+ Site Statistics
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Get PDF Full Texts from EurekaMag Chapter 55949

Chapter 55949 provides scholary research titles of which PDF Full Texts are available through EurekaMag.

Kubala, M.H.; Kovtun, O.; Alexandrov, K.; Collins, B.M., 2011:
Structural and thermodynamic analysis of the GFP:GFP-nanobody complex

Camacho, C.J.; Katsumata, Y.; Ascherman, D.P., 2008:
Structural and thermodynamic approach to peptide immunogenicity

Ohki, T.; Harada, M.; Okada, T., 2007:
Structural and thermodynamic aspects of ionic solvation in concentrated aqueous poly(ethylene glycol)

Brautigam, C.A.; Wynn, R.Max.; Chuang, J.L.; Naik, M.T.; Young, B.B.; Huang, T-Huang.; Chuang, D.T., 2011:
Structural and thermodynamic basis for weak interactions between dihydrolipoamide dehydrogenase and subunit-binding domain of the branched-chain alpha-ketoacid dehydrogenase complex

Wilderman, P.Ross.; Shah, M.B.; Jang, H-Hee.; Stout, C.David.; Halpert, J.R., 2014:
Structural and thermodynamic basis of (+)-α-pinene binding to human cytochrome P450 2B6

Aripirala, S.; Gonzalez-Pacanowska, D.; Oldfield, E.; Kaiser, M.; Amzel, L.Mario.; Gabelli, S.B., 2014:
Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates

Hernandez, D.Alejandro.; Domínguez, H., 2013:
Structural and thermodynamic behavior of alkane chains at the liquid/vapor interface

Gutierrez, L.J.; Enriz, R.D.; Baldoni, Héctor.A., 2011:
Structural and thermodynamic characteristics of the exosite binding pocket on the human BACE1: a molecular modeling approach

Makbul, C.; Constantinescu Aruxandei, D.; Hofmann, E.; Schwarz, D.; Wolf, E.; Herrmann, C., 2013:
Structural and thermodynamic characterization of Nore1-SARAH: a small, helical module important in signal transduction networks

Ando, N.; Barstow, B.; Baase, W.A.; Fields, A.; Matthews, B.W.; Gruner, S.M., 2008:
Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation

D.J.nge, N.; Hohlweg, W.; Garcia-Pino, A.; Respondek, M.; Buts, L.; Haesaerts, S.; Lah, J.; Zangger, K.; Loris, R., 2010:
Structural and thermodynamic characterization of Vibrio fischeri CcdB

Pokutta, S.; Choi, H-Jung.; Ahlsen, G.; Hansen, S.D.; Weis, W.I., 2014:
Structural and thermodynamic characterization of cadherin·β-catenin·α-catenin complex formation

Suárez, D.F.; Consuegra, J.; Trajano, V.C.; Gontijo, Sávio.M.L.; Guimarães, P.P.G.; Cortés, M.E.; Denadai, Ângelo.L.; Sinisterra, Rén.D., 2015:
Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions

Haikarainen, T.; Thanassoulas, A.; Stavros, P.; Nounesis, G.; Haataja, S.; Papageorgiou, A.C., 2011:
Structural and thermodynamic characterization of metal ion binding in Streptococcus suis Dpr

Lima, C.F.R.A.C.; Rocha, M.A.A.; Melo, Aé.; Gomes, Lígia.R.; Low, J.N.; Santos, Lís.M.N.B.F., 2011:
Structural and thermodynamic characterization of polyphenylbenzenes

Van Molle, I.; Moonens, K.; Garcia-Pino, A.; Buts, L.; D.K.rpel, M.; Wyns, L.; Bouckaert, J.; D.G.eve, H., 2009:
Structural and thermodynamic characterization of pre- and postpolymerization states in the F4 fimbrial subunit FaeG

Chrencik, J.E.; Patny, A.; Leung, I.K.; Korniski, B.; Emmons, T.L.; Hall, T.; Weinberg, R.A.; Gormley, J.A.; Williams, J.M.; Day, J.E.; Hirsch, J.L.; Kiefer, J.R.; Leone, J.W.; Fischer, H.David.; Sommers, C.D.; Huang, H-Chih.; Jacobsen, E.J.; Tenbrink, R.E.; Tomasselli, A.G.; Benson, T.E., 2010:
Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6

Müller, Jürgen.J.; Hannemann, F.; Schiffler, B.; Ewen, K.M.; Kappl, R.; Heinemann, U.; Bernhardt, R., 2011:
Structural and thermodynamic characterization of the adrenodoxin-like domain of the electron-transfer protein Etp1 from Schizosaccharomyces pombe

Wafer, L.N.; Tzul, F.O.; Pandharipande, P.P.; McCallum, S.A.; Makhatadze, G.I., 2015:
Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin

Kudo, S.; Caaveiro, J.M.M.; Miyafusa, T.; Goda, S.; Ishii, K.; Matsuura, T.; Sudou, Y.; Kodama, T.; Hamakubo, T.; Tsumoto, K., 2012:
Structural and thermodynamic characterization of the self-adhesive properties of human P-cadherin

Davies, C.W.; Paul, L.N.; Kim, M-Il.; Das, C., 2011:
Structural and thermodynamic comparison of the catalytic domain of AMSH and AMSH-LP: nearly identical fold but different stability

Zhao, Y.; Sun, L.; Muralidhara, B.K.; Kumar, S.; White, M.A.; Stout, C.David.; Halpert, J.R., 2007:
Structural and thermodynamic consequences of 1-(4-chlorophenyl)imidazole binding to cytochrome P450 2B4

Robinson, A.C.; Castañeda, C.A.; Schlessman, J.L.; García-Moreno, E.Bertrand., 2014:
Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein

Marsh, D., 2010:
Structural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes

Yin, Z.; Kelso, M.J.; Beck, J.L.; Oakley, A.J., 2014:
Structural and thermodynamic dissection of linear motif recognition by the E. coli sliding clamp

Proctor, E.A.; Ding, F.; Dokholyan, N.V., 2011:
Structural and thermodynamic effects of post-translational modifications in mutant and wild type Cu, Zn superoxide dismutase

Grigorovich, N.V.; Moiseenko, D.V.; Antipova, A.S.; Anokhina, M.S.; Belyakova, L.E.; Polikarpov, Y.N.; Korica, N.; Semenova, M.G.; Baranov, B.A., 2012:
Structural and thermodynamic features of covalent conjugates of sodium caseinate with maltodextrins underlying their functionality

Lara-González, S.; Estrella-Hernández, P.; Ochoa-Leyva, Aán.; Del Carmen Portillo-Téllez, Mía.; Caro-Gómez, L.A.; Figueroa-Angulo, E.E.; Salgado-Lugo, H.; Miranda Ozuna, Jús.F.T.; Ortega-López, J.; Arroyo, R.; Brieba, L.G.; Benítez-Cardoza, C.G., 2014:
Structural and thermodynamic folding characterization of triosephosphate isomerases from Trichomonas vaginalis reveals the role of destabilizing mutations following gene duplication

Jain, V.; Hilton, B.; Lin, B.; Jain, A.; MacKerell, A.D.; Zou, Y.; Cho, B.P., 2014:
Structural and thermodynamic insight into Escherichia coli UvrABC-mediated incision of cluster diacetylaminofluorene adducts on the NarI sequence

Leiros, H-Kirsti.S.; Flydal, M.Innselset.; Martinez, A., 2013:
Structural and thermodynamic insight into phenylalanine hydroxylase from the human pathogen Legionella pneumophila

Bocharov, E.V.; Mineev, K.S.; Goncharuk, M.V.; Arseniev, A.S., 2013:
Structural and thermodynamic insight into the process of "weak" dimerization of the ErbB4 transmembrane domain by solution NMR

Armstrong, A.; Hildreth, J.E.K.; Amzel, L.Mario., 2013:
Structural and thermodynamic insights into the recognition of native proteins by anti-peptide antibodies

Chong, S-Ho.; Lee, C.; Kang, G.; Park, M.; Ham, S., 2011:
Structural and thermodynamic investigations on the aggregation and folding of acylphosphatase by molecular dynamics simulations and solvation free energy analysis

Garg, I.; Deo, N., 2011:
Structural and thermodynamic properties of a linearly perturbed matrix model for RNA folding

Jedlovszky, Pál.; Pártay, Lívia.B.; Bartók, A.P.; Voloshin, V.P.; Medvedev, N.N.; Garberoglio, G.; Vallauri, R., 2008:
Structural and thermodynamic properties of different phases of supercooled liquid water

Sevastianova, T.N.; Bodensteiner, M.; Lisovenko, A.S.; Davydova, E.I.; Scheer, M.; Susliakova, T.V.; Krasnova, I.S.; Timoshkin, A.Y., 2013:
Structural and thermodynamic properties of molecular complexes of aluminum and gallium trihalides with bifunctional donor pyrazine: decisive role of Lewis acidity in 1D polymer formation

Disalvo, E.A.; Martini, M.F.; Bouchet, A.M.; Hollmann, A.; Frías, M.A., 2015:
Structural and thermodynamic properties of water-membrane interphases: significance for peptide/membrane interactions

van der Werf, R.; Wijmenga, S.S.; Heus, H.A.; Olsthoorn, Ré.C.L., 2014:
Structural and thermodynamic signatures that define pseudotriloop RNA hairpins

Zeilinger, M.; Fässler, T.F., 2014:
Structural and thermodynamic similarities of phases in the Li-Tt (Tt = Si, Ge) systems: redetermination of the lithium-rich side of the Li-Ge phase diagram and crystal structures of Li17Si4.0-xGex for x = 2.3, 3.1, 3.5, and 4 as well as Li4.1Ge

Loch, J.I.; Polit, A.; Bonarek, P.; Olszewska, D.; Kurpiewska, K.; Dziedzicka-Wasylewska, M.; Lewiński, K., 2012:
Structural and thermodynamic studies of binding saturated fatty acids to bovine β-lactoglobulin

Shmyt'ko, I.M.; Jiménez-Riobóo, R.J.; Hassaine, M.; Ramos, M.A., 2011:
Structural and thermodynamic studies of n-butanol

Martino, L.; Virno, A.; Pagano, B.; Virgilio, A.; D.M.cco, S.; Galeone, A.; Giancola, C.; Bifulco, G.; Mayol, L.; Randazzo, A., 2007:
Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4

Camargo, A.I.; Wiggers, H.J.; Damalio, J.C.P.; Araujo, A.P.U.; Ribichich, K.F.; de Camargo, P.C., 2014:
Structural and thermodynamic studies of two centrin isoforms from Blastocladiella emersonii upon calcium binding

Hazra, S.; Suresh Kumar, G., 2015:
Structural and thermodynamic studies on the interaction of iminium and alkanolamine forms of sanguinarine with hemoglobin

Tian, G.; Teat, S.J.; Rao, L., 2014:
Structural and thermodynamic study of the complexes of Nd(III) with N,N,N',N'-tetramethyl-3-oxa-glutaramide and the acid analogues

Martínez Casado, F.J.; Ramos Riesco, M.; García Pérez, M.V.; Redondo, M.I.; López-Andrés, S.; Rodríguez Cheda, J.A., 2010:
Structural and thermodynamic study on short metal alkanoates: lithium propanoate and pentanoate

Lukšič, M.; Hribar-Lee, B.; Vlachy, V.; Pizio, O., 2013:
Structural and thermodynamical properties of charged hard spheres in a mixture with core-softened model solvent

Cao, Z.; Liu, L.; Wu, P.; Wang, J., 2011:
Structural and thermodynamics characters of isolated α-syn12 peptide: long-time temperature replica-exchange molecular dynamics in aqueous solution

Schnurr, S.; Wiedwald, U.; Ziemann, P.; Verchenko, V.Y.; Shevelkov, A.V., 2013:
Structural and thermoelectric properties of TMGa3 (TM = Fe, Co) thin films

Lopera, D.; Naranjo, T.W.; Cruz, O.G.; Restrepo, A.; Cano, L.Elena.; Lenzi, H.Leonel., 2011:
Structural and topographic dynamics of pulmonary histopathology and local cytokine profiles in Paracoccidioides brasiliensis conidia-infected mice

Kaseman, D.C.; Hung, I.; Gan, Z.; Aitken, B.; Currie, S.; Sen, S., 2014:
Structural and topological control on physical properties of arsenic selenide glasses

Fourré, I.; Bergès, J.; Houée-Levin, C., 2010:
Structural and topological studies of methionine radical cations in dipeptides: electron sharing in two-center three-electron bonds

Lee, M.; Lipfert, J.; Sanchez, H.; Wyman, C.; Dekker, N.H., 2013:
Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament

Anderson, O.D.; Coleman-Derr, D.; Gu, Y.Q.; Heath, S., 2010:
Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme

Sava, M-M.; Boulocher, C.; Matei, C.I.; Munteanu, B.; Schramme, M.; Viguier, E.; Roger, T.; Berthier, Y.; Blanchin, M-G.; Trunfio-Sfarghiu, A-M., 2014:
Structural and tribological study of healthy and biomimetic SF

Gonçalves, L.A.; Boldrini, S.C.; Capote, T.S.O.; Binotti, C.B.; Azeredo, R.A.; Martini, D.T.; Rosenberg, B.; Bautz, W.G.; Liberti, E.A., 2009:
Structural and ultra-structural features of the first mandibular molars of young rats submitted to pre and postnatal protein deficiencies

Cordeiro, B.A.; Tibúrcio, V.Hugo.S.; Hallwass, M.; Paes, H.C.; Ribeiro, B.M.; Báo, Sônia.N., 2008:
Structural and ultrastructural alterations of Malpighian tubules of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) larvae infected with different Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) recombinant viruses

Hernández-Fonseca, J.P.; Rincón, J.; Pedreañez, A.; Viera, N.; Arcaya, Jé.L.; Carrizo, E.; Mosquera, Jús., 2009:
Structural and ultrastructural analysis of cerebral cortex, cerebellum, and hypothalamus from diabetic rats

Saouter, E.; L.M.nn, R.; Boudou, A.; Ribeyre, F., 1991:
Structural and ultrastructural analysis of gills and gut of Hexagenia rigida nymphs (ephemeroptera) in relation to contamination mechanisms

Maia, F.C.L.; McCall, J.W.; Silva, V.A.; Peixoto, C.A.; Supakorndej, P.; Supakorndej, N.; Alves, L.C., 2012:
Structural and ultrastructural changes in the lungs of cats Felis catus (Linnaeus, 1758) experimentally infected with D. immitis (Leidy, 1856)

Roy, B.Chandra.; Ando, M.; Itoh, T.; Tsukamasa, Y., 2012:
Structural and ultrastructural changes of full-cycle cultured Pacific bluefin tuna (Thunnus orientalis) muscle slices during chilled storage

Moreira, J.; Araújo, Vícius.Albano.; Báo, Sônia.Nair.; Lino-Neto, Jé., 2010:
Structural and ultrastructural characteristics of male reproductive tract and spermatozoa in two Cryptinae species (Hymenoptera: Ichneumonidae)

Fiorillo, B.S.; Lino-Neto, J.; Báo, S.N., 2008:
Structural and ultrastructural characterization of male reproductive tracts and spermatozoa in fig wasps of the genus Pegoscapus (Hymenoptera, Chalcidoidea)

Corradi, L.S.; Jesus, M.M.; Fochi, R.A.; Vilamaior, P.S.L.; Justulin, L.A.; Góes, R.M.; Felisbino, Sérgio.L.; Taboga, São.R., 2013:
Structural and ultrastructural evidence for telocytes in prostate stroma

da Silva Neto, I.D., 1993:
Structural and ultrastructural observations of the ciliate Phacodinium metchnicoffi certes, 1891 (Heterotrichea, Phacodiniida)

Almášiová, V.; Holovská, Kína.; Cigánková, V.; Račeková, Eö.; Fabianová, K.; Martončíková, M., 2014:
Structural and ultrastructural study of rat testes influenced by electromagnetic radiation

Almasiova, V.; Holovska, K.; Tarabova, L.; Cigankova, V.; Lukacinova, A.; Nistiar, F., 2012:
Structural and ultrastructural study of the rabbit testes exposed to carbamate insecticide

Mukherjee, D.; Saha, R.Prasad.; Chakrabarti, P., 2009:
Structural and unfolding features of HlyT, a tetrameric LysR type transcription regulator of Vibrio cholerae

Singh, B.P.; Parchur, A.K.; Singh, R.K.; Ansari, A.A.; Singh, P.; Rai, S.B., 2013:
Structural and up-conversion properties of Er3+ and Yb3+ co-doped Y2Ti2O7 phosphors

Matsuoka, T.; Fujihisa, H.; Hirao, N.; Ohishi, Y.; Mitsui, T.; Masuda, R.; Seto, M.; Yoda, Y.; Shimizu, K.; Machida, A.; Aoki, K., 2011:
Structural and valence changes of europium hydride induced by application of high-pressure H₂

Schwab, G.; Stern, D.; Stalke, D., 2008:
Structural and variable-temperature NMR studies of 9-diisopropylphosphanylanthracenes and 9,10-bis(diisopropylphosphanyl)anthracenes and their oxidation products

Almeida, H.A.; Bártolo, P.J., 2012:
Structural and vascular analysis of tissue engineering scaffolds, Part 1: Numerical fluid analysis

Almeida, H.A.; Bártolo, P.J., 2012:
Structural and vascular analysis of tissue engineering scaffolds, Part 2: Topology optimisation

Raschi, A.B.; Romano, E.; Benavente, A.M.; Ben Altabef, A.; Tuttolomondo, M.E., 2010:
Structural and vibrational analysis of thymoquinone

do Nascimento, G.M.; Kobata, P.Y.G.; Temperini, M.L.A., 2008:
Structural and vibrational characterization of polyaniline nanofibers prepared from interfacial polymerization

Maczka, M.; Pietraszko, A.; Paraguassu, W.; Filho, A.G.Souza.; Freire, P.T.C.; Filho, J.Mendes.; Hanuza, J., 2009:
Structural and vibrational properties of K(3)Fe(MoO(4))(2)(Mo(2)O(7))-a novel layered molybdate

Schnaars, D.D.; Wilson, R.E., 2013:
Structural and vibrational properties of U(VI)O2Cl4(2-) and Pu(VI)O2Cl4(2-) complexes

Pagliai, M.; Bonazzi, P.; Bindi, L.; Muniz-Miranda, M.; Cardini, G., 2011:
Structural and vibrational properties of arsenic sulfides: alacranite (As8S9)

Johansson, P.; Grondin, J.; Lassègues, J-Claude., 2011:
Structural and vibrational properties of diglyme and longer glymes

Dymińska, L.; Węgliński, Z.; Gągor, A.; Hanuza, J., 2013:
Structural and vibrational properties of imidazo[4,5-c]pyridine, a structural unit in natural products

Huang, Q-Wei.; Zhang, J.; Berlie, A.; Qin, Z-Xing.; Zhao, X-Miao.; Zhang, J-Bo.; Tang, L-Yun.; Liu, J.; Zhang, C.; Zhong, G-Hua.; Lin, H-Qing.; Chen, X-Jia., 2013:
Structural and vibrational properties of phenanthrene under pressure

Arjunan, V.; Marchewka, M.K.; Raj, A.; Yang, H.; Mohan, S., 2015:
Structural and vibrational spectral investigations of melaminium glutarate monohydrate by FTIR, FT-Raman and DFT methods

Arjunan, V.; Kalaivani, M.; Marchewka, M.K.; Mohan, S., 2013:
Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

Kecel-Gunduz, S.; Celik, S.; Ozel, A.E.; Akyuz, S., 2016:
Structural and vibrational spectroscopic elucidation of sulpiride in solid state

