
Wand, B.M.; McAuley, J.H.; Marston, L.; De Souza, L.H. 2009: Predicting outcome in acute low back pain using different models of patient profiling. Spine 34(18): 1970-1975
Singer, J.; Gilbert, J.R.; Hutton, T.; Taylor, D.W. 1987: Predicting outcome in acute low-back pain. Canadian Family Physician Medecin de Famille Canadien 33: 655-659
Pradeep, D.J.; Keat, A.; Gaffney, K. 2008: Predicting outcome in ankylosing spondylitis. Rheumatology 47(7): 942-945
Pellikka, P.A. 2010: Predicting outcome in asymptomatic aortic stenosis: should we measure the severity of obstruction or its physiological consequences?. European Heart Journal 31(18): 2191-2193
Catchpoole, D.; Guo, D.; Jiang, H.; Biesheuvel, C. 2008: Predicting outcome in childhood acute lymphoblastic leukemia using gene expression profiling: prognostication or protocol selection?. Blood 111(4): 2486-7; author reply 2487-8
Abend, N.S.; Licht, D.J. 2008: Predicting outcome in children with hypoxic ischemic encephalopathy. Pediatric Critical Care Medicine: a Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies 9(1): 32-39
De Graaf, L.E.; Hollon, S.D.; Huibers, M.J.H. 2010: Predicting outcome in computerized cognitive behavioral therapy for depression in primary care: a randomized trial. Journal of Consulting and Clinical Psychology 78(2): 184-189
Kahn, J.M. 2014: Predicting outcome in critical care: past, present and future. Current Opinion in Critical Care 20(5): 542-543
LeBrun, D.; Baetz, T.; Foster, C.; Farmer, P.; Sidhu, R.; Guo, H.; Harrison, K.; Somogyi, R.; Greller, L.D.; Feilotter, H. 2008: Predicting outcome in follicular lymphoma by using interactive gene pairs. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 14(2): 478-487
Jennings, L.; Murphy, G.M. 2009: Predicting outcome in melanoma: where are we now?. British Journal of Dermatology 161(3): 496-503
Lonie, J.A.; Parra-Rodriguez, M.A.; Tierney, K.M.; Herrmann, L.L.; Donaghey, C.; O'Carroll, R.E.; Ebmeier, K.P. 2010: Predicting outcome in mild cognitive impairment: 4-year follow-up study. British Journal of Psychiatry: the Journal of Mental Science 197(2): 135-140
Pitts, W.R. 2008: Predicting outcome in minimally invasive (T1a and T1b) urothelial bladder cancer using a panel of biomarkers: a high-throughput tissue microarray analysis. Bju International 101(12): 1595
Lin, H-Jia.; Ma, X-Lu.; Shi, L-Ping.; Luo, F.; Du, L-Zhong. 2013: Predicting outcome in necrotizing enterocolitis with the score for neonatal acute physiology: a retrospective study of 62 cases. Zhonghua Er Ke Za Zhi 51(5): 326-330
Sinclair, H.; Paterson, M.; Walker, S.; Beckett, G.; Fox, K.A.A. 2007: Predicting outcome in patients with acute coronary syndrome: evaluation of B-type natriuretic peptide and the global registry of acute coronary events (GRACE) risk score. Scottish Medical Journal 52(3): 8-13
Harbrecht, B.G. 2012: Predicting outcome in patients with acute liver failure: what works best?. Critical Care Medicine 40(5): 1666-1667
Coglianese, E.E.; Davidoff, R. 2009: Predicting outcome in patients with asymptomatic aortic stenosis. Circulation 120(1): 9-11
Gane, E. 2008: Predicting outcome in patients with cirrhosis following acute decompensation: can we do better?. Journal of Gastroenterology and Hepatology 23(8 Part 1): 1163-1165
Charles, P-Emmanuel.; Gibot, Sébastien. 2014: Predicting outcome in patients with sepsis: new biomarkers for old expectations. Critical Care 18(1): 108
Ross, D.S. 2013: Predicting outcome in patients with thyroid cancer. Journal of Clinical Endocrinology and Metabolism 98(12): 4673-4675
