+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Screening and identification of novel drug-resistant genes in CD133+ and CD133- lung adenosarcoma cells using cDNA microarray



Screening and identification of novel drug-resistant genes in CD133+ and CD133- lung adenosarcoma cells using cDNA microarray



Zhongguo Fei Ai Za Zhi 17(6): 437-443



背景与目的 肿瘤干细胞可能是肿瘤多药耐药的主要原因,CD133是目前较为公认的肿瘤干细胞标记物。本研究旨在应用功能分类基因芯片筛选CD133+和CD133-肺腺癌细胞中差异表达的肿瘤耐药基因,寻求新的肺癌耐药相关基因。方法 免疫磁珠分选法分选A549细胞,采用功能分类基因芯片筛选CD133+和CD133-肺腺癌细胞中差异表达的肿瘤耐药基因,并使用RT-qPCR验证。顺铂半数有效抑制浓度(half inhibiting concentration, IC50)、阿霉素IC50作用A549细胞48 h后,RT-qPCR检测肿瘤耐药基因CYP2C19、CYP2D6、CYP2E1、GSK3α、PPARα和 PPARβ/δ的表达变化。结果 共筛查出31个差异表达的肿瘤耐药基因,与CD133-细胞相比,CD133+细胞有30个基因表达上调,1个基因表达下调。RT-qPCR结果与芯片一致。A549细胞经1.97 μg/mL顺铂或0.61 μg/mL阿霉素作用48 h后,CYP2C19、CYP2D6、CYP2E1、GSK3α、PPARα和PPARβ/δ等肿瘤耐药基因表达上调。结论 利用功能分类基因芯片筛选出31个可能与CD133+肺腺癌细胞耐药相关的基因,其中CYP2C19、CYP2D6、CYP2E1、GSK3α、PPARα 和PPARβ/δ为新发现的肺癌耐药相关基因。

(PDF emailed within 1 workday: $29.90)

Accession: 055670199

Download citation: RISBibTeXText

PMID: 24949682


Related references

Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. International Journal of Radiation Oncology, Biology, Physics 67(1): 1-5, 2006

CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation 118(6): 2111-2120, 2008

CD133+ cells from medulloblastoma and PNET cell lines are more resistant to cyclopamine inhibition of the sonic hedgehog signaling pathway than CD133- cells. Tumour Biology 31(5): 381-390, 2010

CD133(-) cells, derived from a single human colon cancer cell line, are more resistant to 5-fluorouracil (FU) than CD133(+) cells, dependent on the β1-integrin signaling. Journal of Surgical Research 175(2): 278-288, 2012

CD133 expression and identification of CD133/nestin positive cells in rhabdomyosarcomas and rhabdomyosarcoma cell lines. Analytical Cellular Pathology 34(6): 303-318, 2012

Isolation and identification of CD133 positive and negative cells from human lung cancer and screening of the differential genes between the positive and negative cells. Zhongguo Fei Ai Za Zhi 18(3): 123-130, 2015

A microRNA-135a/b binding polymorphism in CD133 confers decreased risk and favorable prognosis of lung cancer in Chinese by reducing CD133 expression. Carcinogenesis 34(10): 2292-2299, 2013

Detection of CD133 expression in U87 glioblastoma cells using a novel anti-CD133 monoclonal antibody. Oncology Letters 9(6): 2603-2608, 2015

Expression profiling of CD133+ and CD133- epithelial cells from human prostate. Prostate 68(9): 1007-1024, 2008

Comparative gene-expression profiling of CD133(+) and CD133(-) D10 melanoma cells. Future Oncology 11(17): 2383-2393, 2016

Cell cycle analysis of the CD133(+) and CD133(-) cells isolated from human colorectal cancer. Journal of Cancer Research and Therapeutics 8(3): 399-403, 2013

Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations. Bmc Cancer 16(1): 726, 2017

Characterization of the conversion between CD133+ and CD133- cells in colon cancer SW620 cell line. Cancer Biology and Therapy 13(14): 1396-1406, 2013

Cell cycle analysis of the CD133+ and CD133- cells isolated from umbilical cord blood. Clinica Chimica Acta; International Journal of Clinical Chemistry 343(1-2): 173-178, 2004

Epigenetic regulation of CD133 and tumorigenicity of CD133 positive and negative endometrial cancer cells. Reproductive Biology and Endocrinology 8: 147, 2011