Jaiswal, S.; Kushwaha, A.; Prasad, R.; Prasad, R.L.; Yadav, R.A., 2009:
Structural and vibrational studies of molecular conductors using quantum mechanical methods: 1,3-Dithiole-2-thione, 1,3-dithiole-2-one, 1,3-dioxole-2-one and 1,3-dioxole-2-thione

de Freitas, L.Viana.; da Silva, C.C.P.; Ellena, J.; Costa, L.Antônio.Sodré.; Rey, Nás.A., 2014:
Structural and vibrational study of 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone--a potential metal-protein attenuating compound (MPAC) for the treatment of Alzheimer's disease

Courcot, B.; Bridgeman, A.J., 2010:
Structural and vibrational study of [Mo7O24]6- and [W7O24]6-

Celik, S.; Kecel-Gunduz, S.; Ozel, A.E.; Akyuz, S., 2016:
Structural and vibrational study of primidone based on monomer and dimer calculations

Rentschler, I.; Gschwind, M.; Brettel, H.; Osman, E.; Caelli, T., 2008:
Structural and view-specific representations for the categorization of three-dimensional objects

Lieleg, O.; Schmoller, K.M.; Purdy Drew, K.R.; Claessens, M.M.A.E.; Semmrich, C.; Zheng, L.; Bartles, J.R.; Bausch, A.R., 2010:
Structural and viscoelastic properties of actin networks formed by espin or pathologically relevant espin mutants

Schmoller, K.M.; Lieleg, O.; Bausch, A.R., 2009:
Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks

Xu, L.; Adali, Tülay.; Schretlen, D.; Pearlson, G.; Calhoun, V.D., 2011:
Structural angle and power images reveal interrelated gray and white matter abnormalities in schizophrenia

van der Hooft, J.J.J.; Akermi, M.; Ünlü, F.Yelda.; Mihaleva, V.; Roldan, V.Gomez.; Bino, R.J.; de Vos, R.C.H.; Vervoort, J., 2013:
Structural annotation and elucidation of conjugated phenolic compounds in black, green, and white tea extracts

Anand, P.; Sankaran, S.; Mukherjee, S.; Yeturu, K.; Laskowski, R.; Bhardwaj, A.; Bhagavat, R.; Brahmachari, S.K.; Chandra, N., 2012:
Structural annotation of Mycobacterium tuberculosis proteome

Coleman, S.J.; Zeng, Z.; Wang, K.; Luo, S.; Khrebtukova, I.; Mienaltowski, M.J.; Schroth, G.P.; Liu, J.; MacLeod, J.N., 2015:
Structural annotation of equine protein-coding genes determined by mRNA sequencing

Aggarwal, M.; Boone, C.D.; Kondeti, B.; McKenna, R., 2013:
Structural annotation of human carbonic anhydrases

Zhou, B.; Kobayashi, A.; Okano, Y.; Cui, H.; Graf, D.; Brooks, J.S.; Nakashima, T.; Aoyagi, S.; Nishibori, E.; Sakata, M.; Kobayashi, H., 2009:
Structural anomalies associated with antiferromagnetic transition of single-component molecular metal [Au(tmdt)2

Bromley, B.; Shipp, T.D.; Benacerraf, B.R., 2010:
Structural anomalies in early embryonic death: a 3-dimensional pictorial essay

Krekelberg, W.P.; Mittal, J.; Ganesan, V.; Truskett, T.M., 2008:
Structural anomalies of fluids: origins in second and higher coordination shells

Guzmán-Afonso, C.; González-Silgo, C.; Torres, M.E.; Matesanz, E.; Mujica, A., 2013:
Structural anomalies related to changes in the conduction mechanisms of α-Sm2(MoO4)3

Tessa, C.; Michelucci, R.; Nobile, C.; Giannelli, M.; Della Nave, R.; Testoni, S.; Bianucci, D.; Tinuper, P.; Bisulli, F.; Sofia, V.; D.F.o, M.R.; Giallonardo, A.T.; Tassinari, C.A.; Mascalchi, M., 2007:
Structural anomaly of left lateral temporal lobe in epilepsy due to mutated LGI1

Cochran, J.K.; Bjerregaard, B., 2012 :
Structural anomie and crime: a cross-national test

Mouret, Sébastien., 2013:
Structural anthropology of bird flu: about Un monde grippé by Frédéric Keck

O'Connor, P.M.; Evans, R.G., 2010:
Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem?

Echeverria, C.; Santibañez, J.Francisco.; Donoso-Tauda, O.; Escobar, C.A.; Ramirez-Tagle, R., 2009:
Structural antitumoral activity relationships of synthetic chalcones

Haberland, A.; Zaitsev, S.; Waldöfner, N.; Erdmann, B.; Böttger, M.; Henke, W., 2008:
Structural appearance of linker histone H1/siRNA complexes

Lafarge, F.; Descombes, X.; Zerubia, J.; Pierrot-Deseilligny, M., 2009:
Structural approach for building reconstruction from a single DSM

Toriumi, D.M., 2002:
Structural approach to primary rhinoplasty

Masson, P.; Nachon, F.; Lockridge, O., 2010:
Structural approach to the aging of phosphylated cholinesterases

Parkhurst, J.O., 2015:
Structural approaches for prevention of sexually transmitted HIV in general populations: definitions and an operational approach

Nury, H.; Blesneac, I.; Ravaud, S.; Pebay-Peyroula, E., 2010:
Structural approaches of the mitochondrial carrier family

Gupta, G.Rao.; Parkhurst, J.O.; Ogden, J.A.; Aggleton, P.; Mahal, A., 2008:
Structural approaches to HIV prevention

Lieberman, L.; Golden, S.D.; Earp, J.Anne.L., 2014:
Structural approaches to health promotion: what do we need to know about policy and environmental change?

Parker, L.J.; Ascher, D.B.; Gao, C.; Miles, L.A.; Harris, H.H.; Parker, M.W., 2013:
Structural approaches to probing metal interaction with proteins

Orban, T.; Jastrzebska, B.; Palczewski, K., 2014:
Structural approaches to understanding retinal proteins needed for vision

Kravets, E.A.; Berezhnaia, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskiĭ, D.M., 2012:
Structural architectonics of apical root meristems in coherence with the quantitative assessment of its damage by radiation

Grüber, A.; Manimekalai, M.S.S.; Preiser, P.R.; Grüber, G., 2013:
Structural architecture and interplay of the nucleotide- and erythrocyte binding domain of the reticulocyte binding protein Py235 from Plasmodium yoelii

Sethe Burgie, E.; Bingman, C.A.; Makino, S-Ichi.; Wesenberg, G.E.; Pan, X.; Fox, B.G.; Phillips, G.N., 2011:
Structural architecture of Galdieria sulphuraria DCN1L

Gamazon, E.R.; Cox, N.J.; Davis, L.K., 2015:
Structural architecture of SNP effects on complex traits

Qiao, Q.; Yang, C.; Zheng, C.; Fontán, L.; David, L.; Yu, X.; Bracken, C.; Rosen, M.; Melnick, A.; Egelman, E.H.; Wu, H., 2013:
Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly

Sosa, S., 2015:
Structural architecture of the social network of a non-human primate (Macaca sylvanus): a study of its topology in La Forêt des Singes, Rocamadour

Dempski, R.E.; Lustig, J.; Friedrich, T.; Bamberg, E., 2007:
Structural arrangement and conformational dynamics of the gamma subunit of the Na+/K+-ATPase

Hosoyamada, Y.; Sakai, T., 2013:
Structural arrangement of collagen fibrils in the periarterial connective tissue of the kidney: their functional relevance as a structural stabilizer against arterial pressure

Benedicto, H.G.; Bombonato, P.P.; Macchiarelli, G.; Stifano, G.; Prado, I.M.M., 2012:
Structural arrangement of the cardiac collagen fibers of healthy and diabetic dogs

Dixit, M.; Kim, S.; Matthews, G.F.; Erreger, K.; Galli, A.; Cobb, C.E.; Hustedt, E.J.; Beth, A.H., 2013:
Structural arrangement of the intracellular Ca2+ binding domains of the cardiac Na+/Ca2+ exchanger (NCX1.1): effects of Ca2+ binding

Oancea, G.; O'Mara, M.L.; Bennett, W.F.Drew.; Tieleman, D.Peter.; Abele, R.; Tampé, R., 2009:
Structural arrangement of the transmission interface in the antigen ABC transport complex TAP

Bernoth, E-Maria., 2008:
Structural arrangements in Australia for managing aquatic animal disease emergencies

Søndergaard, C.R.; Garrett, A.Elizabeth.; Carstensen, T.; Pollastri, G.; Nielsen, J.Erik., 2009:
Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions

Nakano, S.; Mashima, T.; Matsugami, A.; Inoue, M.; Katahira, M.; Morii, T., 2011:
Structural aspects for the recognition of ATP by ribonucleopeptide receptors

Kaatze, U.; Behrends, R.; von Roden, K., 2010 :
Structural aspects in the dielectric properties of pentyl alcohols

Hansen, K.B.; Yuan, H.; Traynelis, S.F., 2007:
Structural aspects of AMPA receptor activation, desensitization and deactivation

Sohn, Y-H.; Oh, H-B.; Heo, Y-S.; Kwon, O-J., 2008:
Structural aspects of B*4617 molecule, a novel HLA-B*46 allele identified by sequence-based typing

Hu, J.; Thor, D.; Zhou, Y.; Liu, T.; Wang, Y.; McMillin, S.M.; Mistry, R.; Challiss, R.A.John.; Costanzi, S.; Wess, Jürgen., 2012:
Structural aspects of M₃ muscarinic acetylcholine receptor dimer formation and activation

Ling, S.H.M.; Cheng, Z.; Song, H., 2009:
Structural aspects of RNA helicases in eukaryotic mRNA decay

Fernandes, H.; Franklin, E.; Recacha, R.; Houdusse, A.; Goud, B.; Khan, A.R., 2009:
Structural aspects of Rab6-effector complexes

Datta, P.P.; Wilson, D.N.; Kawazoe, M.; Swami, N.K.; Kaminishi, T.; Sharma, M.R.; Booth, T.M.; Takemoto, C.; Fucini, P.; Yokoyama, S.; Agrawal, R.K., 2007:
Structural aspects of RbfA action during small ribosomal subunit assembly

Choi, H-J.; Weis, W.I., 2004:
Structural aspects of adherens junctions and desmosomes

Siddiqui, S.; Martin, J.G., 2008:
Structural aspects of airway remodeling in asthma

Salvatella, X., 2013:
Structural aspects of amyloid formation

Miller, M.C.; Ribeiro, Jão.P.; Roldós, V.; Martín-Santamaría, S.; Cañada, F.Javier.; Nesmelova, I.A.; André, S.; Pang, M.; Klyosov, A.A.; Baum, L.G.; Jiménez-Barbero, Jús.; Gabius, H-Joachim.; Mayo, K.H., 2012:
Structural aspects of binding of α-linked digalactosides to human galectin-1

van Hemmen, J.Leo.; Schüz, A.; Aertsen, A.; Braitenberg, V., 2015:
Structural aspects of biological cybernetics: Valentino Braitenberg, neuroanatomy, and brain function

Stathopulos, P.B.; Ikura, M., 2014:
Structural aspects of calcium-release activated calcium channel function

Phan, S.; Hawley, A.; Mulet, X.; Waddington, L.; Prestidge, C.A.; Boyd, B.J., 2014:
Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and Cryo-TEM

Niemi, M.H.; Rytkönen-Nissinen, M.; Jänis, J.; Virtanen, T.; Rouvinen, J., 2014:
Structural aspects of dog allergies: the crystal structure of a dog dander allergen Can f 4

Taoka, K-Ichiro.; Tsuji, H.; Shimamoto, K., 2011:
Structural aspects of florigen to understand the molecular mechanism of flowering

Crameri, R., 2015:
Structural aspects of fungal allergens

Cantu', L.; Corti, M.; Brocca, P.; Del Favero, E., 2008:
Structural aspects of ganglioside-containing membranes

Hewage, C.M.; Venneti, K.C., 2013:
Structural aspects of gut peptides with therapeutic potential for type 2 diabetes

Bera, M.K.; Ellis, R.J.; Burton-Pye, B.P.; Antonio, M.R., 2014:
Structural aspects of heteropolyacid microemulsions

Duquesnoy, R.J.; Marrari, M.; Mulder, A.; Claas, F.H.J.; Mostecki, J.; Balazs, I., 2012:
Structural aspects of human leukocyte antigen class I epitopes detected by human monoclonal antibodies

Niemer, W.T.; Magoun, H.W., 2011:
Structural aspects of inhibitory and facilitatory reticulospinal connections

Liddington, R.C., 2014:
Structural aspects of integrins

Hassel, O., 1970:
Structural aspects of interatomic charge-transfer bonding

Rezler, M.; Żołek, T.; Wolska, I.; Maciejewska, D., 2015:
Structural aspects of intermolecular interactions in the solid state of 1,4-dibenzylpiperazines bearing nitrile or amidine groups

Toyoshima, C., 2008:
Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum

Shushkov, P.; Tzvetanov, S.; Velinova, M.; Ivanova, A.; Tadjer, A., 2010:
Structural aspects of lipid monolayers: computer simulation analyses

Leeman, M.; Brasile, G.; Gelens, E.; Vries, T.; Kaptein, B.; Kellogg, R., 2008:
Structural aspects of nucleation inhibitors for diastereomeric resolutions and the relationship to dutch resolution

Szilágyi, László.; Pristovsek, P., 2007:
Structural aspects of peptides with immunomodulating activity

Padovan, L.; Scocchi, M.; Tossi, A., 2010:
Structural aspects of plant antimicrobial peptides

McGinnety, J.A.; Doedens, R.J.; Ibers, J.A., 1967:
Structural aspects of reversible molecular oxygen uptake

Zhou, Z.; Song, X.; Berezov, A.; Li, B.; Greene, M.I., 2010:
Structural aspects of the FOXP3 regulatory complex as an immunopharmacological target

Wisniewska-Becker, A.; Nawrocki, G.; Duda, M.; Subczynski, W.K., 2012:
Structural aspects of the antioxidant activity of lutein in a model of photoreceptor membranes

Mahony, J.; van Sinderen, D., 2013:
Structural aspects of the interaction of dairy phages with their host bacteria

Lusa, Lícia.Gori.; Lemos-Marini, S.Helena.Valente.de.; Soardi, F.Caroline.; Ferraz, L.Fabio.Caldas.; Guerra-Júnior, G.; Mello, M.Palandi.de., 2011:
Structural aspects of the p.P222Q homozygous mutation of HSD3B2 gene in a patient with congenital adrenal hyperplasia

Carnevale, V.; Raugei, S., 2010:
Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

Kang, T.Siang.; Stevens, R.C., 2010:
Structural aspects of therapeutic enzymes to treat metabolic disorders

Kumar, V.K.; Farley, F., 2010:
Structural aspects of three hypnotizability scales: smallest space analysis

Shpanchenko, O.V.; Golovin, A.V.; Bugaeva, E.Y.; Isaksson, L.A.; Dontsova, O.A., 2010 :
Structural aspects of trans-translation

Fu, Q-Shan.; Song, A-Xin.; Hu, H-Yu., 2013:
Structural aspects of ubiquitin binding specificities

Huang, Y-Xi.; Liu, B.; Wen, L.; Zhang, X.; Sun, W.; Lin, J.; Huang, C-Zuo.; Zhuang, R-Chuan.; Mi, J-Xiao.; Zhao, J-Tai., 2014:
Structural assembly from phosphate to germanophosphate by applying germanate as a binder

Zimmerman, E.S.; Schulman, B.A.; Zheng, N., 2011:
Structural assembly of cullin-RING ubiquitin ligase complexes

Berlin, K.; O'Leary, D.P.; Fushman, D., 2010:
Structural assembly of molecular complexes based on residual dipolar couplings

Cheng, T.M.K.; Blundell, T.L.; Fernandez-Recio, J., 2008:
Structural assembly of two-domain proteins by rigid-body docking

Gourni, E.; Bouziotis, P.; Benaki, D.; Loudos, G.; Xanthopoulos, S.; Paravatou-Petsotas, M.; Mavri-Vavagianni, M.; Pelecanou, M.; Archimandritis, S.C.; Varvarigou, A.D., 2009:
Structural assessment and biological evaluation of two N3S bombesin derivatives

Lima, L.H.; Cella, W.; Greenstein, V.C.; Wang, N-Kai.; Busuioc, M.; Smith, R.Theodore.; Yannuzzi, L.A.; Tsang, S.H., 2009:
Structural assessment of hyperautofluorescent ring in patients with retinitis pigmentosa

Gan, Y.X., 2012:
Structural assessment of nanocomposites

Teng, S.; Srivastava, A.K.; Schwartz, C.E.; Alexov, E.; Wang, L., 2011:
Structural assessment of the effects of amino acid substitutions on protein stability and protein protein interaction

Zhao, X.; Chen, X.; Yang, G-Fu.; Zhan, C-Guo., 2010:
Structural assignment of 6-oxy purine derivatives through computational modeling, synthesis, X-ray diffraction, and spectroscopic analysis

Andrews, K.G.; Frampton, C.S.; Spivey, A.C., 2014:
Structural assignment of a bis-cyclopentenyl-β-cyanohydrin formed via alkene metathesis from either a triene or a tetraene precursor

Biemann, L.; Häber, T.; Maydt, D.; Schaper, K.; Kleinermanns, K., 2008:
Structural assignment of adenine aggregates in CDCl3

Kumai, R.; Horiuchi, S.; Sagayama, H.; Arima, T-Hisa.; Watanabe, M.; Noda, Y.; Tokura, Y., 2007:
Structural assignment of polarization in hydrogen-bonded supramolecular ferroelectrics

Devereux, M.; Meuwly, M., 2009:
Structural assignment of spectra by characterization of conformational substates in bound MbCO

Boggara, M.Babu.; Mihailescu, M.; Krishnamoorti, R., 2013:
Structural association of nonsteroidal anti-inflammatory drugs with lipid membranes

Stoppiello, L.A.; Mapp, P.I.; Wilson, D.; Hill, R.; Scammell, B.E.; Walsh, D.A., 2015:
Structural associations of symptomatic knee osteoarthritis

Liu, Y.; Balériaux, D.; Kavec, M.; Metens, T.; Absil, J.; Denolin, V.; Pardou, A.; Avni, F.; Van Bogaert, P.; Aeby, A., 2010:
Structural asymmetries in motor and language networks in a population of healthy preterm neonates at term equivalent age: a diffusion tensor imaging and probabilistic tractography study

Dubois, J.; Hertz-Pannier, L.; Cachia, A.; Mangin, J.F.; L.B.han, D.; Dehaene-Lambertz, G., 2008:
Structural asymmetries in the infant language and sensori-motor networks

Dubois, J.; Benders, M.; Lazeyras, F.; Borradori-Tolsa, C.; Leuchter, R.Ha-Vinh.; Mangin, J.F.; Hüppi, P.S., 2010:
Structural asymmetries of perisylvian regions in the preterm newborn

Aparicio, D.; Pérez-Luque, R.; Carpena, X.; Díaz, M.; Ferrer, J.C.; Loewen, P.C.; Fita, I., 2013:
Structural asymmetry and disulfide bridges among subunits modulate the activity of human malonyl-CoA decarboxylase

Thevenot, Jérôme.; Pulkkinen, P.; Kuhn, V.; Eckstein, F.; Jämsä, T., 2011:
Structural asymmetry between the hips and its relation to experimental fracture type

Tsai, C-Ju.; Khafizov, K.; Hakulinen, J.; Forrest, L.R.; Forrest, L.R.; Krämer, R.; Kühlbrandt, W.; Ziegler, C., 2011:
Structural asymmetry in a trimeric Na+/betaine symporter, BetP, from Corynebacterium glutamicum