Zalunardo, N. 2008: Predicting outcome in peritoneal dialysis-related peritonitis: revisiting old themes and slowly moving forward. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis 28(4): 335-339
Lammers, W.J.; Kowdley, K.V.; van Buuren, H.R. 2014: Predicting outcome in primary biliary cirrhosis. Annals of Hepatology 13(4): 316-326
Doughty, R.N.; Poppe, K.; Stewart, J. 2007: Predicting outcome in severe heart failure. who will benefit from device therapy (CRT)?. European Heart Journal 28(15): 1790-1792
Sobuwa, S.; Hartzenberg, H.B.; Geduld, H.; Uys, C. 2014: Predicting outcome in severe traumatic brain injury using a simple prognostic model. South African Medical Journal 104(7): 492-494
Mancini, G.B.J.; Hartigan, P.M.; Shaw, L.J.; Berman, D.S.; Hayes, S.W.; Bates, E.R.; Maron, D.J.; Teo, K.; Sedlis, S.P.; Chaitman, B.R.; Weintraub, W.S.; Spertus, J.A.; Kostuk, W.J.; Dada, M.; Booth, D.C.; Boden, W.E. 2014: Predicting outcome in the COURAGE trial (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation): coronary anatomy versus ischemia. JACC. Cardiovascular Interventions 7(2): 195-201
Zafonte, R.D.; Hammond, F.M.; Peterson, J. 1996: Predicting outcome in the slow to respond traumatically brain-injured patient: Acute and subacute parameters. Neurorehabilitation 6(1): 19-32
Voorhies, R.M.; Jiang, X.; Thomas, N. 2007: Predicting outcome in the surgical treatment of lumbar radiculopathy using the Pain Drawing Score, McGill Short Form Pain Questionnaire, and risk factors including psychosocial issues and axial joint pain. Spine Journal: Official Journal of the North American Spine Society 7(5): 516-524
Raj, R.; Siironen, J.; Skrifvars, M.B.; Hernesniemi, J.; Kivisaari, R. 2014: Predicting outcome in traumatic brain injury: development of a novel computerized tomography classification system (Helsinki computerized tomography score). Neurosurgery 75(6): 632
Kent, T.A. 2012: Predicting outcome of IV thrombolysis-treated ischemic stroke patients: the DRAGON score. Neurology 78(17): 1368
Bruno, A.; Switzer, J.A. 2012: Predicting outcome of IV thrombolysis-treated ischemic stroke patients: the DRAGON score. Neurology 79(5): 486-7; author reply 486-7
Warmerdam, L.; Van Straten, A.; Twisk, J.; Cuijpers, P. 2013: Predicting outcome of Internet-based treatment for depressive symptoms. PsychoTherapy Research: Journal of the Society for PsychoTherapy Research 23(5): 559-567
Brugha, T.S.; Taub, N.; Smith, J.; Morgan, Z.; Hill, T.; Meltzer, H.; Wright, C.; Burns, T.; Priebe, S.; Evans, J.; Fryers, T. 2012: Predicting outcome of assertive outreach across England. Social Psychiatry and Psychiatric Epidemiology 47(2): 313-322
Van Noorden, M.S.; van Fenema, E.M.; van der Wee, N.J.A.; Zitman, F.G.; Giltay, E.J. 2012: Predicting outcome of depression using the depressive symptom profile: the Leiden Routine Outcome Monitoring Study. Depression and Anxiety 29(6): 523-530
Mehta, J.P.; Ajwani, V.R.; Singh, V.K. 2009: Predicting outcome of endoscopic management of urethral strictures: guideline for improving results. International Surgery 94(2): 141-143
Sakurada, S.; Watanabe, Y.; Tokunaga, H.; Takahashi, F.; Yamada, H.; Takehara, K.; Yaegashi, N. 2018: Clinicopathologic features and BRCA mutations in primary fallopian tube cancer in Japanese women. Japanese Journal of Clinical Oncology 48(9): 794-798
Kohler, M.; Bloch, K.E. 2008: Predicting outcome of nasal surgery in patients with obstructive sleep apnoea. European Respiratory Journal 32(1): 246; Author Reply 246-7
Murakami, T.; Hayasaka, S.; Terada, Y.; Yuki, H.; Tamura, M.; Yokomizo, R.; Nabeshima, H.; Yaegashi, N.; Okamura, K. 2008: Predicting outcome of one-step total hysteroscopic resection of sessile submucous myoma. Journal of Minimally Invasive Gynecology 15(1): 74-77
