+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment

Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment

Molecular Pharmaceutics 10(10): 3871-3881

Nanoencapsulation of antiproliferative and chemopreventive phytoalexin trans-resveratrol (RSV) is likely to provide protection against degradation, enhancement of bioavailability, improvement in intracellular penetration and control delivery. In this study, polymeric nanoparticles (NPs) encapsulating RSV (nano-RSV) as novel prototypes for prostate cancer (PCa) treatment were designed, characterized and evaluated using human PCa cells. Nanosystems, composed of a biocompatible blend of poly(epsilon-caprolactone) (PCL) and poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol) conjugate (PLGA-PEG-COOH), were prepared by a nanoprecipitation method, and characterized in terms of morphology, particle size and zeta potential, encapsulation efficiency, thermal analyses, and in vitro release studies. Cellular uptake of NPs was then evaluated in PCa cell lines DU-145, PC-3, and LNCaP using confocal fluorescence microscopy, and antiproliferative efficacy was assessed using MTT assay. With encapsulation efficiencies ranging from 74% to 98%, RSV was successfully loaded in PCL:PLGA-PEG-COOH NPs, which showed an average diameter of 150 nm. NPs were able to control the RSV release at pH 6.5 and 7.4, mimicking the acidic tumoral microenvironment and physiological conditions, respectively, with only 55% of RSV released within 7 h. In gastrointestinal simulated fluids, NPs released about 55% of RSV in the first 2 h in acidic medium, and their total RSV content within the subsequent 5 h at pH 7.4. Confocal fluorescence microscopy observations revealed that NPs were efficiently taken up by PCa cell lines. Furthermore, nano-RSV significantly improved the cytotoxicity compared to that of free RSV toward all three cell lines, at all tested concentrations (from 10 μM to 40 μM), proving a consistent sensitivity toward both the androgen-independent DU-145 and hormone-sensitive LNCaP cells. Our findings support the potential use of developed nanoprototypes for the controlled delivery of bioactive RSV for PCa chemoprevention/chemotherapy.

Please choose payment method:

(PDF emailed within 0-6 h: $19.90)

Accession: 055542668

Download citation: RISBibTeXText

PMID: 23968375

DOI: 10.1021/mp400342f

Related references

Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation. Journal of Biomedical Nanotechnology 10(4): 592-602, 2014

Thermogravimetric investigation of two classes of block copolymers based on poly(lactic-glycolic acid) and poly(-caprolactone) or poly(ethylene glycol). Polymer Degradation and Stability 74(1): 119-124, 2001

Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-vitro Characterization. Iranian Journal of Pharmaceutical Research 18(1): 142-155, 2019

Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering. Journal of Biomaterials Applications 28(2): 288-297, 2013

Dexamethasone-Loaded Poly(D, L-lactic acid) Microspheres/Poly(ethylene glycol)Poly( caprolactone)Poly(ethylene glycol) Micelles Composite for Skin Augmentation. Journal of Biomedical Nanotechnology 10(4): 592-602, 2014

Self-assembled honokiol-loaded micelles based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. International Journal of Pharmaceutics 369(1-2): 170-175, 2009

Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel. Journal of Physical Chemistry. B 113(30): 10183-8, 2009

Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)-block-poly(D,L)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia. European Journal of Pharmaceutics and Biopharmaceutics 87(1): 30-39, 2014

Colchicine encapsulation within poly(ethylene glycol)-coated poly(lactic acid)/poly(epsilon-caprolactone) microspheres-controlled release studies. Drug Delivery 7(3): 129-138, 2000

Protein release microparticles based on the blend of poly(D,L-lactic-co-glycolic acid) and oligo-ethylene glycol grafted poly(L-lactide). Journal of Controlled Release 76(3): 275-284, 2001

Oridonin-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma. Journal of Drug Targeting 16(6): 479-485, 2008

Preparation of anionic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymeric nanoparticles as basic protein antigen carrier. Growth Factors 25(3): 202-208, 2007

Clonazepam release from core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) triblock copolymers. International Journal of Pharmaceutics 200(2): 231-242, 2000

Poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery. Journal of Physical Chemistry. B 113(39): 12928-12933, 2009

Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface. Langmuir 31(51): 13821-13833, 2015