Chen, L.; Shi, K.; Yin, Z.; Aihara, H., 2013:
Structural asymmetry in the Thermus thermophilus RuvC dimer suggests a basis for sequential strand cleavages during Holliday junction resolution

Lavery, L.A.; Partridge, J.R.; Ramelot, T.A.; Elnatan, D.; Kennedy, M.A.; Agard, D.A., 2014:
Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism

Pfoh, R.; Li, A.; Chakrabarti, N.; Payandeh, J.; Pomès, Régis.; Pai, E.F., 2013:
Structural asymmetry in the magnesium channel CorA points to sequential allosteric regulation

Hou, J.; Xu, J.; Liu, M.; Zhao, R.; Luo, H-Bin.; Ke, H., 2011:
Structural asymmetry of phosphodiesterase-9, potential protonation of a glutamic acid, and role of the invariant glutamine

Kang, H.Jin.; Lee, Y-mi.; Bae, K-Hee.; Kim, S.Jun.; Chung, S.J., 2013:
Structural asymmetry of procaspase-7 bound to a specific inhibitor

French, R.L.; Gupta, N.; Copeland, P.R.; Simonović, M., 2014:
Structural asymmetry of the terminal catalytic complex in selenocysteine synthesis

Okamoto, M.; Tsuzuki, D.; Clowney, L.; Dan, H.; Singh, A.K.; Dan, I., 2009:
Structural atlas-based spatial registration for functional near-infrared spectroscopy enabling inter-study data integration

Lampi, M.C.; Wu, X.; Schilke, K.F.; McGuire, J., 2013:
Structural attributes affecting peptide entrapment in PEO brush layers

Sunitha, M.S.; Nair, A.G.; Charya, A.; Jadhav, K.; Mukhopadhyay, S.; Sowdhamini, R., 2013:
Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins

Peters, Börn-Hendrik.; Molnár, F.; Ketolainen, J., 2015:
Structural attributes of model protein formulations prepared by rapid freeze-drying cycles in a microscale heating stage

Kravatskaya, G.I.; Chechetkin, V.R.; Kravatsky, Y.V.; Tumanyan, V.G., 2013:
Structural attributes of nucleotide sequences in promoter regions of supercoiling-sensitive genes: how to relate microarray expression data with genomic sequences

Tennakoon, K.U.; Bolin, J.F.; Musselman, L.J.; Maass, E., 2007:
Structural attributes of the hypogeous holoparasite Hydnora triceps Drege & Meyer (Hydnoraceae)

Yang, S.; Wu, X.; Xu, W.; Ye, S.; Liu, X.; Liu, X., 2011:
Structural augmentation with biomaterial-loaded allograft threaded cage for the treatment of femoral head osteonecrosis

Maestro, B.; Santiveri, C.M.; Jiménez, M.Angeles.; Sanz, Jús.M., 2011:
Structural autonomy of a β-hairpin peptide derived from the pneumococcal choline-binding protein LytA

Tian, M-Ling.; Zhong, X-Mei.; Zhagn, Y-Xia.; Yu, Y-Yuan.; Pang, R.; Zhou, L.; Song, B., 2018:
Concentrations and Health Risk Assessments of Heavy Metal Contents in Soil and Rice of Mine Contaminated Areas

Sánchez-Azqueta, A.; Musumeci, Mías.A.; Martínez-Júlvez, M.; Ceccarelli, E.A.; Medina, M., 2013:
Structural backgrounds for the formation of a catalytically competent complex with NADP(H) during hydride transfer in ferredoxin-NADP(+) reductases

Caselli, M.; Vaira, G.; Calo, G.; Papini, F.; Holton, J.; Vaira, D., 2012:
Structural bacterial molecules as potential candidates for an evolution of the classical concept of probiotics

Zuluaga, S.; Liu, L-Hong.; Shafiq, N.; Rupich, S.M.; Veyan, J-François.; Chabal, Y.J.; Thonhauser, T., 2014:
Structural band-gap tuning in g-C3N4

Lu, S.; Gong, Y.; Iwai, S.; Stein, K.M.; Lerman, B.B.; Christini, D.J., 2007:
Structural barrier increases QT-peak dispersion in swine left ventricle in vivo

Amon, J.J.; Kasambala, T., 2010:
Structural barriers and human rights related to HIV prevention and treatment in Zimbabwe

Saigal, N.; Narayan, R., 2016:
Structural barriers at the workplace for employees with vision and locomotor disabilities in New Delhi, India

Schulte, B.; Schmidt, C.Sybille.; Kuhnigk, O.; Schäfer, I.; Fischer, B.; Wedemeyer, H.; Reimer, J., 2013:
Structural barriers in the context of opiate substitution treatment in Germany--a survey among physicians in primary care

Kagee, A.; Remien, R.H.; Berkman, A.; Hoffman, S.; Campos, L.; Swartz, L., 2011:
Structural barriers to ART adherence in Southern Africa: Challenges and potential ways forward

Coetzee, B.; Kagee, A.; Vermeulen, N., 2011:
Structural barriers to adherence to antiretroviral therapy in a resource-constrained setting: the perspectives of health care providers

Kratzer, J., 2014:
Structural barriers to coping with type 1 diabetes mellitus in Ghana: experiences of diabetic youth and their families

King, E.J.; Maman, S., 2014:
Structural barriers to receiving health care services for female sex workers in Russia

Tran, D.Anh.; Shakeshaft, A.; Ngo, A.Duc.; Rule, J.; Wilson, D.P.; Zhang, L.; Doran, C., 2013:
Structural barriers to timely initiation of antiretroviral treatment in Vietnam: findings from six outpatient clinics

VanderWyst, S.S.; Perkumas, K.M.; Read, A.Thomas.; Overby, D.R.; Stamer, W.Daniel., 2011:
Structural basement membrane components and corresponding integrins in Schlemm's canal endothelia

Schmitt, E.; Galimand, M.; Panvert, M.; Courvalin, P.; Mechulam, Y., 2009:
Structural bases for 16 S rRNA methylation catalyzed by ArmA and RmtB methyltransferases

Fernandes, C.A.H.; Comparetti, E.J.; Borges, R.J.; Huancahuire-Vega, Són.; Ponce-Soto, L.Alberto.; Marangoni, S.; Soares, A.M.; Fontes, M.R.M., 2014:
Structural bases for a complete myotoxic mechanism: crystal structures of two non-catalytic phospholipases A2-like from Bothrops brazili venom

Thomas, V.L.; McReynolds, A.C.; Shoichet, B.K., 2010:
Structural bases for stability-function tradeoffs in antibiotic resistance

Aureli, L.; Gioia, M.; Cerbara, I.; Monaco, S.; Fasciglione, G.Francesco.; Marini, S.; Ascenzi, P.; Topai, A.; Coletta, M., 2008:
Structural bases for substrate and inhibitor recognition by matrix metalloproteinases

Mastrangelo, E.; Bollati, M.; Milani, M.; Selisko, B.; Peyrane, F.; Canard, B.; Grard, G.; de Lamballerie, X.; Bolognesi, M., 2007:
Structural bases for substrate recognition and activity in Meaban virus nucleoside-2'-O-methyltransferase

Gras, Séphanie.; Saulquin, X.; Reiser, J-Baptiste.; Debeaupuis, E.; Echasserieau, K.; Kissenpfennig, A.; Legoux, Fçois.; Chouquet, A.; L.G.rrec, M.; Machillot, P.; Neveu, Bérangère.; Thielens, N.; Malissen, B.; Bonneville, M.; Housset, D., 2009:
Structural bases for the affinity-driven selection of a public TCR against a dominant human cytomegalovirus epitope

Noujaim, S.F.; Stuckey, J.A.; Ponce-Balbuena, D.; Ferrer-Villada, T.; López-Izquierdo, A.; Pandit, S.V.; Sánchez-Chapula, Jé.A.; Jalife, Jé., 2011:
Structural bases for the different anti-fibrillatory effects of chloroquine and quinidine

Rosell, A.; Meury, M.; Álvarez-Marimon, E.; Costa, M.; Pérez-Cano, L.; Zorzano, A.; Fernández-Recio, J.; Palacín, M.; Fotiadis, D., 2014:
Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc

Kikani, C.K.; Antonysamy, S.A.; Bonanno, J.B.; Romero, R.; Zhang, F.Fred.; Russell, M.; Gheyi, T.; Iizuka, M.; Emtage, S.; Sauder, J.Michael.; Turk, B.E.; Burley, S.K.; Rutter, J., 2011:
Structural bases of PAS domain-regulated kinase (PASK) activation in the absence of activation loop phosphorylation

Reguera, J.; Santiago, César.; Mudgal, G.; Ordoño, D.; Enjuanes, L.; Casasnovas, Jé.M., 2012:
Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies

Croci, R.; Pezzullo, M.; Tarantino, D.; Milani, M.; Tsay, S-Chen.; Sureshbabu, R.; Tsai, Y-Jin.; Mastrangelo, E.; Rohayem, J.; Bolognesi, M.; Hwu, J.Ru., 2015:
Structural bases of norovirus RNA dependent RNA polymerase inhibition by novel suramin-related compounds

Benhamou, L.; Thibon, A.; Brelot, L.; Lachkar, M.; Mandon, D., 2013 :
Structural bases of oxygen-sensitivity in Fe(II) complexes with tripodal ligands. Steric effects, Lewis acidity and the role of ancillary ligands

Ma, B.; Xiang, Y.; An, L., 2011:
Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase

Voronkov, A.; Holsworth, D.D.; Waaler, J.; Wilson, S.R.; Ekblad, B.; Perdreau-Dahl, H.; Dinh, H.; Drewes, G.; Hopf, C.; Morth, J.P.; Krauss, S., 2013:
Structural basis and SAR for G007-LK, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor

Zhang, Y.; Ho, A.; Yue, J.; Kong, L.; Zhou, Z.; Wu, X.; Yang, F.; Liang, H., 2015:
Structural basis and anticancer properties of ruthenium-based drug complexed with human serum albumin

Yin, J.; Li, L.; Shaw, N.; Li, Y.; Song, J.Katherine.; Zhang, W.; Xia, C.; Zhang, R.; Joachimiak, A.; Zhang, H-Cheng.; Wang, L-Xi.; Liu, Z-Jie.; Wang, P., 2009:
Structural basis and catalytic mechanism for the dual functional endo-beta-N-acetylglucosaminidase A

Özen, Aşegül.; Lin, K-Hung.; Kurt Yilmaz, N.; Schiffer, C.A., 2015:
Structural basis and distal effects of Gag substrate coevolution in drug resistance to HIV-1 protease

Yang, L.; Hill, M.; Wang, M.; Panjikar, S.; Stöckigt, J., 2009:
Structural basis and enzymatic mechanism of the biosynthesis of C9- from C10-monoterpenoid indole alkaloids

Xiang, X.; Lee, C-Yin.; Li, T.; Chen, W.; Lou, J.; Zhu, C., 2012:
Structural basis and kinetics of force-induced conformational changes of an αA domain-containing integrin

Haikarainen, T.; Venkannagari, H.; Narwal, M.; Obaji, E.; Lee, H-Wei.; Nkizinkiko, Y.; Lehtiö, L., 2014:
Structural basis and selectivity of tankyrase inhibition by a Wnt signaling inhibitor WIKI4

Tse, H.; Kao, R.Y.T.; Wu, W.Lan.; Lim, W.W.L.; Chen, H.; Yeung, M.Yiu.; Woo, P.C.Y.; Sze, K-Hung.; Yuen, K-Yung., 2011:
Structural basis and sequence co-evolution analysis of the hemagglutinin protein of pandemic influenza A/H1N1 (2009) virus

Edelmann, M.J.; Iphöfer, A.; Akutsu, M.; Altun, M.; di Gleria, K.; Kramer, H.B.; Fiebiger, E.; Dhe-Paganon, S.; Kessler, B.M., 2008:
Structural basis and specificity of human otubain 1-mediated deubiquitination

Peuckert, F.; Miethke, M.; Albrecht, A.G.; Essen, L-Oliver.; Marahiel, M.A., 2009:
Structural basis and stereochemistry of triscatecholate siderophore binding by FeuA

Zeth, K.; Fokina, O.; Forchhammer, K., 2014:
Structural basis and target-specific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein

Dhruv, H.; Loftus, J.C.; Narang, P.; Petit, J.L.; Fameree, M.; Burton, J.; Tchegho, G.; Chow, D.; Yin, H.; Al-Abed, Y.; Berens, M.E.; Tran, N.L.; Meurice, N., 2014:
Structural basis and targeting of the interaction between fibroblast growth factor-inducible 14 and tumor necrosis factor-like weak inducer of apoptosis

Valiente-Gabioud, A.A.; Torres-Monserrat, V.; Molina-Rubino, L.; Binolfi, A.; Griesinger, C.; Fernández, C.O., 2013:
Structural basis behind the interaction of Zn²⁺ with the protein α-synuclein and the Aβ peptide: a comparative analysis

Chikwana, V.M.; Khanna, M.; Baskaran, S.; Tagliabracci, V.S.; Contreras, C.J.; DePaoli-Roach, A.; Roach, P.J.; Hurley, T.D., 2014:
Structural basis for 2'-phosphate incorporation into glycogen by glycogen synthase

Jaudzems, K.; Jia, X.; Yagi, H.; Zhulenkovs, D.; Graham, B.; Otting, G.; Liepinsh, E., 2013:
Structural basis for 5'-end-specific recognition of single-stranded DNA by the R3H domain from human Sμbp-2

Calabrese, M.F.; Rajamohan, F.; Harris, M.S.; Caspers, N.L.; Magyar, R.; Withka, J.M.; Wang, H.; Borzilleri, K.A.; Sahasrabudhe, P.V.; Hoth, L.R.; Geoghegan, K.F.; Han, S.; Brown, J.; Subashi, T.A.; Reyes, A.R.; Frisbie, R.K.; Ward, J.; Miller, R.A.; Landro, J.A.; Londregan, A.T.; Carpino, P.A.; Cabral, S.; Smith, A.C.; Conn, E.L.; Cameron, K.O.; Qiu, X.; Kurumbail, R.G., 2015:
Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms

Canning, P.; von Delft, F.; Bullock, A.N., 2013:
Structural basis for ASPP2 recognition by the tumor suppressor p73

Dupin, A.F.; Fribourg, Sébastien., 2014:
Structural basis for ATP loss by Clp1p in a G135R mutant protein

Urbanc, B.; Betnel, M.; Cruz, L.; Li, H.; Fradinger, E.A.; Monien, B.H.; Bitan, G., 2011:
Structural basis for Aβ1–42 toxicity inhibition by Aβ C-terminal fragments: discrete molecular dynamics study

Oja, T.; Niiranen, L.; Sandalova, T.; Klika, K.D.; Niemi, J.; Mäntsälä, P.; Schneider, G.; Metsä-Ketelä, M., 2013:
Structural basis for C-ribosylation in the alnumycin A biosynthetic pathway

Sack, J.S.; Thieffine, S.; Bandiera, T.; Fasolini, M.; Duke, G.J.; Jayaraman, L.; Kish, K.F.; Klei, H.E.; Purandare, A.V.; Rosettani, P.; Troiani, S.; Xie, D.; Bertrand, J.A., 2011:
Structural basis for CARM1 inhibition by indole and pyrazole inhibitors

Mori, T.; Kitano, K.; Terawaki, S-ichi.; Maesaki, R.; Fukami, Y.; Hakoshima, T., 2008:
Structural basis for CD44 recognition by ERM proteins

Koyama, M.; Matsuura, Y., 2012:
Structural basis for CRM1-mediated nuclear export

Suzuki, H.; Kawasaki, M.; Inuzuka, T.; Okumura, M.; Kakiuchi, T.; Shibata, H.; Wakatsuki, S.; Maki, M., 2008:
Structural basis for Ca2+ -dependent formation of ALG-2/Alix peptide complex: Ca2+/EF3-driven arginine switch mechanism

Ottmann, C.; Rose, R.; Huttenlocher, F.; Cedzich, A.; Hauske, P.; Kaiser, M.; Huber, R.; Schaller, A., 2010:
Structural basis for Ca2+-independence and activation by homodimerization of tomato subtilase 3

Zhang, Y.; Li, Z.; Sacks, D.B.; Ames, J.B., 2012:
Structural basis for Ca2+-induced activation and dimerization of estrogen receptor α by calmodulin

Canning, P.; Cooper, C.D.O.; Krojer, T.; Murray, J.W.; Pike, A.C.W.; Chaikuad, A.; Keates, T.; Thangaratnarajah, C.; Hojzan, V.; Ayinampudi, V.; Marsden, B.D.; Gileadi, O.; Knapp, S.; von Delft, F.; Bullock, A.N., 2013:
Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases

Boer, D.Roeland.; Freire-Rios, A.; van den Berg, W.A.M.; Saaki, T.; Manfield, I.W.; Kepinski, S.; López-Vidrieo, I.; Franco-Zorrilla, J.Manuel.; de Vries, S.C.; Solano, R.; Weijers, D.; Coll, M., 2014:
Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors

Langelier, M-France.; Planck, J.L.; Roy, S.; Pascal, J.M., 2012:
Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1

Liu, S.; Tian, L-fei.; Liu, Y-ping.; An, X-min.; Tang, Q.; Yan, X-xue.; Liang, D-cai., 2014:
Structural basis for DNA recognition and nuclease processing by the Mre11 homologue SbcD in double-strand breaks repair

Obsil, T.; Obsilova, V., 2011:
Structural basis for DNA recognition by FOXO proteins

Birrane, G.; Soni, A.; Ladias, J.A.A., 2009:
Structural basis for DNA recognition by the human PAX3 homeodomain

Kitano, K.; Kim, S-Yong.; Hakoshima, T., 2010:
Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN

Lee, A.Yueh-Luen.; Chen, Y-Da.; Chang, Y-Yung.; Lin, Y-Ching.; Chang, C-Fon.; Huang, S-Jong.; Wu, S-Hsiung.; Hsu, C-Hua., 2014:
Structural basis for DNA-mediated allosteric regulation facilitated by the AAA+ module of Lon protease

Wiedenheft, B.; Zhou, K.; Jinek, M.; Coyle, S.M.; Ma, W.; Doudna, J.A., 2009:
Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense

Ramsland, P.A.; Farrugia, W.; Bradford, T.M.; Sardjono, C.Tan.; Esparon, S.; Trist, H.M.; Powell, M.S.; Tan, P.Szee.; Cendron, A.C.; Wines, B.D.; Scott, A.M.; Hogarth, P.Mark., 2011:
Structural basis for Fc gammaRIIa recognition of human IgG and formation of inflammatory signaling complexes

Shi, R.; Proteau, A.; Villarroya, M.; Moukadiri, Iïl.; Zhang, L.; Trempe, J-François.; Matte, A.; Armengod, M.Eugenia.; Cygler, M., 2010:
Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions

Chan, K-Ho.; Li, T.; Wong, C-On.; Wong, K-Bo., 2012:
Structural basis for GTP-dependent dimerization of hydrogenase maturation factor HypB

Takahashi, Y-Hei.; Shilatifard, A., 2010:
Structural basis for H3K4 trimethylation by yeast Set1/COMPASS

Scharf, L.; West, A.P.; Gao, H.; Lee, T.; Scheid, J.F.; Nussenzweig, M.C.; Bjorkman, P.J.; Diskin, R., 2013:
Structural basis for HIV-1 gp120 recognition by a germ-line version of a broadly neutralizing antibody

Ofek, G.; Zirkle, B.; Yang, Y.; Zhu, Z.; McKee, K.; Zhang, B.; Chuang, G-Yu.; Georgiev, I.S.; O'Dell, S.; Doria-Rose, N.; Mascola, J.R.; Dimitrov, D.S.; Kwong, P.D., 2014:
Structural basis for HIV-1 neutralization by 2F5-like antibodies m66 and m66.6