Mudd, K.; Paterakis, M.; Curtin-Brosnan, J.; Matsui, E.; Wood, R. 2009: Predicting outcome of repeat milk, egg, or peanut oral food challenges. Journal of Allergy and Clinical Immunology 124(5): 1115-1116
Boschen, M.J.; Drummond, L.M.; Pillay, A.; Morton, K. 2010: Predicting outcome of treatment for severe, treatment resistant OCD in inpatient and community settings. Journal of Behavior Therapy and Experimental Psychiatry 41(2): 90-95
Velickiene, D.; Kazanavicius, G.; Danilevicius, J.; Jankauskiene, J.ūr. 2007: Predicting outcome of treatment with radiotherapy in endocrine ophthalmopathy. Medicina 43(3): 190-198
Syazarina Sharis, O.; Zulkifli, M.Z.; Hamzaini, A.H. 2013: Predicting outcome of trial of voiding without catheter in acute urinary retention with intravesical prostatic protrusion. Malaysian Journal of Medical Sciences: Mjms 20(1): 56-59
Golshayan, A.-R.; Brick, A.J.; Choueiri, T.K. 2008: Predicting outcome to VEGF-targeted therapy in metastatic clear-cell renal cell carcinoma: data from recent studies. Future Oncology 4(1): 85-92
Milette, F.ço. 2012: Predicting outcome: a fourfold delusion!. Dermatology Practical and Conceptual 2(2): 202a14
Battle, C.; Hutchings, H.; Lovett, S.; Bouamra, O.; Jones, S.; Sen, A.; Gagg, J.; Robinson, D.; Hartford-Beynon, J.; Williams, J.; Evans, A. 2014: Predicting outcomes after blunt chest wall trauma: development and external validation of a new prognostic model. Critical Care 18(3): R98
Choi, J.S.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Ahn, Y.-K.; Jeong, M.H.; Kim, Y.J.; Cho, M.C.; Kim, C.J.; Kim, S.W.; Jeong, M.H.; Ahn, Y.K.; Chae, S.C.; Kim, J.H.; Hur, S.H.; Kim, Y.J.; Seong, W.; Choi, D.H.; Chae, J.K.; Hong, T.J.; Rhew, J.Y.; Kim, D.I.; Chae, H.; Yoon, J.H.; Koo, K.; Kim, B.O.; Lee, M.Y.; Kim, K.S.; Hwang, J.Y.; Cho, M.C.; Kyu, S.; Lee, N.H.; Jeong, K.T.; Tahk, S.J.; Bae, J.H.; Rha, S.W.; Park, K.S.; Kim, C.J.; Han, K.R.; Ahn, T.H.; Kim, M.H.; Seung, K.B.; Chung, W.S.; Yang, J.Y.; Rhim, C.Y.; Gwon, H.C.; Park, S.W.; Koh, Y.Y.; Joo, S.J.; Kim, S.J.; Jin, D.K.; Cho, J.M.; Kim, B.O.; Kim, S.-W.; Kim, J.K.; Kim, T.I.; Nah, D.Y.; Park, S.H.; Lee, S.H.; Lee, S.U.; Chung, H.-J.; Cho, J.H.; Jin, S.W.; Jang, Y.S.; Cho, J.G.; Park, S.J 2012: Predicting outcomes after myocardial infarction by using the Chronic Kidney Disease Epidemiology Collaboration equation in comparison with the Modification of Diet in Renal Disease study equation: results from the Korea Acute Myocardial Infarction Registry. Nephrology Dialysis Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 27(10): 3868-3874
Papadakis, K.A. 2012: Predicting outcomes after restorative proctocolectomy for ulcerative colitis. Clinical Gastroenterology and Hepatology: the Official Clinical Practice Journal of the American Gastroenterological Association 10(5): 447-449
Rempe, D.A. 2014: Predicting outcomes after transient ischemic attack and stroke. Continuum 20(2 Cerebrovascular Disease): 412-428
Yuan, F.; Ding, J.; Chen, H.; Guo, Y.; Wang, G.; Gao, W.-W.; Chen, S.-W.; Tian, H.-L. 2012: Predicting outcomes after traumatic brain injury: the development and validation of prognostic models based on admission characteristics. Journal of Trauma and Acute Care Surgery 73(1): 137-145
Oruche, U.M.; Gerkensmeyer, J.E.; Carpenter, J.S.; Austin, J.K.; Perkins, S.M.; Rawl, S.M.; Wright, E.R. 2013: Predicting outcomes among adolescents with disruptive disorders being treated in a system of care program. Journal of the American Psychiatric Nurses Association 19(6): 335-344
Dungan, K.M. 2012: Predicting outcomes and assessing control with alternate glycemic markers. Diabetes Technology and Therapeutics 14(9): 749-752
