+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Preparation of Tacrolimus loaded micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone)

Preparation of Tacrolimus loaded micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone)

International Journal of Pharmaceutics 407(1-2): 184-189

Self-assembled polymeric micelles are widely applied in drug delivery system. In this study, Tacrolimus (FK506) loaded micelles were prepared based on biodegradable poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCEC) copolymers. Micelles were prepared by self-assembly of triblock copolymer PCEC in distilled water triggered by its amphiphilic characteristics. Drug loading and encapsulation efficiency were determined by adjusting the weight ratio of FK506 and PCEC. The particle size distribution and variation of obtained micelles were determined using Malvern laser particle size analyzer, while the spherical geometry was observed on transmission electron microscope (TEM), and the crystallographic assays were fulfilled by X-ray diffractometer (XRD). Besides, in vitro release profile demonstrated a significant difference between rapid release of free Tacrolimus and much slower and sustained release of FK506 loaded micelles. These results suggested that we have successfully prepared Tacrolimus loaded micelles in an improved method which is safer and more efficient. The prepared micelles might be potential carriers for Tacrolimus delivery in immunosuppressive therapy.

Please choose payment method:

(PDF emailed within 0-6 h: $19.90)

Accession: 055134204

Download citation: RISBibTeXText

PMID: 21251958

DOI: 10.1016/j.ijpharm.2011.01.018

Related references

Preparation and in vitro characterization of retinoic acid-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles. Research in Pharmaceutical Sciences 12(6): 465-478, 2017

Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. Nanomedicine 8(6): 925-934, 2012

Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-vitro Characterization. Iranian Journal of Pharmaceutical Research 18(1): 142-155, 2019

Preparation and Characterizations of RSPP050-Loaded Polymeric Micelles Using Poly(ethylene glycol)-b-Poly(ε-caprolactone) and Poly(ethylene glycol)-b-Poly(D,L-lactide). Chemical and Pharmaceutical Bulletin 65(6): 530-537, 2017

Self-assembled honokiol-loaded micelles based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. International Journal of Pharmaceutics 369(1-2): 170-175, 2009

Rapamycin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles: preparation, characterization and potential application in corneal transplantation. Journal of Pharmacy and Pharmacology 66(4): 557-563, 2014

Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells. Nanoscale 3(9): 3825-3832, 2011

Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation. Journal of Biomedical Nanotechnology 10(4): 592-602, 2014

Dexamethasone-Loaded Poly(D, L-lactic acid) Microspheres/Poly(ethylene glycol)Poly( caprolactone)Poly(ethylene glycol) Micelles Composite for Skin Augmentation. Journal of Biomedical Nanotechnology 10(4): 592-602, 2014

Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel. Journal of Physical Chemistry. B 113(30): 10183-8, 2009

Preparation of Magnetic Microspheres Based on Poly( -Caprolactone)-Poly(Ethylene Glycol)Poly( -Caprolactone) Copolymers by Modified Solvent Diffusion Method. Journal of Biomedical Nanotechnology 6(3): 287-292, 2010

Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering. Journal of Biomaterials Applications 28(2): 288-297, 2013

Preparation and Characterization of Poly(vinyl alcohol)/Poly( -caprolactone)-Poly(ethylene glycol)-Poly( -caprolactone)/Nano-Hydroxyapatite Composite Membranes for Tissue Engineering. Journal of Nanoscience and Nanotechnology 11(3): 2354-2360, 2011

Thermosensitive β-cyclodextrin modified poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles prolong the anti-inflammatory effect of indomethacin following local injection. Acta Biomaterialia 9(6): 6953-6963, 2013

Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats. Journal of Biomedical Materials Research. Part B Applied Biomaterials 102(3): 533-542, 2014