Kangueane, P.; Sakharkar, M.Kishore., 2008:
Structural basis for HLA-A2 supertypes

Kuhnert, M.; Steuber, H.; Diederich, W.E., 2014:
Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir

Lundby, A.; Tseng, G-Ny.; Schmitt, N., 2011:
Structural basis for K(V)7.1-KCNE(x) interactions in the I(Ks) channel complex

Reshetnyak, A.V.; Nelson, B.; Shi, X.; Boggon, T.J.; Pavlenco, A.; Mandel-Bausch, E.M.; Tome, F.; Suzuki, Y.; Sidhu, S.S.; Lax, I.; Schlessinger, J., 2014:
Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region

Liu, Y.; Olanrewaju, Y.Olatunde.; Zheng, Y.; Hashimoto, H.; Blumenthal, R.M.; Zhang, X.; Cheng, X., 2014:
Structural basis for Klf4 recognition of methylated DNA

Bulfer, S.L.; Scott, E.M.; Pillus, L.; Trievel, R.C., 2010:
Structural basis for L-lysine feedback inhibition of homocitrate synthase

Ramanan, P.; Edwards, M.R.; Shabman, R.S.; Leung, D.W.; Endlich-Frazier, A.C.; Borek, D.M.; Otwinowski, Z.; Liu, G.; Huh, J.; Basler, C.F.; Amarasinghe, G.K., 2013:
Structural basis for Marburg virus VP35-mediated immune evasion mechanisms

McLaughlin, K.J.; Strain-Damerell, C.M.; Xie, K.; Brekasis, D.; Soares, A.S.; Paget, M.S.B.; Kielkopf, C.L., 2010:
Structural basis for NADH/NAD+ redox sensing by a Rex family repressor

Mamonova, T.; Kurnikova, M.; Friedman, P.A., 2012:
Structural basis for NHERF1 PDZ domain binding

Del Campo, C.M.; Mishra, A.K.; Wang, Y-Hsiu.; Roy, C.R.; Janmey, P.A.; Lambright, D.G., 2015:
Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM

Löw, C.; Quistgaard, E.M.; Kovermann, M.; Anandapadamanaban, M.; Balbach, J.; Nordlund, Pär., 2015:
Structural basis for PTPA interaction with the invariant C-terminal tail of PP2A

Wolf, J.; Valkov, E.; Allen, M.D.; Meineke, B.; Gordiyenko, Y.; McLaughlin, S.H.; Olsen, T.M.; Robinson, C.V.; Bycroft, M.; Stewart, M.; Passmore, L.A., 2014:
Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation

Filippakopoulos, P.; Low, A.; Sharpe, T.D.; Uppenberg, J.; Yao, S.; Kuang, Z.; Savitsky, P.; Lewis, R.S.; Nicholson, S.E.; Norton, R.S.; Bullock, A.N., 2010:
Structural basis for Par-4 recognition by the SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4

Wu, Z.; Fu, C.; Shi, L.; Ruan, L.; Lin, D.; Guo, C., 2015:
Structural basis for RKIP binding with its substrate Raf1 kinase

Song, J.; McGivern, J.V.; Nichols, K.W.; Markley, J.L.; Sheets, M.D., 2008:
Structural basis for RNA recognition by a type II poly(A)-binding protein

Mishra, A.; Eathiraj, S.; Corvera, S.; Lambright, D.G., 2010:
Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal Autoantigen 1 (EEA1)

Chen, Y.; Tascón, I.; Neunuebel, M.Ramona.; Pallara, C.; Brady, J.; Kinch, L.N.; Fernández-Recio, J.; Rojas, A.L.; Machner, M.P.; Hierro, A., 2013:
Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD

Guja, K.E.; Venkataraman, K.; Yakubovskaya, E.; Shi, H.; Mejia, E.; Hambardjieva, E.; Karzai, A.Wali.; Garcia-Diaz, M., 2013:
Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1

Wier, A.D.; Mayekar, M.K.; Héroux, A.; Arndt, K.M.; VanDemark, A.P., 2014:
Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin

Kumar, P.; Vahedi-Faridi, A.; Saenger, W.; Merino, E.; López de Castro, Jé.A.; Uchanska-Ziegler, B.; Ziegler, A., 2009:
Structural basis for T cell alloreactivity among three HLA-B14 and HLA-B27 antigens

Zhang, Y.; Hu, Y.; Li, H.; Jin, C., 2015:
Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure

Dönhöfer, A.; Franckenberg, S.; Wickles, S.; Berninghausen, O.; Beckmann, R.; Wilson, D.N., 2013:
Structural basis for TetM-mediated tetracycline resistance

Petersen, J.; Mitchell, C.J.; Fisher, K.; Lowe, D.J., 2008:
Structural basis for VO(2+)-inhibition of nitrogenase activity: (B) pH-sensitive inner-sphere rearrangements in the 1H-environment of the metal coordination site of the nitrogenase Fe-protein identified by ENDOR spectroscopy

Petersen, J.; Fisher, K.; Lowe, D.J., 2008:
Structural basis for VO2+ inhibition of nitrogenase activity (A): 31P and 23Na interactions with the metal at the nucleotide binding site of the nitrogenase Fe protein identified by ENDOR spectroscopy

Dharmarajan, V.; Lee, J-Heon.; Patel, A.; Skalnik, D.G.; Cosgrove, M.S., 2012:
Structural basis for WDR5 interaction (Win) motif recognition in human SET1 family histone methyltransferases

de Rosa, M.; Zacarias, S.; Athanasiadis, A., 2014:
Structural basis for Z-DNA binding and stabilization by the zebrafish Z-DNA dependent protein kinase PKZ

Conrady, D.G.; Wilson, J.J.; Herr, A.B., 2013:
Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms

Martins, B.M.; Blaser, M.; Feliks, M.; Ullmann, G.Matthias.; Buckel, W.; Selmer, T., 2012:
Structural basis for a Kolbe-type decarboxylation catalyzed by a glycyl radical enzyme

Impagliazzo, A.; Tepper, A.W.; Verrips, T.C.; Ubbink, M.; van der Maarel, Sère.M., 2010:
Structural basis for a PABPN1 aggregation-preventing antibody fragment in OPMD

Demmer, U.; Warkentin, E.; Srivastava, A.; Kockelkorn, D.; Pötter, M.; Marx, A.; Fuchs, G.; Ermler, U., 2013:
Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase

Park, J.; Rhee, S., 2013:
Structural basis for a cofactor-dependent oxidation protection and catalysis of cyanobacterial succinic semialdehyde dehydrogenase

Melchers, J.; Diechtierow, M.; Fehér, K.; Sinning, I.; Tews, I.; Krauth-Siegel, R.Luise.; Muhle-Goll, C., 2008:
Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase

Zhang, Y.; Reddish, F.; Tang, S.; Zhuo, Y.; Wang, Y-Fang.; Yang, J.J.; Weber, I.T., 2014:
Structural basis for a hand-like site in the calcium sensor CatchER with fast kinetics

Chai, C.; Yu, Y.; Zhuo, W.; Zhao, H.; Li, X.; Wang, N.; Chai, J.; Yang, M., 2014:
Structural basis for a homodimeric ATPase subunit of an ECF transporter

Richardson, B.C.; Smith, R.D.; Ungar, D.; Nakamura, A.; Jeffrey, P.D.; Lupashin, V.V.; Hughson, F.M., 2009:
Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene

Rhodes, D.I.; Peat, T.S.; Vandegraaff, N.; Jeevarajah, D.; Le, G.; Jones, E.D.; Smith, J.A.; Coates, J.A.V.; Winfield, L.J.; Thienthong, N.; Newman, J.; Lucent, D.; Ryan, J.H.; Savage, G.Paul.; Francis, C.L.; Deadman, J.J., 2011 :
Structural basis for a new mechanism of inhibition of HIV-1 integrase identified by fragment screening and structure-based design

Volkers, G.; Palm, G.J.; Weiss, M.S.; Wright, G.D.; Hinrichs, W., 2011:
Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase

Chang, Y.; Bruni, R.; Kloss, B.; Assur, Z.; Kloppmann, E.; Rost, B.; Hendrickson, W.A.; Liu, Q., 2014:
Structural basis for a pH-sensitive calcium leak across membranes

Enchev, R.I.; Scott, D.C.; da Fonseca, P.C.A.; Schreiber, A.; Monda, J.K.; Schulman, B.A.; Peter, M.; Morris, E.P., 2013:
Structural basis for a reciprocal regulation between SCF and CSN

Wu, X.; Ye, S.; Guo, S.; Yan, W.; Bartlam, M.; Rao, Z., 2010:
Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity

Bagaria, A.; Kumaran, D.; Burley, S.K.; Swaminathan, S., 2011:
Structural basis for a ribofuranosyl binding protein: insights into the furanose specific transport

Umehara, T.; Nakamura, Y.; Jang, M.Kyoo.; Nakano, K.; Tanaka, A.; Ozato, K.; Padmanabhan, B.; Yokoyama, S., 2010:
Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain

Murakami, K.; Yasunaga, T.; Noguchi, T.Q.P.; Gomibuchi, Y.; Ngo, K.X.; Uyeda, T.Q.P.; Wakabayashi, T., 2010:
Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release

Wang, Y.; Pascoe, H.G.; Brautigam, C.A.; He, H.; Zhang, X., 2013:
Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin

Eren, E.; van den Berg, B., 2012 :
Structural basis for activation of an integral membrane protease by lipopolysaccharide

Boal, A.K.; Cotruvo, J.A.; Stubbe, J.; Rosenzweig, A.C., 2010:
Structural basis for activation of class Ib ribonucleotide reductase

Kidmose, R.T.; Laursen, N.S.; Dobó, József.; Kjaer, T.R.; Sirotkina, S.; Yatime, L.; Sottrup-Jensen, L.; Thiel, S.; Gál, Péter.; Andersen, G.R., 2012:
Structural basis for activation of the complement system by component C4 cleavage

Lin, C.; Ear, J.; Midde, K.; Lopez-Sanchez, I.; Aznar, N.; Garcia-Marcos, M.; Kufareva, I.; Abagyan, R.; Ghosh, P., 2015:
Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin

Stock, Lícia.; Souza, C.; Treptow, W., 2013:
Structural basis for activation of voltage-gated cation channels

Gong, P.; Peersen, O.B., 2011:
Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase

Eckhard, U.; Schönauer, E.; Brandstetter, H., 2013:
Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T

Schmelz, S.; Botting, C.H.; Song, L.; Kadi, N.F.; Challis, G.L.; Naismith, J.H., 2011:
Structural basis for acyl acceptor specificity in the achromobactin biosynthetic enzyme AcsD

Etzold, S.; Kober, O.I.; Mackenzie, D.A.; Tailford, L.E.; Gunning, A.Patrick.; Walshaw, J.; Hemmings, A.M.; Juge, N., 2014:
Structural basis for adaptation of lactobacilli to gastrointestinal mucus

Larsson, K-Magnus.; Logan, D.T.; Nordlund, Pär., 2011:
Structural basis for adenosylcobalamin activation in AdoCbl-dependent ribonucleotide reductases

Lammens, A.; Hopfner, K-Peter., 2010:
Structural basis for adenylate kinase activity in ABC ATPases

Hill, E.H.; Sanchez, D.; Evans, D.G.; Whitten, D.G., 2014:
Structural basis for aggregation mode of oligo-p-phenylene ethynylenes with ionic surfactants

Lusher, S.J.; Raaijmakers, H.C.A.; Vu-Pham, D.; Dechering, K.; Lam, T.Wai.; Brown, A.R.; Hamilton, N.M.; Nimz, O.; Bosch, R.; McGuire, R.; Oubrie, A.; de Vlieg, J., 2011:
Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators

Tolbert, W.David.; Daugherty-Holtrop, J.; Gherardi, E.; Vande Woude, G.; Xu, H.Eric., 2010:
Structural basis for agonism and antagonism of hepatocyte growth factor

Velisetty, P.; Chalamalasetti, S.V.; Chakrapani, S., 2014:
Structural basis for allosteric coupling at the membrane-protein interface in Gloeobacter violaceus ligand-gated ion channel (GLIC)

Hohl, M.; Hürlimann, L.M.; Böhm, S.; Schöppe, J.; Grütter, M.G.; Bordignon, E.; Seeger, M.A., 2014:
Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter

Hsu, H-Chi.; Wang, C-Lin.; Wang, M.; Yang, N.; Chen, Z.; Sternglanz, R.; Xu, R-Ming., 2013:
Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding

Turner, M.; Eidemiller, S.; Martin, B.; Narver, A.; Marshall, J.; Zemp, L.; Cornell, K.A.; McIntosh, J.Michael.; McDougal, O.M., 2009:
Structural basis for alpha-conotoxin potency and selectivity

Yu, X.; Seegar, T.C.M.; Dalton, A.C.; Tzvetkova-Robev, D.; Goldgur, Y.; Rajashankar, K.R.; Nikolov, D.B.; Barton, W.A., 2013:
Structural basis for angiopoietin-1-mediated signaling initiation

Krumm, B.; Meng, X.; Li, Y.; Xiang, Y.; Deng, J., 2009:
Structural basis for antagonism of human interleukin 18 by poxvirus interleukin 18-binding protein

McKinstry, W.J.; Polekhina, G.; Diefenbach-Jagger, H.; Ho, P.W.M.; Sato, K.; Onuma, E.; Gillespie, M.T.; Martin, T.John.; Parker, M.W., 2009:
Structural basis for antibody discrimination between two hormones that recognize the parathyroid hormone receptor

Murase, T.; Eugenio, L.; Schorr, M.; Hussack, G.; Tanha, J.; Kitova, E.N.; Klassen, J.S.; Ng, K.K.S., 2014:
Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile

Lee, J.Hyuck.; Park, A.Kyung.; Do, H.; Park, K.Sun.; Moh, S.Hyun.; Chi, Y.Min.; Kim, H.Jun., 2012:
Structural basis for antifreeze activity of ice-binding protein from arctic yeast

Monincová, L.; Buděšínský, M.; Čujová, S.; Čeřovský, Václav.; Veverka, Václav., 2014:
Structural basis for antimicrobial activity of lasiocepsin

Kvansakul, M.; Wei, A.H.; Fletcher, J.I.; Willis, S.N.; Chen, L.; Roberts, A.W.; Huang, D.C.S.; Colman, P.M., 2011:
Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1

Ejby, M.; Fredslund, F.; Vujicic-Zagar, A.; Svensson, B.; Slotboom, D.Jan.; Abou Hachem, M., 2014:
Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04

Köhler, A.; Zimmerman, E.; Schneider, M.; Hurt, E.; Zheng, N., 2010:
Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module

Williams, S.J.; Sohn, K.Hoon.; Wan, L.; Bernoux, M.; Sarris, P.F.; Segonzac, C.; Ve, T.; Ma, Y.; Saucet, S.B.; Ericsson, D.J.; Casey, L.W.; Lonhienne, T.; Winzor, D.J.; Zhang, X.; Coerdt, A.; Parker, J.E.; Dodds, P.N.; Kobe, B.; Jones, J.D.G., 2014:
Structural basis for assembly and function of a heterodimeric plant immune receptor

Zhang, M.; Kadota, Y.; Prodromou, C.; Shirasu, K.; Pearl, L.H., 2010:
Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors

Dassama, L.M.K.; Krebs, C.; Bollinger, J.Martin.; Rosenzweig, A.C.; Boal, A.K., 2013:
Structural basis for assembly of the Mn(IV)/Fe(III) cofactor in the class Ic ribonucleotide reductase from Chlamydia trachomatis

Im, Y.Jun.; Kang, G.Bu.; Lee, J.Hyuck.; Park, K.Ryoung.; Song, H.Eun.; Kim, E.; Song, W.Keun.; Park, D.; Eom, S.Hyun., 2010:
Structural basis for asymmetric association of the betaPIX coiled coil and shank PDZ

Ni, L.; Li, S.; Yu, J.; Min, J.; Brautigam, C.A.; Tomchick, D.R.; Pan, D.; Luo, X., 2014:
Structural basis for autoactivation of human Mst2 kinase and its regulation by RASSF5

Lee, J.; Taneva, S.G.; Holland, B.W.; Tieleman, D.Peter.; Cornell, R.B., 2014:
Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix

Oh, J.; Goo, E.; Hwang, I.; Rhee, S., 2014:
Structural basis for bacterial quorum sensing-mediated oxalogenesis

Pletnev, S.; Pletneva, N.V.; Souslova, E.A.; Chudakov, D.M.; Lukyanov, S.; Wlodawer, A.; Dauter, Z.; Pletnev, V., 2013:
Structural basis for bathochromic shift of fluorescence in far-red fluorescent proteins eqFP650 and eqFP670

del Mundo, I.Marie.A.; Siters, K.E.; Fountain, M.A.; Morrow, J.R., 2012:
Structural basis for bifunctional zinc(II) macrocyclic complex recognition of thymine bulges in DNA

Hast, M.A.; Fletcher, S.; Cummings, C.G.; Pusateri, E.E.; Blaskovich, M.A.; Rivas, K.; Gelb, M.H.; Van Voorhis, W.C.; Sebti, S.M.; Hamilton, A.D.; Beese, L.S., 2009:
Structural basis for binding and selectivity of antimalarial and anticancer ethylenediamine inhibitors to protein farnesyltransferase

Tanneeru, K.; Guruprasad, L., 2014:
Structural basis for binding of aurora-AG198N- INCENP complex: MD simulations and free energy calculations

Conejo-Garcia, A.; McDonough, M.A.; Loenarz, C.; McNeill, L.A.; Hewitson, K.S.; Ge, W.; Liénard, Bît.M.; Schofield, C.J.; Clifton, I.J., 2011:
Structural basis for binding of cyclic 2-oxoglutarate analogues to factor-inhibiting hypoxia-inducible factor

Tan, T.Chye.; Spadiut, O.; Gandini, R.; Haltrich, D.; Divne, C., 2014:
Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion

Chowdhury, R.; McDonough, M.A.; Mecinović, J.; Loenarz, C.; Flashman, E.; Hewitson, K.S.; Domene, C.; Schofield, C.J., 2009:
Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases

Jani, D.; Valkov, E.; Stewart, M., 2014:
Structural basis for binding the TREX2 complex to nuclear pores, GAL1 localisation and mRNA export

Nishida, N.; Shimada, I., 2008:
Structural basis for biological processes activated by collagen-binding proteins

Cossu, F.; Milani, M.; Mastrangelo, E.; Vachette, P.; Servida, F.; Lecis, D.; Canevari, G.; Delia, D.; Drago, C.; Rizzo, V.; Manzoni, L.; Seneci, P.; Scolastico, C.; Bolognesi, M., 2009:
Structural basis for bivalent Smac-mimetics recognition in the IAP protein family

Rocha, B.A.M.; Delatorre, P.; Oliveira, Tá.M.; Benevides, R.G.; Pires, A.F.; Sousa, A.A.S.; Souza, L.A.G.; Assreuy, A.Maria.S.; Debray, H.; de Azevedo, W.F.; Sampaio, A.H.; Cavada, B.S., 2011:
Structural basis for both pro- and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum

Santos, C.R.; Tonoli, C.C.C.; Trindade, D.M.; Betzel, C.; Takata, H.; Kuriki, T.; Kanai, T.; Imanaka, T.; Arni, R.K.; Murakami, Mário.T., 2011:
Structural basis for branching-enzyme activity of glycoside hydrolase family 57: structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1

Zhou, T.; Georgiev, I.; Wu, X.; Yang, Z-Yong.; Dai, K.; Finzi, Aés.; Kwon, Y.Do.; Scheid, J.F.; Shi, W.; Xu, L.; Yang, Y.; Zhu, J.; Nussenzweig, M.C.; Sodroski, J.; Shapiro, L.; Nabel, G.J.; Mascola, J.R.; Kwong, P.D., 2010:
Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01

Lapierre, P.; Troesch, M.; Alvarez, F.; Soudeyns, H., 2012:
Structural basis for broad neutralization of hepatitis C virus quasispecies

Zadjali, F.; Pike, A.C.W.; Vesterlund, M.; Sun, J.; Wu, C.; Li, S.S.C.; Rönnstrand, L.; Knapp, S.; Bullock, A.N.; Flores-Morales, A., 2011:
Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase

Navarro, M.V.A.S.; Newell, P.D.; Krasteva, P.V.; Chatterjee, D.; Madden, D.R.; O'Toole, G.A.; Sondermann, H., 2011:
Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis

Popovych, N.; Tzeng, S-Ru.; Tonelli, M.; Ebright, R.H.; Kalodimos, C.G., 2009:
Structural basis for cAMP-mediated allosteric control of the catabolite activator protein

Liu, H-Wen.; Hou, P-Pan.; Guo, X-Ying.; Zhao, Z-Wen.; Hu, B.; Li, X.; Wang, L-Yang.; Ding, J-Ping.; Wang, S., 2014:
Structural basis for calcium and magnesium regulation of a large conductance calcium-activated potassium channel with β1 subunits

Lomasney, J.W.; Cheng, H-Fang.; Kobayashi, M.; King, K., 2012:
Structural basis for calcium and phosphatidylserine regulation of phospholipase C δ1

Zhang, M.; Abrams, C.; Wang, L.; Gizzi, A.; He, L.; Lin, R.; Chen, Y.; Loll, P.J.; Pascal, J.M.; Zhang, J-fang., 2012:
Structural basis for calmodulin as a dynamic calcium sensor

Zwolak, A.; Fujiwara, I.; Hammer, J.A.; Tjandra, N., 2010:
Structural basis for capping protein sequestration by myotrophin (V-1)

Smith, C.A.; Antunes, N.Tiago.; Stewart, N.K.; Toth, M.; Kumarasiri, M.; Chang, M.; Mobashery, S.; Vakulenko, S.B., 2014:
Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii

Pandey, A.S.; Mulder, D.W.; Ensign, S.A.; Peters, J.W., 2011:
Structural basis for carbon dioxide binding by 2-ketopropyl coenzyme M oxidoreductase/carboxylase

Chou, C-Yuan.; Lai, H-Yi.; Chen, H-Yi.; Cheng, S-Chun.; Cheng, K-Wen.; Chou, Y-Wen., 2014:
Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease

Nocek, B.P.; Gillner, D.M.; Fan, Y.; Holz, R.C.; Joachimiak, A., 2010:
Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase

Pegan, S.D.; Rukseree, K.; Franzblau, S.G.; Mesecar, A.D., 2009:
Structural basis for catalysis of a tetrameric class IIa fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis

Arakawa, T.; Kawano, Y.; Katayama, Y.; Nakayama, H.; Dohmae, N.; Yohda, M.; Odaka, M., 2010:
Structural basis for catalytic activation of thiocyanate hydrolase involving metal-ligated cysteine modification

Yamamoto, K.; Usuda, K.; Kakuta, Y.; Kimura, M.; Higashiura, A.; Nakagawa, A.; Aso, Y.; Suzuki, M., 2013:
Structural basis for catalytic activity of a silkworm Delta-class glutathione transferase

Zhang, L.; Liu, W.; Hu, T.; Du, L.; Luo, C.; Chen, K.; Shen, X.; Jiang, H., 2007:
Structural basis for catalytic and inhibitory mechanisms of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ)

Kobayashi, J.; Matsuura, Y., 2013:
Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p

Wang, P.; Bai, H-Woo.; Zhu, B.Ting., 2010:
Structural basis for certain naturally occurring bioflavonoids to function as reducing co-substrates of cyclooxygenase I and II

Otagiri, M.; Ui, S.; Takusagawa, Y.; Ohtsuki, T.; Kurisu, G.; Kusunoki, M., 2010:
Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases

Steiner, R.A.; Janssen, H.J.; Roversi, P.; Oakley, A.J.; Fetzner, S., 2010:
Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold

Bhattacharjee, A.; Oeemig, J.S.; Kolodziejczyk, R.; Meri, T.; Kajander, T.; Lehtinen, M.J.; Iwaï, H.; Jokiranta, T.Sakari.; Goldman, A., 2013:
Structural basis for complement evasion by Lyme disease pathogen Borrelia burgdorferi

Prosser, B.E.; Johnson, S.; Roversi, P.; Herbert, A.P.; Blaum, Bärbel.S.; Tyrrell, J.; Jowitt, T.A.; Clark, S.J.; Tarelli, E.; Uhrín, D.; Barlow, P.N.; Sim, R.B.; Day, A.J.; Lea, S.M., 2007:
Structural basis for complement factor H linked age-related macular degeneration

Handa, N.; Takagi, T.; Saijo, S.; Kishishita, S.; Takaya, D.; Toyama, M.; Terada, T.; Shirouzu, M.; Suzuki, A.; Lee, S.; Yamauchi, T.; Okada-Iwabu, M.; Iwabu, M.; Kadowaki, T.; Minokoshi, Y.; Yokoyama, S., 2011:
Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain

Nyrönen, T.H.; Söderholm, A.A., 2010:
Structural basis for computational screening of non-steroidal androgen receptor ligands

Shima, F.; Ijiri, Y.; Muraoka, S.; Liao, J.; Ye, M.; Araki, M.; Matsumoto, K.; Yamamoto, N.; Sugimoto, T.; Yoshikawa, Y.; Kumasaka, T.; Yamamoto, M.; Tamura, A.; Kataoka, T., 2010:
Structural basis for conformational dynamics of GTP-bound Ras protein

Lepesheva, G.I.; Waterman, M.R., 2011:
Structural basis for conservation in the CYP51 family

Engelstoft, M.S.; Norn, C.; Hauge, M.; Holliday, N.D.; Elster, L.; Lehmann, J.; Jones, R.M.; Frimurer, T.M.; Schwartz, T.W., 2015:
Structural basis for constitutive activity and agonist-induced activation of the enteroendocrine fat sensor GPR119

Ohnishi, S.; Tochio, N.; Tomizawa, T.; Akasaka, R.; Harada, T.; Seki, E.; Sato, M.; Watanabe, S.; Fujikura, Y.; Koshiba, S.; Terada, T.; Shirouzu, M.; Tanaka, A.; Kigawa, T.; Yokoyama, S., 2008:
Structural basis for controlling the dimerization and stability of the WW domains of an atypical subfamily

Kaczanowska, K.; Harel, M.; Radić, Z.; Changeux, J-Pierre.; Finn, M.G.; Taylor, P., 2014:
Structural basis for cooperative interactions of substituted 2-aminopyrimidines with the acetylcholine binding protein

Monecke, T.; Haselbach, D.; Voß, Béla.; Russek, A.; Neumann, P.; Thomson, E.; Hurt, E.; Zachariae, U.; Stark, H.; Grubmüller, H.; Dickmanns, A.; Ficner, R., 2013:
Structural basis for cooperativity of CRM1 export complex formation

Davidovich, C.; Bashan, A.; Yonath, A., 2009:
Structural basis for cross-resistance to ribosomal PTC antibiotics

Chenoweth, D.M.; Dervan, P.B., 2011:
Structural basis for cyclic Py-Im polyamide allosteric inhibition of nuclear receptor binding

Huang, G.Y.; Kim, J.Joo.; Reger, A.S.; Lorenz, R.; Moon, E-Whan.; Zhao, C.; Casteel, D.E.; Bertinetti, D.; Vanschouwen, B.; Selvaratnam, R.; Pflugrath, J.W.; Sankaran, B.; Melacini, G.; Herberg, F.W.; Kim, C., 2014:
Structural basis for cyclic-nucleotide selectivity and cGMP-selective activation of PKG I

Satou, R.; Miyanaga, A.; Ozawa, H.; Funa, N.; Katsuyama, Y.; Miyazono, K-ichi.; Tanokura, M.; Ohnishi, Y.; Horinouchi, S., 2014:
Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity

Lan, W.; Wang, Z.; Yang, Z.; Ying, T.; Zhang, X.; Tan, X.; Liu, M.; Cao, C.; Huang, Z-Xian., 2015:
Structural basis for cytochrome c Y67H mutant to function as a peroxidase

Donovan, J.; Dufner, M.; Korennykh, A., 2013:
Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1

Zhang, N.; Zhong, R., 2010:
Structural basis for decreased affinity of Emodin binding to Val66-mutated human CK2 alpha as determined by molecular dynamics

Ma, X.; Shen, Y., 2012:
Structural basis for degeneracy among thermosensory neurons in Caenorhabditis elegans

Iwema, T.; Picciocchi, A.; Traore, D.A.K.; Ferrer, J-Luc.; Chauvat, F.; Jacquamet, L., 2009:
Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin

Mas, C.; Norwood, S.J.; Bugarcic, A.; Kinna, G.; Leneva, N.; Kovtun, O.; Ghai, R.; Ona Yanez, L.E.; Davis, J.L.; Teasdale, R.D.; Collins, B.M., 2015 :
Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling

Bunkoczi, G.; Misquitta, S.; Wu, X.; Lee, W.Hwa.; Rojkova, A.; Kochan, G.; Kavanagh, K.L.; Oppermann, U.; Smith, S., 2009:
Structural basis for different specificities of acyltransferases associated with the human cytosolic and mitochondrial fatty acid synthases

Ravindran, A.; Joseph, P.Raj.B.; Rajarathnam, K., 2009:
Structural basis for differential binding of the interleukin-8 monomer and dimer to the CXCR1 N-domain: role of coupled interactions and dynamics

Xia, S.; Eom, S.Hyun.; Konigsberg, W.H.; Wang, J., 2012:
Structural basis for differential insertion kinetics of dNMPs opposite a difluorotoluene nucleotide residue

Bale, S.; Dias, J.M.; Fusco, M.L.; Hashiguchi, T.; Wong, A.C.; Liu, T.; Keuhne, A.I.; Li, S.; Woods, V.L.; Chandran, K.; Dye, J.M.; Saphire, E.Ollmann., 2012:
Structural basis for differential neutralization of ebolaviruses

Bai, Y.; Srivastava, S.K.; Chang, J.Ho.; Manley, J.L.; Tong, L., 2011:
Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase

Li, P-Yi.; Ji, P.; Li, C-Yang.; Zhang, Y.; Wang, G-Long.; Zhang, X-Ying.; Xie, B-Bin.; Qin, Q-Long.; Chen, X-Lan.; Zhou, B-Cheng.; Zhang, Y-Zhong., 2014:
Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family

Bradley, C.Marchetti.; Jones, S.; Huang, Y.; Suzuki, Y.; Kvaratskhelia, M.; Hickman, A.Burgess.; Craigie, R.; Dyda, F., 2007:
Structural basis for dimerization of LAP2alpha, a component of the nuclear lamina

Sulistijo, E.S.; Mackenzie, K.R., 2009:
Structural basis for dimerization of the BNIP3 transmembrane domain

Cheung, Y-Wai.; Kwok, J.; Law, A.W.L.; Watt, R.M.; Kotaka, M.; Tanner, J.A., 2013:
Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer

Satoh, T.; Suzuki, K.; Yamaguchi, T.; Kato, K., 2014:
Structural basis for disparate sugar-binding specificities in the homologous cargo receptors ERGIC-53 and VIP36

Bian, C-Feng.; Zhang, Y.; Sun, H.; Li, D-Feng.; Wang, D-Cheng., 2012:
Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen

Gursky, O.; Jones, M.K.; Mei, X.; Segrest, J.P.; Atkinson, D., 2014:
Structural basis for distinct functions of the naturally occurring Cys mutants of human apolipoprotein A-I

Springer, T.A.; Zhu, J.; Xiao, T., 2008:
Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3

Inaba, K.; Ito, K., 2007:
Structural basis for disulfide bond generation in the cell

Trausch, J.J.; Xu, Z.; Edwards, A.L.; Reyes, F.E.; Ross, P.E.; Knight, R.; Batey, R.T., 2014:
Structural basis for diversity in the SAM clan of riboswitches

Lin, Y.Chuan.; Perryman, A.L.; Olson, A.J.; Torbett, B.E.; Elder, J.H.; Stout, C.David., 2011:
Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease

Wu, B.; Peisley, A.; Richards, C.; Yao, H.; Zeng, X.; Lin, C.; Chu, F.; Walz, T.; Hur, S., 2013:
Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5

Shi, K.; Berghuis, A.M., 2012:
Structural basis for dual nucleotide selectivity of aminoglycoside 2''-phosphotransferase IVa provides insight on determinants of nucleotide specificity of aminoglycoside kinases

Weber, G.; Cristão, V.F.; Santos, K.F.; Jovin, S.Mozaffari.; Heroven, A.C.; Holton, N.; Lührmann, R.; Beggs, J.D.; Wahl, M.C., 2013:
Structural basis for dual roles of Aar2p in U5 snRNP assembly

Mizushima, T.; Tanaka, K., 2011:
Structural basis for dynamic formation and mechanistic actions of huge and complicated proteolytic machinery

Doki, S.; Kato, H.E.; Solcan, N.; Iwaki, M.; Koyama, M.; Hattori, M.; Iwase, N.; Tsukazaki, T.; Sugita, Y.; Kandori, H.; Newstead, S.; Ishitani, R.; Nureki, O., 2013:
Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT

Han, S.; Zaniewski, R.P.; Marr, E.S.; Lacey, B.M.; Tomaras, A.P.; Evdokimov, A.; Miller, J.Richard.; Shanmugasundaram, V., 2011:
Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa

Arpino, J.A.J.; Czapinska, H.; Piasecka, A.; Edwards, W.R.; Barker, P.; Gajda, M.J.; Bochtler, M.; Jones, D.Dafydd., 2013:
Structural basis for efficient chromophore communication and energy transfer in a constructed didomain protein scaffold

Kervinen, J.; Abad, M.; Crysler, C.; Kolpak, M.; Mahan, A.D.; Masucci, J.A.; Bayoumy, S.; Cummings, M.D.; Yao, X.; Olson, M.; de Garavilla, L.; Kuo, L.; Deckman, I.; Spurlino, J., 2007:
Structural basis for elastolytic substrate specificity in rodent alpha-chymases

Jost, C.; Schilling, J.; Tamaskovic, R.; Schwill, M.; Honegger, A.; Plückthun, A., 2014:
Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2

Day, E.Bridie.; Guillonneau, C.; Gras, S.; L.G.uta, N.L.; Vignali, D.A.A.; Doherty, P.C.; Purcell, A.W.; Rossjohn, J.; Turner, S.J., 2011:
Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8+ T-cell responses

Reguera, J.; Malet, Hélène.; Weber, F.; Cusack, S., 2013:
Structural basis for encapsidation of genomic RNA by La Crosse Orthobunyavirus nucleoprotein

Ghai, R.; Bugarcic, A.; Liu, H.; Norwood, S.J.; Skeldal, S.; Coulson, E.J.; Li, S.Shun-Cheng.; Teasdale, R.D.; Collins, B.M., 2013:
Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins

Wu, Y.; West, A.P.; Kim, H.J.; Thornton, M.E.; Ward, A.B.; Bjorkman, P.J., 2014:
Structural basis for enhanced HIV-1 neutralization by a dimeric immunoglobulin G form of the glycan-recognizing antibody 2G12

Georgelis, N.; Yennawar, N.H.; Cosgrove, D.J., 2012:
Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin

Liu, Q.; Graeff, R.; Kriksunov, I.A.; Jiang, H.; Zhang, B.; Oppenheimer, N.; Lin, H.; Potter, B.V.L.; Lee, H.Cheung.; Hao, Q., 2009:
Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase

Silverstein, T.D.; Jain, R.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K., 2011:
Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η

Galant, A.; Arkus, K.A.J.; Zubieta, C.; Cahoon, R.E.; Jez, J.M., 2010:
Structural basis for evolution of product diversity in soybean glutathione biosynthesis

Fu, G.; Chumanevich, A.A.; Agniswamy, J.; Fang, B.; Harrison, R.W.; Weber, I.T., 2008:
Structural basis for executioner caspase recognition of P5 position in substrates

Huang, J.; Makabe, K.; Biancalana, M.; Koide, A.; Koide, S., 2009:
Structural basis for exquisite specificity of affinity clamps, synthetic binding proteins generated through directed domain-interface evolution

Kusano, S.; Kukimoto-Niino, M.; Hino, N.; Ohsawa, N.; Okuda, K-ichi.; Sakamoto, K.; Shirouzu, M.; Shindo, T.; Yokoyama, S., 2012:
Structural basis for extracellular interactions between calcitonin receptor-like receptor and receptor activity-modifying protein 2 for adrenomedullin-specific binding

Tars, K.; Olin, B.; Mannervik, B., 2010:
Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases

Albanesi, D.; Reh, G.; Guerin, M.E.; Schaeffer, F.; Debarbouille, M.; Buschiazzo, A.; Schujman, G.E.; de Mendoza, D.; Alzari, P.M., 2013:
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus

Biterova, E.I.; Barycki, J.J., 2010:
Structural basis for feedback and pharmacological inhibition of Saccharomyces cerevisiae glutamate cysteine ligase

Sun, Y.; Li, L.; Macho, A.P.; Han, Z.; Hu, Z.; Zipfel, C.; Zhou, J-Min.; Chai, J., 2013:
Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex

Santos, K.F.; Jovin, S.Mozaffari.; Weber, G.; Pena, V.; Lührmann, R.; Wahl, M.C., 2013:
Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome

Hare, S.; D.N.nzio, F.; Labeja, A.; Wang, J.; Engelman, A.; Cherepanov, P., 2009:
Structural basis for functional tetramerization of lentiviral integrase

Elantak, L.; Espeli, M.; Boned, A.; Bornet, O.; Bonzi, J.; Gauthier, L.; Feracci, M.; Roche, P.; Guerlesquin, Fçoise.; Schiff, C., 2013:
Structural basis for galectin-1-dependent pre-B cell receptor (pre-BCR) activation

Kodan, A.; Yamaguchi, T.; Nakatsu, T.; Sakiyama, K.; Hipolito, C.J.; Fujioka, A.; Hirokane, R.; Ikeguchi, K.; Watanabe, B.; Hiratake, J.; Kimura, Y.; Suga, H.; Ueda, K.; Kato, H., 2014:
Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog

West, A.P.; Diskin, R.; Nussenzweig, M.C.; Bjorkman, P.J., 2012:
Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120

de Giuseppe, P.Oliveira.; Souza, T.de.Arruda.Campos.Brasil.; Souza, F.Henrique.Moreira.; Zanphorlin, L.Maria.; Machado, C.Botelho.; Ward, R.John.; Jorge, J.Atilio.; Furriel, R.dos.Prazeres.Melo.; Murakami, M.Tyago., 2015:
Structural basis for glucose tolerance in GH1 β-glucosidases

Baskaran, S.; Roach, P.J.; DePaoli-Roach, A.A.; Hurley, T.D., 2010:
Structural basis for glucose-6-phosphate activation of glycogen synthase

Vey, J.L.; Yang, J.; Li, M.; Broderick, W.E.; Broderick, J.B.; Drennan, C.L., 2008:
Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme

Kainov, D.E.; Vitorino, M.; Cavarelli, J.; Poterszman, A.; Egly, J-Marc., 2009:
Structural basis for group A trichothiodystrophy

Cozzi, R.; Prigozhin, D.; Rosini, R.; Abate, F.; Bottomley, M.J.; Grandi, G.; Telford, J.L.; Rinaudo, C.Daniela.; Maione, D.; Alber, T., 2013:
Structural basis for group B streptococcus pilus 1 sortases C regulation and specificity

Lee, J.Y.; Yang, J.G.; Zhitnitsky, D.; Lewinson, O.; Rees, D.C., 2014:
Structural basis for heavy metal detoxification by an Atm1-type ABC exporter

Krishna Kumar, K.; Jacques, D.A.; Pishchany, G.; Caradoc-Davies, T.; Spirig, T.; Malmirchegini, G.Reza.; Langley, D.B.; Dickson, C.F.; Mackay, J.P.; Clubb, R.T.; Skaar, E.P.; Guss, J.Mitchell.; Gell, D.A., 2012:
Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein, IsdH

Hou, F.; Miyakawa, T.; Kataoka, M.; Takeshita, D.; Kumashiro, S.; Uzura, A.; Urano, N.; Nagata, K.; Shimizu, S.; Tanokura, M., 2014:
Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

Eigenbrot, C.; Ultsch, M.; Dubnovitsky, A.; Abrahmsén, L.; Härd, T., 2010:
Structural basis for high-affinity HER2 receptor binding by an engineered protein

Eidahl, J.O.; Crowe, B.L.; North, J.A.; McKee, C.J.; Shkriabai, N.; Feng, L.; Plumb, M.; Graham, R.L.; Gorelick, R.J.; Hess, S.; Poirier, M.G.; Foster, M.P.; Kvaratskhelia, M., 2013:
Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes

Pazgier, M.; Liu, M.; Zou, G.; Yuan, W.; Li, C.; Li, C.; Li, J.; Monbo, J.; Zella, D.; Tarasov, S.G.; Lu, W., 2009:
Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX

Acharya, P.; Luongo, T.S.; Louder, M.K.; McKee, K.; Yang, Y.; Kwon, Y.Do.; Mascola, J.R.; Kessler, P.; Martin, Lïc.; Kwong, P.D., 2014:
Structural basis for highly effective HIV-1 neutralization by CD4-mimetic miniproteins revealed by 1.5 Å cocrystal structure of gp120 and M48U1

Zanier, K.; Charbonnier, S.; Sidi, A.Ould.M'hamed.Ould.; McEwen, A.G.; Ferrario, M.Giovanna.; Poussin-Courmontagne, P.; Cura, V.; Brimer, N.; Babah, K.Ould.; Ansari, T.; Muller, I.; Stote, R.H.; Cavarelli, J.; Vande Pol, S.; Travé, G., 2013:
Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins

Zhou, B.; Liu, C.; Xu, Z.; Zhu, G., 2012:
Structural basis for homeodomain recognition by the cell-cycle regulator Geminin

Meyer, N.Helge.; Tripsianes, K.; Vincendeau, M.; Madl, T.; Kateb, F.; Brack-Werner, R.; Sattler, M., 2010:
Structural basis for homodimerization of the Src-associated during mitosis, 68-kDa protein (Sam68) Qua1 domain

Pal, K.; Swaminathan, K.; Xu, H.Eric.; Pioszak, A.A., 2011:
Structural basis for hormone recognition by the Human CRFR2{alpha} G protein-coupled receptor

Xia, C.; Panda, S.P.; Marohnic, C.C.; Martásek, P.; Masters, B.Sue.; Kim, J-Ja.P., 2011:
Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency

Horton, J.R.; Upadhyay, A.K.; Hashimoto, H.; Zhang, X.; Cheng, X., 2011:
Structural basis for human PHF2 Jumonji domain interaction with metal ions

Bertrand, T.; Augé, F.; Houtmann, J.; Rak, A.; Vallée, F.; Mikol, V.; Berne, P.F.; Michot, N.; Cheuret, D.; Hoornaert, C.; Mathieu, M., 2010:
Structural basis for human monoglyceride lipase inhibition

Kohler, A.C.; Gae, D.D.; Richley, M.A.; Stoll, S.; Gunn, A.; Lim, S.; Martin, S.S.; Doukov, T.I.; Britt, R.David.; Ames, J.B.; Lagarias, J.Clark.; Fisher, A.J., 2010:
Structural basis for hydration dynamics in radical stabilization of bilin reductase mutants

Jin, L.; Martynowski, D.; Zheng, S.; Wada, T.; Xie, W.; Li, Y., 2010:
Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORgamma

Zhou, T.; Xiong, J.; Wang, M.; Yang, N.; Wong, J.; Zhu, B.; Xu, R-Ming., 2014:
Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2

Borovinskaya, M.A.; Shoji, S.; Fredrick, K.; Cate, J.H.D., 2008 :
Structural basis for hygromycin B inhibition of protein biosynthesis

Jin, L.; Lin, S.; Rong, H.; Zheng, S.; Jin, S.; Wang, R.; Li, Y., 2011:
Structural basis for iloprost as a dual peroxisome proliferator-activated receptor alpha/delta agonist

Galkin, A.; Kulakova, L.; Lim, K.; Chen, C.Z.; Zheng, W.; Turko, I.V.; Herzberg, O., 2014:
Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram

Pauwels, K.; Williams, T.L.; Morris, K.L.; Jonckheere, W.; Vandersteen, A.; Kelly, G.; Schymkowitz, J.; Rousseau, F.; Pastore, A.; Serpell, L.C.; Broersen, K., 2012:
Structural basis for increased toxicity of pathological aβ42:aβ40 ratios in Alzheimer disease

Jegerschöld, C.; Pawelzik, S-Christian.; Purhonen, P.; Bhakat, P.; Gheorghe, K.Roxana.; Gyobu, N.; Mitsuoka, K.; Morgenstern, R.; Jakobsson, P-Johan.; Hebert, H., 2008:
Structural basis for induced formation of the inflammatory mediator prostaglandin E2

Etzerodt, A.; Rasmussen, M.Rostved.; Svendsen, P.; Chalaris, A.; Schwarz, J.; Galea, I.; Møller, H.Jon.; Moestrup, Søren.Kragh., 2014:
Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-α in macrophages

Kasson, P.M.; Pande, V.S., 2008:
Structural basis for influence of viral glycans on ligand binding by influenza hemagglutinin

Frydman-Marom, A.; Convertino, M.; Pellarin, R.; Lampel, A.; Shaltiel-Karyo, R.; Segal, D.; Caflisch, A.; Shalev, D.E.; Gazit, E., 2012:
Structural basis for inhibiting β-amyloid oligomerization by a non-coded β-breaker-substituted endomorphin analogue

Kaan, H.Yi.Kristal.; Ulaganathan, V.; Rath, O.; Prokopcová, H.; Dallinger, D.; Kappe, C.Oliver.; Kozielski, F., 2010:
Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol

Yoshimoto, N.; Itoh, T.; Inaba, Y.; Ishii, H.; Yamamoto, K., 2013:
Structural basis for inhibition of carboxypeptidase B by selenium-containing inhibitor: selenium coordinates to zinc in enzyme

Jílková, Aéla.; Rezácová, Pína.; Lepsík, M.; Horn, M.; Váchová, J.; Fanfrlík, J.; Brynda, Jí.; McKerrow, J.H.; Caffrey, C.R.; Mares, M., 2011:
Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni

Laursen, N.S.; Gordon, N.; Hermans, S.; Lorenz, N.; Jackson, N.; Wines, B.; Spillner, E.; Christensen, J.B.; Jensen, M.; Fredslund, F.; Bjerre, M.; Sottrup-Jensen, L.; Fraser, J.D.; Andersen, G.R., 2010:
Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus

Snášel, J.; Nauš, P.; Dostál, Jří.; Hnízda, Aš.; Fanfrlík, Jřich.; Brynda, Jří.; Bourderioux, A.; Dušek, M.; Dvořáková, H.; Stolaříková, Jřina.; Zábranská, H.; Pohl, R.; Konečný, P.; Džubák, P.; Votruba, I.; Hajdúch, Mán.; Rezáčová, Pína.; Veverka, Václav.; Hocek, M.; Pichová, I., 2015:
Structural basis for inhibition of mycobacterial and human adenosine kinase by 7-substituted 7-(Het)aryl-7-deazaadenine ribonucleosides

Nagata, T.; Shirakawa, K.; Kobayashi, N.; Shiheido, H.; Tabata, N.; Sakuma-Yonemura, Y.; Horisawa, K.; Katahira, M.; Doi, N.; Yanagawa, H., 2015:
Structural basis for inhibition of the MDM2:p53 interaction by an optimized MDM2-binding peptide selected with mRNA display

Aik, W.; Demetriades, M.; Hamdan, M.K.K.; Bagg, E.A.L.; Yeoh, K.Kheng.; Lejeune, C.; Zhang, Z.; McDonough, M.A.; Schofield, C.J., 2013:
Structural basis for inhibition of the fat mass and obesity associated protein (FTO)

Yoshizawa, T.; Shimizu, T.; Hirano, H.; Sato, M.; Hashimoto, H., 2012:
Structural basis for inhibition of xyloglucan-specific endo-β-1,4-glucanase (XEG) by XEG-protein inhibitor

Lehtiö, L.; Jemth, A-Sofie.; Collins, R.; Loseva, O.; Johansson, A.; Markova, N.; Hammarström, M.; Flores, A.; Holmberg-Schiavone, L.; Weigelt, J.; Helleday, T.; Schüler, H.; Karlberg, T., 2009 :
Structural basis for inhibitor specificity in human poly(ADP-ribose) polymerase-3

Nojiri, M., 2013:
Structural basis for inter-protein electron transfer

Yang, S.; Gao, Z.; Li, T.; Yang, M.; Zhang, T.; Dong, Y.; He, Z-Guo., 2013:
Structural basis for interaction between Mycobacterium smegmatis Ms6564, a TetR family master regulator, and its target DNA

Sun, F.; Kale, S.D.; Azurmendi, H.F.; Li, D.; Tyler, B.M.; Capelluto, D.G.S., 2014:
Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry

Biter, A.B.; Lee, S.; Sung, N.; Tsai, F.T.F., 2012:
Structural basis for intersubunit signaling in a protein disaggregating machine

Quade, N.; Mendonca, C.; Herbst, K.; Heroven, A.Kathrin.; Ritter, C.; Heinz, D.W.; Dersch, P., 2012:
Structural basis for intrinsic thermosensing by the master virulence regulator RovA of Yersinia

Obata, R.; Nakasako, M., 2010:
Structural basis for inverting the enantioselectivity of arylmalonate decarboxylase revealed by the structural analysis of the Gly74Cys/Cys188Ser mutant in the liganded form

Crow, A.; Lawson, T.L.; Lewin, A.; Moore, G.R.; L.B.un, N.E., 2009:
Structural basis for iron mineralization by bacterioferritin

Collier, P.N.; Martinez-Botella, G.; Cornebise, M.; Cottrell, K.M.; Doran, J.D.; Griffith, J.P.; Mahajan, S.; Maltais, Fçois.; Moody, C.S.; Huck, E.Porter.; Wang, T.; Aronov, A.M., 2015:
Structural basis for isoform selectivity in a class of benzothiazole inhibitors of phosphoinositide 3-kinase γ

Poulos, T.L.; Li, H., 2013 :
Structural basis for isoform-selective inhibition in nitric oxide synthase

Malito, E.; Bursulaya, B.; Chen, C.; L.S.rdo, P.; Picchianti, M.; Balducci, E.; Biancucci, M.; Brock, A.; Berti, F.; Bottomley, M.James.; Nissum, M.; Costantino, P.; Rappuoli, R.; Spraggon, G., 2012:
Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197

Feinberg, H.; Taylor, M.E.; Razi, N.; McBride, R.; Knirel, Y.A.; Graham, S.A.; Drickamer, K.; Weis, W.I., 2011:
Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site

Tomita, T.; Kuzuyama, T.; Nishiyama, M., 2011:
Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase

Langereis, M.A.; Zeng, Q.; Gerwig, G.J.; Frey, B.; von Itzstein, M.; Kamerling, J.P.; de Groot, R.J.; Huizinga, E.G., 2009:
Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases

Huber, T.; Menon, S.; Sakmar, T.P., 2008:
Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery

Ni, T.W.; Tofanelli, M.A.; Phillips, B.D.; Ackerson, C.J., 2014:
Structural basis for ligand exchange on Au(25)(SR)(18)

Koch, M.; Chitayat, S.; Dattilo, B.M.; Schiefner, A.; Diez, J.; Chazin, W.J.; Fritz, Günter., 2011:
Structural basis for ligand recognition and activation of RAGE

Kirchdoerfer, R.N.; Garner, A.L.; Flack, C.E.; Mee, J.M.; Horswill, A.R.; Janda, K.D.; Kaufmann, G.F.; Wilson, I.A., 2011:
Structural basis for ligand recognition and discrimination of a quorum-quenching antibody

Vijayan, R.S.K.; Ghoshal, N., 2008:
Structural basis for ligand recognition at the benzodiazepine binding site of GABAA alpha 3 receptor, and pharmacophore-based virtual screening approach

Gauto, D.F.; D.L.lla, S.; Estrin, Dío.A.; Monaco, H.L.; Martí, M.A., 2011:
Structural basis for ligand recognition in a mushroom lectin: solvent structure as specificity predictor

Underwood, C.Rye.; Parthier, C.; Reedtz-Runge, S., 2011:
Structural basis for ligand recognition of incretin receptors

Armstrong, E.H.; Goswami, D.; Griffin, P.R.; Noy, N.; Ortlund, E.A., 2014:
Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway

Dvir, H.; Wang, J.; Ly, N.; Dascher, C.C.; Zajonc, D.M., 2010:
Structural basis for lipid-antigen recognition in avian immunity

Zhou, Y.; Li, X.; Zhang, N.; Zhong, R., 2015:
Structural basis for low-affinity binding of non-R2 carboxylate-substituted tricyclic quinoline analogs to CK2α: comparative molecular dynamics simulation studies

Monecke, T.; Dickmanns, A.; Ficner, R., 2009:
Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1

Kobayashi, K.; Kikuno, I.; Kuroha, K.; Saito, K.; Ito, K.; Ishitani, R.; Inada, T.; Nureki, O., 2010:
Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1α complex

Iverson, T.M.; Maklashina, E.; Cecchini, G., 2013:
Structural basis for malfunction in complex II

Bertini, I.; Fragai, M.; Luchinat, C.; Melikian, M.; Toccafondi, M.; Lauer, J.L.; Fields, G.B., 2012:
Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis

Hashimoto, H.; Takeuchi, T.; Komatsu, K.; Miyazaki, K.; Sato, M.; Higashi, S., 2011:
Structural basis for matrix metalloproteinase-2 (MMP-2)-selective inhibitory action of β-amyloid precursor protein-derived inhibitor

Maenaka, K.; Hashiguchi, T.; Yanagi, Y., 2012:
Structural basis for measles virus-receptor recognition and its functional implications for viral entry and vaccination

Le Trong, I.; Aprikian, P.; Kidd, B.A.; Forero-Shelton, M.; Tchesnokova, V.; Rajagopal, P.; Rodriguez, V.; Interlandi, G.; Klevit, R.; Vogel, V.; Stenkamp, R.E.; Sokurenko, E.V.; Thomas, W.E., 2010:
Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting

Yan, L.; Ma, Y.; Sun, Y.; Gao, J.; Chen, X.; Liu, J.; Wang, C.; Rao, Z.; Lou, Z., 2012:
Structural basis for mechanochemical role of Arabidopsis thaliana dynamin-related protein in membrane fission

Neumann, P.; Weidner, A.; Pech, A.; Stubbs, M.T.; Tittmann, K., 2008:
Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli

Paczkowski, J.E.; Fromme, J.Christopher., 2014:
Structural basis for membrane binding and remodeling by the exomer secretory vesicle cargo adaptor

Nakamura, K.; Man, Z.; Xie, Y.; Hanai, A.; Makyio, H.; Kawasaki, M.; Kato, R.; Shin, H-Won.; Nakayama, K.; Wakatsuki, S., 2012:
Structural basis for membrane binding specificity of the Bin/Amphiphysin/Rvs (BAR) domain of Arfaptin-2 determined by Arl1 GTPase

Malaby, A.W.; van den Berg, B.; Lambright, D.G., 2013:
Structural basis for membrane recruitment and allosteric activation of cytohesin family Arf GTPase exchange factors

Boura, E.; Hurley, J.H., 2012:
Structural basis for membrane targeting by the MVB12-associated β-prism domain of the human ESCRT-I MVB12 subunit

Trepreau, J.; Girard, E.; Maillard, A.P.; de Rosny, E.; Petit-Haertlein, I.; Kahn, R.; Covès, J., 2011:
Structural basis for metal sensing by CnrX

Liu, H.; Wang, J-Yu.S.; Huang, Y.; Li, Z.; Gong, W.; Lehmann, R.; Xu, R-Ming., 2010:
Structural basis for methylarginine-dependent recognition of Aubergine by Tudor

Schirle, N.T.; Sheu-Gruttadauria, J.; MacRae, I.J., 2014:
Structural basis for microRNA targeting

Agarwal, V.; Metlitskaya, A.; Severinov, K.; Nair, S.K., 2011:
Structural basis for microcin C7 inactivation by the MccE acetyltransferase

Mase, Y.; Yokogawa, M.; Osawa, M.; Shimada, I., 2012:
Structural basis for modulation of gating property of G protein-gated inwardly rectifying potassium ion channel (GIRK) by i/o-family G protein α subunit (Gαi/o)

Mouilleron, Séphane.; Badet-Denisot, M-Ange.; Pecqueur, L.; Madiona, K.; Assrir, N.; Badet, B.; Golinelli-Pimpaneau, Béatrice., 2013:
Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer

Chen, L.; Lin, Y-Lun.; Peng, G.; Li, F., 2013:
Structural basis for multifunctional roles of mammalian aminopeptidase N

Watanabe, M.; Tanaka, Y.; Suenaga, A.; Kuroda, M.; Yao, M.; Watanabe, N.; Arisaka, F.; Ohta, T.; Tanaka, I.; Tsumoto, K., 2008:
Structural basis for multimeric heme complexation through a specific protein-heme interaction: the case of the third neat domain of IsdH from Staphylococcus aureus

Kanagawa, M.; Liu, Y.; Hanashima, S.; Ikeda, A.; Chai, W.; Nakano, Y.; Kojima-Aikawa, K.; Feizi, T.; Yamaguchi, Y., 2014:
Structural basis for multiple sugar recognition of Jacalin-related human ZG16p lectin

Ilangovan, A.; Fletcher, M.; Rampioni, G.; Pustelny, C.; Rumbaugh, K.; Heeb, S.; Cámara, M.; Truman, A.; Chhabra, S.Ram.; Emsley, J.; Williams, P., 2014:
Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR)

Alvarado, D.; Klein, D.E.; Lemmon, M.A., 2010:
Structural basis for negative cooperativity in growth factor binding to an EGF receptor

Putcha, B-Dhurjati.K.; Wright, E.; Brunzelle, J.S.; Fernandez, E.J., 2012:
Structural basis for negative cooperativity within agonist-bound TR:RXR heterodimers

Shiro, Y.; Sugimoto, H.; Tosha, T.; Nagano, S.; Hino, T., 2012:
Structural basis for nitrous oxide generation by bacterial nitric oxide reductases

Bonnefond, L.; Arai, T.; Sakaguchi, Y.; Suzuki, T.; Ishitani, R.; Nureki, O., 2011:
Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog

Hishiki, A.; Hashimoto, H.; Hanafusa, T.; Kamei, K.; Ohashi, E.; Shimizu, T.; Ohmori, H.; Sato, M., 2009:
Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen

Maertens, G.N.; Cook, N.J.; Wang, W.; Hare, S.; Gupta, S.Shree.; Öztop, I.; Lee, K.; Pye, V.E.; Cosnefroy, Oélie.; Snijders, A.P.; KewalRamani, V.N.; Fassati, A.; Engelman, A.; Cherepanov, P., 2014:
Structural basis for nuclear import of splicing factors by human Transportin 3

