+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Promotion of the Clostridium acetobutylicum ATCC 824 growth and acetone-butanol-ethanol fermentation by flavonoids



Promotion of the Clostridium acetobutylicum ATCC 824 growth and acetone-butanol-ethanol fermentation by flavonoids



World Journal of Microbiology and Biotechnology 30(7): 1969-1976



An unexpected promotion effect of Ginkgo leaf on the growth of Clostridium acetobutylicum ATCC 824 and acetone-butanol-ethanol (ABE) fermentation was investigated. Component analysis of Ginkgo leaf was carried out and flavonoids were determined as the potential key metabolites. Then the flavonoids feeding experiments were carried out. Results showed that addition of only 10 mg/L flavonoids to the fermentation broth can promote butanol and ABE titre up to 14.5 and 17.8 g/L after 5 days of fermentation, that is, 74 and 68% higher than the control. A 2.2-fold biomass also has been achieved. Furthermore, by employing such novel founding, we easily exploited flavonoids from soybean and some agriculture wastes as the wide-distributed and economic feasible ABE fermentation promoter. The mechanism of the above effects was investigated from the perspective of oxidation-reduction potential. This work opens a new way in the efforts to increase the titer of butanol.

(PDF emailed within 0-6 h: $19.90)

Accession: 055228534

Download citation: RISBibTeXText

PMID: 24510404

DOI: 10.1007/s11274-014-1619-y


Related references

A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product. Biotechnology and Bioengineering 114(12): 2907-2919, 2017

Acetone-butanol-ethanol fermentation and pervaporation by Clostridium acetobutylicum B18. 1995

Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Applied and Environmental Microbiology 78(5): 1416-1423, 2012

Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition. Bioresource Technology 200: 111-120, 2017

In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass. Anaerobe 34: 125-131, 2016

Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol. Applied Microbiology and Biotechnology 54(2): 2-7, 2000

Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum. Biotechnology Journal 7(5): 656-661, 2012

Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Journal of Biotechnology 165(1): 18-21, 2013

Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum. Biomass and Bioenergy 20(2): 119-132, 2001

Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metabolic Engineering 14(6): 630-641, 2013

Dual function of ammonium acetate in acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Bioresource Technology 267: 319-325, 2018

Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Proceedings of the National Academy of Sciences of the United States of America 112(27): 8505-8510, 2015

Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum. World Journal of Microbiology & Biotechnology 17(6): 567-576, August, 2001

Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation. Biotechnology Letters 37(3): 577-584, 2015

Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresource Technology 106: 110-116, 2012