+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering



Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering



Journal of Biomaterials Applications 28(2): 288-297



The corium is decreased to about half of its thickness in skin defects and wrinkles due to gravity and environment. In this study, dexamethasone/poly(d,l-lactic acid) (Mn = 160,000) microspheres were incorporated into poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (Mn = 3300) hydrogel to prepare an injectable hydrogel composite. The composite was designed to increase the thickness of the corium. Dexamethasone/poly(d,l-lactic acid) microspheres were prepared by oil-in-water emulsion/solvent evaporation technique. The properties of microspheres were investigated by size distribution measurement, scanning electron microscope and x-ray diffraction. Drug loading, encapsulation efficiency, and drug delivery behavior of microspheres were also studied in detail. Cell adhesion of microspheres was investigated by NIH3T3 cell in vitro. The properties of hydrogel composite were investigated by scanning electron microscope, rheological measurements and methyl thiazolyl tetrazolium assay. Drug release from composite was determined by HPLC-UV analysis. These results suggested that poly(d,l-lactic acid) microspheres encapsulating dexamethasone embedded in poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel might have prospective application in orthopedic tissue engineering field.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 055132759

Download citation: RISBibTeXText

PMID: 22561978

DOI: 10.1177/0885328212446097


Related references

Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation. Journal of Biomedical Nanotechnology 10(4): 592-602, 2014

Dexamethasone-Loaded Poly(D, L-lactic acid) Microspheres/Poly(ethylene glycol)Poly( caprolactone)Poly(ethylene glycol) Micelles Composite for Skin Augmentation. Journal of Biomedical Nanotechnology 10(4): 592-602, 2014

Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-vitro Characterization. Iranian Journal of Pharmaceutical Research 18(1): 142-155, 2019

Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. Journal of Physical Chemistry. B 113(52): 16518-16525, 2009

Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel. Journal of Physical Chemistry. B 113(30): 10183-8, 2009

Preparation and in vitro characterization of retinoic acid-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles. Research in Pharmaceutical Sciences 12(6): 465-478, 2017

Preparation and Characterization of Poly(vinyl alcohol)/Poly( -caprolactone)-Poly(ethylene glycol)-Poly( -caprolactone)/Nano-Hydroxyapatite Composite Membranes for Tissue Engineering. Journal of Nanoscience and Nanotechnology 11(3): 2354-2360, 2011

Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone. International Journal of Pharmaceutics 389(1-2): 130-138, 2010

Preparation and Characterizations of RSPP050-Loaded Polymeric Micelles Using Poly(ethylene glycol)-b-Poly(ε-caprolactone) and Poly(ethylene glycol)-b-Poly(D,L-lactide). Chemical and Pharmaceutical Bulletin 65(6): 530-537, 2017

Preparation and characterization of polylactide/poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) hybrid fibers for potential application in bone tissue engineering. International Journal of Nanomedicine 9: 1991-2003, 2014

Preparation and characterization of poly(vinyl alcohol)/poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone)/nano-hydroxyapatite composite membranes for tissue engineering. Journal of Nanoscience and Nanotechnology 11(3): 2354-2360, 2011

Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly(ethylene glycol)-poly (ε-caprolactone)-poly(ethylene glycol) hydrogel composite. Journal of Biomedical Materials Research. Part a 100(1): 171-179, 2012

In vitro drug release behavior from a novel thermosensitive composite hydrogel based on Pluronic f127 and poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) copolymer. Bmc Biotechnology 9: 8, 2009

Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material. Journal of Materials Science. Materials in Medicine 20(Suppl. 1): S115-S122, 2009

Synthesis and characterization of star poly(epsilon-caprolactone)-b-poly(ethylene glycol) and poly(L-lactide)-b-poly(ethylene glycol) copolymers: evaluation as drug delivery carriers. Bioconjugate Chemistry 19(7): 1423-1429, 2008