Mohapatra, P.R.; Hari, D.T. 2011: Predicting outcomes and drug resistance with new standardised treatment. European Respiratory Journal 37(4): 974; Author Reply 974-5
Oxlade, O.; Schwartzman, K.; Pai, M.; Heymann, J.; Benedetti, A.; Royce, S.; Menzies, D. 2010: Predicting outcomes and drug resistance with standardised treatment of active tuberculosis. European Respiratory Journal 36(4): 870-877
Steer, J.; Gibson, G.J.; Bourke, S.C. 2010: Predicting outcomes following hospitalization for acute exacerbations of COPD. Qjm: Monthly Journal of the Association of Physicians 103(11): 817-829
Kramer, A.A.; Zimmerman, J.E. 2008: Predicting outcomes for cardiac surgery patients after intensive care unit admission. Seminars in Cardiothoracic and Vascular Anesthesia 12(3): 175-183
Ling, S.C.; Avitzur, Y. 2014: Predicting outcomes for children awaiting liver transplantation: is serum sodium the answer?. Hepatology 59(5): 1678-1680
Vermeulen, J.ël.; De Preter, K.; Mestdagh, P.; Laureys, G.èv.; Speleman, F.; Vandesompele, J. 2010: Predicting outcomes for children with neuroblastoma. Discovery Medicine 10(50): 29-36
Vermeulen, Jëlle.; De Preter, K.; Naranjo, A.; Vercruysse, L.; Van Roy, N.; Hellemans, J.; Swerts, K.; Bravo, S.; Scaruffi, P.; Tonini, G.Paolo.; De Bernardi, B.; Noguera, R.; Piqueras, M.; Cañete, A.; Castel, V.; Janoueix-Lerosey, I.; Delattre, O.; Schleiermacher, G.; Michon, J.; Combaret, Vérie.; Fischer, M.; Oberthuer, Aé.; Ambros, P.F.; Beiske, K.; Bénard, J.; Marques, Bárbara.; Rubie, Hé.; Kohler, J.; Pötschger, U.; Ladenstein, R.; Hogarty, M.D.; McGrady, P.; London, W.B.; Laureys, Gève.; Speleman, F.; Vandesompele, J. 2009: Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet. Oncology 10(7): 663-671
Schubert, C.A.; Mulvey, E.P.; Loughran, T.A.; Fagan, J.; Chassin, L.A.; Piquero, A.R.; Losoya, S.H.; Steinberg, L.; Cauffman, E. 2010: Predicting outcomes for youth transferred to adult court. Law and Human Behavior 34(6): 460-475
Kurth, T.; Glynn, R.J. 2008: Predicting outcomes in CKD. American Journal of Kidney Diseases: the Official Journal of the National Kidney Foundation 52(4): 635-637
Levin, A. 2009: Predicting outcomes in CKD: the importance of perspectives, populations and practices. Nephrology Dialysis Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 24(6): 1724-1726
Grill, S.; Weuve, J.; Weisskopf, M.G. 2011: Predicting outcomes in Parkinson's disease: comparison of simple motor performance measures and the Unified Parkinson's Disease Rating Scale-IIi. Journal of Parkinson's Disease 1(3): 287-298
Dupuis, J.-Y. 2008: Predicting outcomes in cardiac surgery: risk stratification matters?. Current Opinion in Cardiology 23(6): 560-567
Huang, Z.; Mayr, N.A.; Yuh, W.T.C.; Lo, S.S.; Montebello, J.F.; Grecula, J.C.; Lu, L.; Li, K.; Zhang, H.; Gupta, N.; Wang, J.Z. 2010: Predicting outcomes in cervical cancer: a kinetic model of tumor regression during radiation therapy. Cancer Research 70(2): 463-470
Franzen, D.; Rupprecht, C.; Hauri, D.; Bleisch, J.A.; Staubli, M.; Puhan, M.A. 2010: Predicting outcomes in critically ill patients with acute kidney injury undergoing intermittent hemodialysis--a retrospective cohort analysis. International Journal of Artificial Organs 33(1): 15-21
O'Sullivan, E.; Callely, E.; O'Riordan, D.; Bennett, K.; Silke, B. 2012: Predicting outcomes in emergency medical admissions - role of laboratory data and co-morbidity. Acute Medicine 11(2): 59-65
Nowak-Wegrzyn, A. 2012: Predicting outcomes in food challenges: what's the score?. Israel Medical Association Journal: Imaj 14(1): 48-49