Hodgson, M.C.; Shen, H.C.; Hollenberg, A.N.; Balk, S.P., 2008 :
Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor

Shimizu, T.; Sato, M., 2008:
Structural basis for nuclear transport mechanism

Barta, M.L.; McWhorter, W.J.; Miziorko, H.M.; Geisbrecht, B.V., 2012:
Structural basis for nucleotide binding and reaction catalysis in mevalonate diphosphate decarboxylase

Satoh, T.; Chen, Y.; Hu, D.; Hanashima, S.; Yamamoto, K.; Yamaguchi, Y., 2011:
Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation

Bommer, M.; Kunze, C.; Fesseler, J.; Schubert, T.; Diekert, G.; Dobbek, H., 2014:
Structural basis for organohalide respiration

Collins, P.J.; Haire, L.F.; Lin, Y.P.; Liu, J.; Russell, R.J.; Walker, P.A.; Martin, S.R.; Daniels, R.S.; Gregory, V.; Skehel, J.J.; Gamblin, S.J.; Hay, A.J., 2009:
Structural basis for oseltamivir resistance of influenza viruses

van den Berg, B., 2013:
Structural basis for outer membrane sugar uptake in pseudomonads

Kim, S.Jin.; Cho, J.; Song, E.Joo.; Kim, S.Jin.; Kim, H.Min.; Lee, K.Eun.; Suh, S.Won.; Kim, E.EunKyeong., 2014:
Structural basis for ovarian tumor domain-containing protein 1 (OTU1) binding to p97/valosin-containing protein (VCP)

Sawai, H.; Sugimoto, H.; Shiro, Y.; Ishikawa, H.; Mizutani, Y.; Aono, S., 2012:
Structural basis for oxygen sensing and signal transduction of the heme-based sensor protein Aer2 from Pseudomonas aeruginosa

Singh, M.; Kumar, P.; Karthikeyan, S., 2011:
Structural basis for pH dependent monomer-dimer transition of 3,4-dihydroxy 2-butanone-4-phosphate synthase domain from Mycobacterium tuberculosis

Walther, M.; Roffeis, J.; Jansen, C.; Anton, M.; Ivanov, I.; Kuhn, H., 2009:
Structural basis for pH-dependent alterations of reaction specificity of vertebrate lipoxygenase isoforms

Pioszak, A.A.; Parker, N.R.; Gardella, T.J.; Xu, H.Eric., 2009:
Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides

Gadd, M.S.; Bhati, M.; Jeffries, C.M.; Langley, D.B.; Trewhella, J.; Guss, J.Mitchell.; Matthews, J.M., 2012:
Structural basis for partial redundancy in a class of transcription factors, the LIM homeodomain proteins, in neural cell type specification

Xie, J.; Reverdatto, S.; Frolov, A.; Hoffmann, R.; Burz, D.S.; Shekhtman, A., 2008:
Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE)

Stiegler, A.L.; Draheim, K.M.; Li, X.; Chayen, N.E.; Calderwood, D.A.; Boggon, T.J., 2012:
Structural basis for paxillin binding and focal adhesion targeting of β-parvin

Trésaugues, L.; Silvander, C.; Flodin, S.; Welin, M.; Nyman, T.; Gräslund, S.; Hammarström, M.; Berglund, H.; Nordlund, Pär., 2015:
Structural basis for phosphoinositide substrate recognition, catalysis, and membrane interactions in human inositol polyphosphate 5-phosphatases

Liu, Y.; Zheng, T.; Bruner, S.D., 2012:
Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases

Wu, M.; Tao, Y.; Liu, X.; Zang, J., 2013:
Structural basis for phosphorylated autoinducer-2 modulation of the oligomerization state of the global transcription regulator LsrR from Escherichia coli

Parker, B.L.; Shepherd, N.E.; Trefely, S.; Hoffman, N.J.; White, M.Y.; Engholm-Keller, K.; Hambly, B.D.; Larsen, M.R.; James, D.E.; Cordwell, S.J., 2015:
Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection

Kobashigawa, Y.; Inagaki, F., 2013:
Structural basis for phosphorylation induced regulation mechanism of human cancer and autoimmune diseases related ubiquitin ligase Cbl

Pal, M.; Morgan, M.; Phelps, S.E.L.; Roe, S.Mark.; Parry-Morris, S.; Downs, J.A.; Polier, S.; Pearl, L.H.; Prodromou, C., 2015:
Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1

Rogov, V.V.; Suzuki, H.; Fiskin, E.; Wild, P.; Kniss, A.; Rozenknop, A.; Kato, R.; Kawasaki, M.; McEwan, D.G.; Löhr, F.; Güntert, P.; Dikic, I.; Wakatsuki, S.; Dötsch, V., 2013:
Structural basis for phosphorylation-triggered autophagic clearance of Salmonella

Pletnev, S.; Gurskaya, N.G.; Pletneva, N.V.; Lukyanov, K.A.; Chudakov, D.M.; Martynov, V.I.; Popov, V.O.; Kovalchuk, M.V.; Wlodawer, A.; Dauter, Z.; Pletnev, V., 2009:
Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed

Tian, Y.; Simanshu, D.K.; Ma, J-Biao.; Patel, D.J., 2011:
Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains

Ono, K.; Ueda, H.; Yoshizawa, Y.; Akazawa, D.; Tanimura, R.; Shimada, I.; Takahashi, H., 2010:
Structural basis for platelet antiaggregation by angiotensin II type 1 receptor antagonist losartan (DuP-753) via glycoprotein VI

Brockmann, C.; Soucek, S.; Kuhlmann, S.I.; Mills-Lujan, K.; Kelly, S.M.; Yang, J-Chun.; Iglesias, N.; Stutz, F.; Corbett, A.H.; Neuhaus, D.; Stewart, M., 2012:
Structural basis for polyadenosine-RNA binding by Nab2 Zn fingers and its function in mRNA nuclear export

Lyons, J.A.; Parker, J.L.; Solcan, N.; Brinth, A.; Li, D.; Shah, S.T.A.; Caffrey, M.; Newstead, S., 2015:
Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters

Yamagata, K.; Goto, Y.; Nishimasu, H.; Morimoto, J.; Ishitani, R.; Dohmae, N.; Takeda, N.; Nagai, R.; Komuro, I.; Suga, H.; Nureki, O., 2014:
Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change

Jenner, L.; Starosta, A.L.; Terry, D.S.; Mikolajka, A.; Filonava, L.; Yusupov, M.; Blanchard, S.C.; Wilson, D.N.; Yusupova, G., 2013:
Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis

Strushkevich, N.; MacKenzie, F.; Cherkesova, T.; Grabovec, I.; Usanov, S.; Park, H-Won., 2011:
Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system

Pence, M.G.; Choi, J-Yun.; Egli, M.; Guengerich, F.Peter., 2011:
Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota

Porta, J.C.; Borgstahl, G.E.O., 2012:
Structural basis for profilin-mediated actin nucleotide exchange

Smith, C.A.; Frase, H.; Toth, M.; Kumarasiri, M.; Wiafe, K.; Munoz, J.; Mobashery, S.; Vakulenko, S.B., 2013:
Structural basis for progression toward the carbapenemase activity in the GES family of β-lactamases

Zhao, X.; Pang, H.; Wang, S.; Zhou, W.; Yang, K.; Bartlam, M., 2011:
Structural basis for prokaryotic calcium-mediated regulation by a Streptomyces coelicolor calcium binding protein

Maestre-Reyna, M.; Diderrich, R.; Veelders, M.Stefan.; Eulenburg, G.; Kalugin, V.; Brückner, S.; Keller, P.; Rupp, S.; Mösch, H-Ulrich.; Essen, L-Oliver., 2013 :
Structural basis for promiscuity and specificity during Candida glabrata invasion of host epithelia

Tagami, S.; Sekine, S-ichi.; Minakhin, L.; Esyunina, D.; Akasaka, R.; Shirouzu, M.; Kulbachinskiy, A.; Severinov, K.; Yokoyama, S., 2014:
Structural basis for promoter specificity switching of RNA polymerase by a phage factor

Feklistov, A.; Darst, S.A., 2012:
Structural basis for promoter-10 element recognition by the bacterial RNA polymerase σ subunit

Wischgoll, S.; Demmer, U.; Warkentin, E.; Günther, R.; Boll, M.; Ermler, U., 2010:
Structural basis for promoting and preventing decarboxylation in glutaryl-coenzyme a dehydrogenases

Koag, M-Chul.; Min, K.; Lee, S., 2014:
Structural basis for promutagenicity of 8-halogenated guanine

Satoh, T.; Saeki, Y.; Hiromoto, T.; Wang, Y-Hui.; Uekusa, Y.; Yagi, H.; Yoshihara, H.; Yagi-Utsumi, M.; Mizushima, T.; Tanaka, K.; Kato, K., 2015:
Structural basis for proteasome formation controlled by an assembly chaperone nas2

Saio, T.; Guan, X.; Rossi, P.; Economou, A.; Kalodimos, C.G., 2014:
Structural basis for protein antiaggregation activity of the trigger factor chaperone

Noeske, J.; Cate, J.H.D., 2013:
Structural basis for protein synthesis: snapshots of the ribosome in motion

Wu, L.; Wang, L.; Hua, G.; Liu, K.; Yang, X.; Zhai, Y.; Bartlam, M.; Sun, F.; Fan, Z., 2009:
Structural basis for proteolytic specificity of the human apoptosis-inducing granzyme M

Hong, M.; DeGrado, W.F., 2013:
Structural basis for proton conduction and inhibition by the influenza M2 protein

Bale, S.; Lopez, M.M.; Makhatadze, G.I.; Fang, Q.; Pegg, A.E.; Ealick, S.E., 2009:
Structural basis for putrescine activation of human S-adenosylmethionine decarboxylase

Friggeri, L.; Hargrove, T.Y.; Rachakonda, G.; Williams, A.D.; Wawrzak, Z.; D.S.nto, R.; D.V.ta, D.; Waterman, M.R.; Tortorella, S.; Villalta, F.; Lepesheva, G.I., 2015:
Structural basis for rational design of inhibitors targeting Trypanosoma cruzi sterol 14α-demethylase: two regions of the enzyme molecule potentiate its inhibition

Logsdon, N.J.; Deshpande, A.; Harris, B.D.; Rajashankar, K.R.; Walter, M.R., 2012:
Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines

Edwards, A.L.; Reyes, F.E.; Héroux, A.; Batey, R.T., 2010:
Structural basis for recognition of S-adenosylhomocysteine by riboswitches

Liu, K.; Chen, C.; Guo, Y.; Lam, R.; Bian, C.; Xu, C.; Zhao, D.Y.; Jin, J.; MacKenzie, F.; Pawson, T.; Min, J., 2010:
Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain

Li, Y.; Mariuzza, R.A., 2014:
Structural basis for recognition of cellular and viral ligands by NK cell receptors

Olson, L.J.; Peterson, F.C.; Castonguay, A.; Bohnsack, R.N.; Kudo, M.; Gotschall, R.R.; Canfield, W.M.; Volkman, B.F.; Dahms, N.M., 2010:
Structural basis for recognition of phosphodiester-containing lysosomal enzymes by the cation-independent mannose 6-phosphate receptor

Zhang, J.; Zhang, H.; Gao, Z.; Hu, H.; Dong, C.; Dong, Y-Hui., 2014:
Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein

Lin, Z.; Jiang, L.; Yuan, C.; Jensen, J.K.; Zhang, X.; Luo, Z.; Furie, B.C.; Furie, B.; Andreasen, P.A.; Huang, M., 2011:
Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1

Ren, X.; Farías, G.G.; Canagarajah, B.J.; Bonifacino, J.S.; Hurley, J.H., 2013:
Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1

Suto, K.; Masuda, H.; Takenaka, Y.; Tsuji, F.I.; Mizuno, H., 2009:
Structural basis for red-shifted emission of a GFP-like protein from the marine copepod Chiridius poppei

Schärer, M.A.; Eliot, A.C.; Grütter, M.G.; Capitani, G., 2011:
Structural basis for reduced activity of 1-aminocyclopropane-1-carboxylate synthase affected by a mutation linked to andromonoecy

Knauer, S.H.; Buckel, W.; Dobbek, H., 2011:
Structural basis for reductive radical formation and electron recycling in (R)-2-hydroxyisocaproyl-CoA dehydratase

Armstrong, D.R.; Blair, V.L.; Clegg, W.; Dale, S.H.; Garcia-Alvarez, J.; Honeyman, G.W.; Hevia, E.; Mulvey, R.E.; Russo, L., 2010:
Structural basis for regioisomerization in the alkali-metal-mediated zincation (AMMZn) of trifluoromethyl benzene by isolation of kinetic and thermodynamic intermediates

Beck, T.; Miller, B.G., 2014:
Structural basis for regulation of human glucokinase by glucokinase regulatory protein

Sekiyama, N.; Arita, K.; Ikeda, Y.; Hashiguchi, K.; Ariyoshi, M.; Tochio, H.; Saitoh, H.; Shirakawa, M., 2010:
Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45

Lee, S.Goo.; Krishnan, H.B.; Jez, J.M., 2014:
Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR

Hengesbach, M.; Schwalbe, H., 2014:
Structural basis for regulation of ribosomal RNA 2'-o-methylation

Swarbrick, C.M.D.; Roman, N.; Cowieson, N.; Patterson, E.I.; Nanson, J.; Siponen, M.I.; Berglund, H.; Lehtiö, L.; Forwood, J.K., 2015:
Structural basis for regulation of the human acetyl-CoA thioesterase 12 and interactions with the steroidogenic acute regulatory protein-related lipid transfer (START) domain

Rydberg, E.H.; Cellucci, A.; Bartholomew, L.; Mattu, M.; Barbato, G.; Ludmerer, S.W.; Graham, D.J.; Altamura, S.; Paonessa, G.; D.F.ancesco, R.; Migliaccio, G.; Carfí, A., 2009:
Structural basis for resistance of the genotype 2b hepatitis C virus NS5B polymerase to site A non-nucleoside inhibitors

Wang, W.; Elkins, K.; Oh, A.; Ho, Y-Ching.; Wu, J.; Li, H.; Xiao, Y.; Kwong, M.; Coons, M.; Brillantes, B.; Cheng, E.; Crocker, L.; Dragovich, P.S.; Sampath, D.; Zheng, X.; Bair, K.W.; O'Brien, T.; Belmont, L.D., 2015:
Structural basis for resistance to diverse classes of NAMPT inhibitors

Zhang, H.; Chen, L.; Chen, J.; Jiang, H.; Shen, X., 2012:
Structural basis for retinoic X receptor repression on the tetramer

Shenoy, R.T.; Sivaraman, J., 2011:
Structural basis for reversible and irreversible inhibition of human cathepsin L by their respective dipeptidyl glyoxal and diazomethylketone inhibitors

Touhara, K.K.; Nihira, T.; Kitaoka, M.; Nakai, H.; Fushinobu, S., 2014:
Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase

Zhang, X.; Chen, J.; Wu, M.; Wu, H.; Arokiaraj, A.Wilfred.; Wang, C.; Zhang, W.; Tao, Y.; Huen, M.S.Y.; Zang, J., 2013:
Structural basis for role of ring finger protein RNF168 RING domain

You, D-Ju.; Jongruja, N.; Tannous, E.; Angkawidjaja, C.; Koga, Y.; Kanaya, S., 2015:
Structural basis for salt-dependent folding of ribonuclease H1 from halophilic archaeon Halobacterium sp. NRC-1

Chen, D-Hua.; Baker, M.L.; Hryc, C.F.; DiMaio, F.; Jakana, J.; Wu, W.; Dougherty, M.; Haase-Pettingell, C.; Schmid, M.F.; Jiang, W.; Baker, D.; King, J.A.; Chiu, W., 2011:
Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus

Springer, T.A., 2009:
Structural basis for selectin mechanochemistry

Parker, M.J.; Gomery, K.; Richard, G.; MacKenzie, C.Roger.; Cox, A.D.; Richards, J.C.; Evans, S.V., 2014:
Structural basis for selective cross-reactivity in a bactericidal antibody against inner core lipooligosaccharide from Neisseria meningitidis

Castilho, M.S.; Postigo, M.P.; Pereira, H.M.; Oliva, G.; Andricopulo, A.D., 2010:
Structural basis for selective inhibition of purine nucleoside phosphorylase from Schistosoma mansoni: kinetic and structural studies

Guido, R.V.C.; Oliva, G.; Montanari, C.A.; Andricopulo, A.D., 2008:
Structural basis for selective inhibition of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase: molecular docking and 3D QSAR studies

Rickert, K.W.; Patel, S.B.; Allison, T.J.; Byrne, N.J.; Darke, P.L.; Ford, R.E.; Guerin, D.J.; Hall, D.L.; Kornienko, M.; Lu, J.; Munshi, S.K.; Reid, J.C.; Shipman, J.M.; Stanton, E.F.; Wilson, K.J.; Young, J.R.; Soisson, S.M.; Lumb, K.J., 2011:
Structural basis for selective small molecule kinase inhibition of activated c-Met

Parker, M.W.; Xu, P.; Li, X.; Vander Kooi, C.W., 2012:
Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1

Shioi, G.; Konno, D.; Shitamukai, A.; Matsuzaki, F., 2009:
Structural basis for self-renewal of neural progenitors in cortical neurogenesis

Zhang, Y.; Larsen, C.A.; Stadler, H.Scott.; Ames, J.B., 2011:
Structural basis for sequence specific DNA binding and protein dimerization of HOXA13

Yamasaki, K.; Kigawa, T.; Watanabe, S.; Inoue, M.; Yamasaki, T.; Seki, M.; Shinozaki, K.; Yokoyama, S., 2012:
Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor

Deng, D.; Yan, C.; Pan, X.; Mahfouz, M.; Wang, J.; Zhu, J-Kang.; Shi, Y.; Yan, N., 2012:
Structural basis for sequence-specific recognition of DNA by TAL effectors

Suzuki, Y.; Kiyokage, E.; Sohn, J.; Hioki, H.; Toida, K., 2015:
Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb

Campagne, Sébastien.; Damberger, F.F.; Kaczmarczyk, A.; Francez-Charlot, A.; Allain, Fédéric.H-T.; Vorholt, J.A., 2012:
Structural basis for sigma factor mimicry in the general stress response of Alphaproteobacteria

Wagner, S.; Stuttmann, J.; Rietz, S.; Guerois, R.; Brunstein, E.; Bautor, J.; Niefind, K.; Parker, J.E., 2014:
Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity

Kuroki, K.; Wang, J.; Ose, T.; Yamaguchi, M.; Tabata, S.; Maita, N.; Nakamura, S.; Kajikawa, M.; Kogure, A.; Satoh, T.; Arase, H.; Maenaka, K., 2014:
Structural basis for simultaneous recognition of an O-glycan and its attached peptide of mucin family by immune receptor PILRα

Yuan, H.; Marmorstein, R., 2013:
Structural basis for sirtuin activity and inhibition

Sanders, B.D.; Jackson, B.; Marmorstein, R., 2010:
Structural basis for sirtuin function: what we know and what we don't

Li, X.; Zhang, R.; Draheim, K.M.; Liu, W.; Calderwood, D.A.; Boggon, T.J., 2012:
Structural basis for small G protein effector interaction of Ras-related protein 1 (Rap1) and adaptor protein Krev interaction trapped 1 (KRIT1)

Tanabe, M.; Nimigean, C.M.; Iverson, T.M., 2010:
Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB

Ichimura, Y.; Kumanomidou, T.; Sou, Y-shin.; Mizushima, T.; Ezaki, J.; Ueno, T.; Kominami, E.; Yamane, T.; Tanaka, K.; Komatsu, M., 2008:
Structural basis for sorting mechanism of p62 in selective autophagy

Klein, T.; Henn, C.; Negri, M.; Frotscher, M., 2012:
Structural basis for species specific inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): computational study and biological validation

Li, J.; Li, Z.; Ruan, J.; Xu, C.; Tong, Y.; Pan, P.W.; Tempel, W.; Crombet, L.; Min, J.; Zang, J., 2012:
Structural basis for specific binding of human MPP8 chromodomain to histone H3 methylated at lysine 9

Takagi, K.; Kim, S.; Yukii, H.; Ueno, M.; Morishita, R.; Endo, Y.; Kato, K.; Tanaka, K.; Saeki, Y.; Mizushima, T., 2012:
Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p

Wang, Y.; Opperman, L.; Wickens, M.; Hall, T.M.Tanaka., 2010:
Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

Yasui, N.; Nogi, T.; Takagi, J., 2010:
Structural basis for specific recognition of reelin by its receptors

Yokoyama, M.; Oka, T.; Kojima, H.; Nagano, T.; Okabe, T.; Katayama, K.; Wakita, T.; Kanda, T.; Sato, H., 2012:
Structural basis for specific recognition of substrates by sapovirus protease

Xiao, H.; Edwards, T.E.; Ferré-D'Amaré, A.R., 2008:
Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch

Cambra, Iés.; Hernández, D.; Diaz, I.; Martinez, M., 2012:
Structural basis for specificity of propeptide-enzyme interaction in barley C1A cysteine peptidases

Ipsaro, J.J.; Mondragón, A., 2010:
Structural basis for spectrin recognition by ankyrin

Muskotál, Aél.; Seregélyes, C.; Sebestyén, A.; Vonderviszt, F., 2010:
Structural basis for stabilization of the hypervariable D3 domain of Salmonella flagellin upon filament formation

Zheng, S.; Chen, Y.; Donahue, C.P.; Wolfe, M.S.; Varani, G., 2009:
Structural basis for stabilization of the tau pre-mRNA splicing regulatory element by novantrone (mitoxantrone)

Machebœuf, P.; Ghosh, P., 2012:
Structural basis for streptococcal toxic shock syndrome

Koutmos, M.; Kabil, O.; Smith, J.L.; Banerjee, R., 2011:
Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine {beta}-synthase

Xue, S.; Wang, R.; Yang, F.; Terns, R.M.; Terns, M.P.; Zhang, X.; Maxwell, E.Stuart.; Li, H., 2010:
Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle

Unno, H.; Yamashita, T.; Ujita, S.; Okumura, N.; Otani, H.; Okumura, A.; Nagai, K.; Kusunoki, M., 2008:
Structural basis for substrate recognition and hydrolysis by mouse carnosinase CN2

Lindqvist, Y.; Koskiniemi, H.; Jansson, A.; Sandalova, T.; Schnell, R.; Liu, Z.; Mäntsälä, P.; Niemi, J.; Schneider, G., 2009:
Structural basis for substrate recognition and specificity in aklavinone-11-hydroxylase from rhodomycin biosynthesis

Urbániková, L.; Vršanská, Mária.; Mørkeberg Krogh, K.B.R.; Hoff, T.; Biely, P., 2012:
Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase

Hsu, F.; Zhu, W.; Brennan, L.; Tao, L.; Luo, Z-Qing.; Mao, Y., 2012:
Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase

Sundriyal, A.; Roberts, A.K.; Shone, C.C.; Acharya, K.Ravi., 2009:
Structural basis for substrate recognition in the enzymatic component of ADP-ribosyltransferase toxin CDTa from Clostridium difficile

Sim, L.; Willemsma, C.; Mohan, S.; Naim, H.Y.; Pinto, B.Mario.; Rose, D.R., 2010:
Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains

Wu, H.; Moshkina, N.; Min, J.; Zeng, H.; Joshua, J.; Zhou, M-Ming.; Plotnikov, A.N., 2012:
Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1

Huynh, N.; Aye, A.; Li, Y.; Yu, H.; Cao, H.; Tiwari, V.Kumar.; Shin, D-Wook.; Chen, X.; Fisher, A.J., 2014:
Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida

Lee, M.; Sousa, M.C., 2014:
Structural basis for substrate specificity in ArnB. A key enzyme in the polymyxin resistance pathway of Gram-negative bacteria

Pilka, E.S.; Niesen, F.H.; Lee, W.Hwa.; El-Hawari, Y.; Dunford, J.E.; Kochan, G.; Wsol, V.; Martin, H-Joerg.; Maser, E.; Oppermann, U., 2010 :
Structural basis for substrate specificity in human monomeric carbonyl reductases

Chan, K.K.; Fedorov, A.A.; Fedorov, E.V.; Almo, S.C.; Gerlt, J.A., 2008:
Structural basis for substrate specificity in phosphate binding (beta/alpha)8-barrels: D-allulose 6-phosphate 3-epimerase from Escherichia coli K-12

Oldham, M.L.; Chen, S.; Chen, J., 2014:
Structural basis for substrate specificity in the Escherichia coli maltose transport system

Russo, A.T.; Malmstrom, R.D.; White, M.A.; Watowich, S.J., 2010:
Structural basis for substrate specificity of alphavirus nsP2 proteases

Smutova, V.; Albohy, A.; Pan, X.; Korchagina, E.; Miyagi, T.; Bovin, N.; Cairo, C.W.; Pshezhetsky, A.V., 2015:
Structural basis for substrate specificity of mammalian neuraminidases

Li, X.; Beeson, W.T.; Phillips, C.M.; Marletta, M.A.; Cate, J.H.D., 2012:
Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases

Ferreon, J.C.; Martinez-Yamout, M.A.; Dyson, H.Jane.; Wright, P.E., 2009:
Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein

Maveyraud, L.; Niwa, H.; Guillet, Vérie.; Svergun, D.I.; Konarev, P.V.; Palmer, R.A.; Peumans, W.J.; Rougé, P.; Van Damme, E.J.M.; Reynolds, C.D.; Mourey, L., 2008:
Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNA-II from Sambucus nigra

Das, K.; Ma, L-Chung.; Xiao, R.; Radvansky, B.; Aramini, J.; Zhao, L.; Marklund, J.; Kuo, R-Lin.; Twu, K.Y.; Arnold, E.; Krug, R.M.; Montelione, G.T., 2008:
Structural basis for suppression of a host antiviral response by influenza A virus

Yang, X.; Xie, X.; Chen, L.; Zhou, H.; Wang, Z.; Zhao, W.; Tian, R.; Zhang, R.; Tian, C.; Long, J.; Shen, Y., 2011:
Structural basis for tandem L27 domain-mediated polymerization

Oda, S-Ichiro.; Schröder, M.; Khan, A.R., 2010:
Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7

Alfieri, C.; Gambetta, M.Cristina.; Matos, R.; Glatt, S.; Sehr, P.; Fraterman, S.; Wilm, M.; Müller, Jürg.; Müller, C.W., 2013:
Structural basis for targeting the chromatin repressor Sfmbt to Polycomb response elements

Singh, M.; Wang, Z.; Koo, B-Kyung.; Patel, A.; Cascio, D.; Collins, K.; Feigon, J., 2012:
Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65

Collie, G.W.; Promontorio, R.; Hampel, S.M.; Micco, M.; Neidle, S.; Parkinson, G.N., 2012:
Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands

Rezabkova, L.; Man, P.; Novak, P.; Herman, P.; Vecer, J.; Obsilova, V.; Obsil, T., 2012:
Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function

Xu, L-Hua.; Ikeda, H.; Liu, L.; Arakawa, T.; Wakagi, T.; Shoun, H.; Fushinobu, S., 2016:
Structural basis for the 4'-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase

Vigan-Womas, Iès.; Guillotte, M.; Juillerat, A.; Hessel, A.; Raynal, B.; England, P.; Cohen, J.H.; Bertrand, O.; Peyrard, T.; Bentley, G.A.; Lewit-Bentley, A.; Mercereau-Puijalon, O., 2013:
Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting

Liu, X.; Ladias, J.A.A., 2014:
Structural basis for the BRCA1 BRCT interaction with the proteins ATRIP and BAAT1

Kagawa, W.; Sagawa, T.; Niki, H.; Kurumizaka, H., 2012:
Structural basis for the DNA-binding activity of the bacterial β-propeller protein YncE

Little, D.J.; Bamford, N.C.; Pokrovskaya, V.; Robinson, H.; Nitz, M.; Howell, P.Lynne., 2015:
Structural basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-D-glucosamine in Gram-positive bacteria

Sugiki, T.; Takeuchi, K.; Yamaji, T.; Takano, T.; Tokunaga, Y.; Kumagai, K.; Hanada, K.; Takahashi, H.; Shimada, I., 2012:
Structural basis for the Golgi association by the pleckstrin homology domain of the ceramide trafficking protein (CERT)

Tsuge, H.; Tsurumura, T.; Utsunomiya, H.; Kise, D.; Kuzuhara, T.; Watanabe, T.; Fujiki, H.; Suganuma, M., 2009:
Structural basis for the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein

Bhandari, D.; Raisch, T.; Weichenrieder, O.; Jonas, S.; Izaurralde, E., 2014:
Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression

Merino, F.; Ng, C.Keow.Leng.; Veerapandian, V.; Schöler, H.Robert.; Jauch, R.; Cojocaru, V., 2015:
Structural basis for the SOX-dependent genomic redistribution of OCT4 in stem cell differentiation

Ciesielski, F.; Sato, Y.; Chebaro, Y.; Moras, D.; Dejaegere, A.; Rochel, N., 2013:
Structural basis for the accommodation of bis- and tris-aromatic derivatives in vitamin D nuclear receptor

Xu, Q.; Ye, X.; Li, L-Yan.; Cheng, Z-Ming.; Guo, H., 2010:
Structural basis for the action of xyloglucan endotransglycosylases/hydrolases: insights from homology modeling

Grenha, R.; Slamti, L.; Nicaise, M.; Refes, Y.; Lereclus, D.; Nessler, S., 2013:
Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR

Kochoyan, A.; Poulsen, F.M.; Berezin, V.; Bock, E.; Kiselyov, V.V., 2008:
Structural basis for the activation of FGFR by NCAM

Itoh, T.; Fairall, L.; Amin, K.; Inaba, Y.; Szanto, A.; Balint, B.L.; Nagy, L.; Yamamoto, K.; Schwabe, J.W.R., 2009:
Structural basis for the activation of PPARgamma by oxidized fatty acids

Huang, H.; Vogel, H.J., 2012:
Structural basis for the activation of platelet integrin αIIbβ3 by calcium- and integrin-binding protein 1

Dias, M.V.B.; Huang, F.; Chirgadze, D.Y.; Tosin, M.; Spiteller, D.; Dry, E.F.V.; Leadlay, P.F.; Spencer, J.B.; Blundell, T.L., 2010:
Structural basis for the activity and substrate specificity of fluoroacetyl-CoA thioesterase FlK

Golczak, M.; Kiser, P.D.; Sears, A.E.; Lodowski, D.T.; Blaner, W.S.; Palczewski, K., 2012:
Structural basis for the acyltransferase activity of lecithin:retinol acyltransferase-like proteins

Zhao, M-Xi.; Jiang, Y-Liang.; He, Y-Xing.; Chen, Y-Fei.; Teng, Y-Bin.; Chen, Y.; Zhang, C-Cai.; Zhou, C-Zhao., 2010:
Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate

Thangavelu, K.; Pan, C.Qiurong.; Karlberg, T.; Balaji, G.; Uttamchandani, M.; Suresh, V.; Schüler, H.; Low, B.Chuan.; Sivaraman, J., 2012:
Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism

Preller, M.; Bauer, S.; Adamek, N.; Fujita-Becker, S.; Fedorov, R.; Geeves, M.A.; Manstein, D.J., 2011:
Structural basis for the allosteric interference of myosin function by reactive thiol region mutations G680A and G680V

Walldén, K.; Nordlund, Pär., 2011:
Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5'-nucleotidase II

Tadeo, X.; López-Méndez, B.; Trigueros, T.; Laín, A.; Castaño, D.; Millet, O., 2010:
Structural basis for the aminoacid composition of proteins from halophilic archea

Lee, C-Chung.; Lin, L-Ling.; Chan, W-Eng.; Ko, T-Ping.; Lai, J-Shiun.; Wang, A.H-J., 2014:
Structural basis for the antibody neutralization of herpes simplex virus

Horiuchi, M.; Takeuchi, K.; Noda, N.; Muroya, N.; Suzuki, T.; Nakamura, T.; Kawamura-Tsuzuku, J.; Takahasi, K.; Yamamoto, T.; Inagaki, F., 2009:
Structural basis for the antiproliferative activity of the Tob-hCaf1 complex

Valkov, E.; Dean, J.C.; Jani, D.; Kuhlmann, S.I.; Stewart, M., 2013:
Structural basis for the assembly and disassembly of mRNA nuclear export complexes

Scholey, J.E.; Nithianantham, S.; Scholey, J.M.; Al-Bassam, J., 2014:
Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers

Lefèvre, J.; Savarin, P.; Gans, P.; Hamon, Lïc.; Clément, M-Jeanne.; David, M-Odile.; Bosc, C.; Andrieux, A.; Curmi, P.A., 2013:
Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin

Dames, S.A., 2010:
Structural basis for the association of the redox-sensitive target of rapamycin FATC domain with membrane-mimetic micelles

Goksoy, E.; Ma, Y-Qing.; Wang, X.; Kong, X.; Perera, D.; Plow, E.F.; Qin, J., 2008:
Structural basis for the autoinhibition of talin in regulating integrin activation

Li, D.; Fu, T.Min.; Nan, J.; Liu, C.; Li, L.Fen.; Su, X.Dong., 2012:
Structural basis for the autoinhibition of the C-terminal kinase domain of human RSK1

Gao, X.; Wang, J.; Yu, D-Qi.; Bian, F.; Xie, B-Bin.; Chen, X-Lan.; Zhou, B-Cheng.; Lai, L-Hua.; Wang, Z-Xin.; Wu, J-Wei.; Zhang, Y-Zhong., 2010:
Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family

Westblade, L.F.; Campbell, E.A.; Pukhrambam, C.; Padovan, J.C.; Nickels, B.E.; Lamour, V.; Darst, S.A., 2011:
Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction

Vyas, R.; Zahurancik, W.J.; Suo, Z., 2014:
Structural basis for the binding and incorporation of nucleotide analogs with L-stereochemistry by human DNA polymerase λ

Muhs, M.; Yamamoto, H.; Ismer, J.; Takaku, H.; Nashimoto, M.; Uchiumi, T.; Nakashima, N.; Mielke, T.; Hildebrand, P.W.; Nierhaus, K.H.; Spahn, C.M.T., 2011:
Structural basis for the binding of IRES RNAs to the head of the ribosomal 40S subunit

Federici, L.; L.S.erzo, C.; Pezzola, S.; D.M.tteo, A.; Scaloni, F.; Federici, G.; Caccuri, A.Maria., 2009:
Structural basis for the binding of the anticancer compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol to human glutathione s-transferases

Esaki, K.; Yoshinaga, S.; Tsuji, T.; Toda, E.; Terashima, Y.; Saitoh, T.; Kohda, D.; Kohno, T.; Osawa, M.; Ueda, T.; Shimada, I.; Matsushima, K.; Terasawa, H., 2015:
Structural basis for the binding of the membrane-proximal C-terminal region of chemokine receptor CCR2 with the cytosolic regulator FROUNT

Chao, K.L.; Gorlatova, N.V.; Eisenstein, E.; Herzberg, O., 2015:
Structural basis for the binding specificity of human Recepteur d'Origine Nantais (RON) receptor tyrosine kinase to macrophage-stimulating protein

Du, J.; Yang, H.; Zhang, D.; Wang, J.; Guo, H.; Peng, B.; Guo, Y.; Ding, J., 2010:
Structural basis for the blockage of IL-2 signaling by therapeutic antibody basiliximab

Teramoto, T.; Sakakibara, Y.; Liu, M-Cheh.; Suiko, M.; Kimura, M.; Kakuta, Y., 2009:
Structural basis for the broad range substrate specificity of a novel mouse cytosolic sulfotransferase--mSULT1D1

Espaillat, A.; Carrasco-López, César.; Bernardo-García, N.; Pietrosemoli, N.; Otero, L.H.; Álvarez, L.; de Pedro, M.A.; Pazos, F.; Davis, B.M.; Waldor, M.K.; Hermoso, J.A.; Cava, F., 2014:
Structural basis for the broad specificity of a new family of amino-acid racemases

Dickmanns, A.; Damerow, S.; Neumann, P.; Schulz, E-Christian.; Lamerz, A-Christin.; Routier, Fçoise.H.; Ficner, R., 2011:
Structural basis for the broad substrate range of the UDP-sugar pyrophosphorylase from Leishmania major

Liénard, Bît.M.R.; Garau, G.; Horsfall, L.; Karsisiotis, A.I.; Damblon, C.; Lassaux, P.; Papamicael, C.; Roberts, G.C.K.; Galleni, M.; Dideberg, O.; Frère, J-Marie.; Schofield, C.J., 2008:
Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols

Xu, X.; Vysotskaya, Z.V.; Liu, Q.; Zhou, L., 2011:
Structural basis for the cAMP-dependent gating in the human HCN4 channel

Fibriansah, G.; Veetil, V.Puthan.; Poelarends, G.J.; Thunnissen, A-Mark.W.H., 2011:
Structural basis for the catalytic mechanism of aspartate ammonia lyase

Liu, S.; Mansour, M.N.; Dillman, K.S.; Perez, J.R.; Danley, D.E.; Aeed, P.A.; Simons, S.P.; Lemotte, P.K.; Menniti, F.S., 2008:
Structural basis for the catalytic mechanism of human phosphodiesterase 9

Bai, Y.; Li, M.; Hwang, T-Chang., 2012:
Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7)

Zhang, N.; Jiang, Y.; Zou, J.; Yu, Q.; Zhao, W., 2008:
Structural basis for the complete loss of GSK3beta catalytic activity due to R96 mutation investigated by molecular dynamics study

Willmott, P.R.; Pauli, S.A.; Herger, R.; Schlepütz, C.M.; Martoccia, D.; Patterson, B.D.; Delley, B.; Clarke, R.; Kumah, D.; Cionca, C.; Yacoby, Y., 2007:
Structural basis for the conducting interface between LaAlO3 and SrTiO3

Lee, M-Sung.; Ha, J-Hyang.; Yoon, H.Sup.; Lee, C-Kil.; Chi, S-Wook., 2014:
Structural basis for the conserved binding mechanism of MDM2-inhibiting peptides and anti-apoptotic Bcl-2 family proteins

Nishio, M.; Kamiya, Y.; Mizushima, T.; Wakatsuki, S.; Sasakawa, H.; Yamamoto, K.; Uchiyama, S.; Noda, M.; McKay, A.R.; Fukui, K.; Hauri, H-Peter.; Kato, K., 2010:
Structural basis for the cooperative interplay between the two causative gene products of combined factor V and factor VIII deficiency

Kuglstatter, A.; Mueller, F.; Kusznir, E.; Gsell, B.; Stihle, M.; Thoma, R.; Benz, J.; Aspeslet, L.; Freitag, D.; Hennig, M., 2011:
Structural basis for the cyclophilin A binding affinity and immunosuppressive potency of E-ISA247 (voclosporin)

Tokuoka, K.; Kusakari, Y.; Krungkrai, S.R.; Matsumura, H.; Kai, Y.; Krungkrai, J.; Horii, T.; Inoue, T., 2007:
Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by Plasmodium falciparum OMP decarboxylase

Wang, L.Hong.; Jiang, N.; