+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Roles of spike protein in the pathogenesis of SARS coronavirus



Roles of spike protein in the pathogenesis of SARS coronavirus



Hong Kong Medical Journal 15(Suppl. 2): 37-40



1. Infection with SARS coronavirus (SARS-CoV) induces a cellular stress condition known as the unfolded protein response (UPR). UPR induction is mediated primarily by viral spike (S) protein. The modulation of UPR by S protein involves activation of PERK protein kinase. Other branches of the UPR pathways controlled by IRE1 and ATF6 proteins, respectively, are not involved. 2. The protease inhibitor Ben-HCl effectively suppresses SARS-CoV infection by blocking virus entry. Viral infectivity is associated with the cleavage of S protein by the cellular protease factor Xa. 3. Two new aspects of the interaction between SARS-CoV S protein and the cell have been defined. These have important implications in the pathogenesis of SARS, providing opportunities for developing vaccines and antivirals against SARS-CoV. 4. Counteracting the UPR and targeting the cleavage of S protein with small molecule pharmaceutical agents represent two new anti-SARS-CoV strategies. 5. The receptor-binding domain of S protein delivered via adeno-associated virus can efficiently induce mucosal immunity and provide long-term protection against SARS-CoV infection.

Please choose payment method:






(PDF emailed within 1 workday: $29.90)

Accession: 055617605

Download citation: RISBibTeXText

PMID: 19258633


Related references

Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. Journal of Clinical Microbiology 43(7): 3054-3058, 2005

SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine 23(42): 4959-4968, 2005

Baculovirus surface display of SARS coronavirus (SARS-CoV) spike protein and immunogenicity of the displayed protein in mice models. Dna and Cell Biology 25(12): 668-673, 2006

Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virology Journal 6: 230, 2009

Peptide mimicrying between SARS coronavirus spike protein and human proteins reacts with SARS patient serum. Journal of Biomedicine & Biotechnology 2008: 326464-326464, 2008

A follow up study of total IgM, IgG, nucleoprotein and spike protein antibodies against severe acute respiratory syndrome (SARS) coronavirus in patients with SARS. Zhonghua Nei Ke Za Zhi 45(11): 896-899, 2006

Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. Journal of Immunology 173(6): 4050-4057, 2004

Quantitative comparison of the efficiency of antibodies against S1 and S2 subunit of SARS coronavirus spike protein in virus neutralization and blocking of receptor binding: implications for the functional roles of S2 subunit. Febs Letters 580(24): 5612-5620, 2006

Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363(9427): 2122-2127, 2004

Immunogenicity difference between the SARS coronavirus and the bat SARS-like coronavirus spike (S) proteins. Biochemical and Biophysical Research Communications 387(2): 326-329, 2009

Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS. Virology 363(2): 288-302, 2007

Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology 203(2): 631-637, 2004

T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. Journal of Virology 78(11): 5612-5618, 2004

Expression and purification of recombinant SARS coronavirus spike protein. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica et Biophysica Sinica 35(8): 774-778, 2003

Cloning and expression of SARS Coronavirus spike protein fragment 1. Chinese Journal of Zoonoses 19(5): 13-16, 2003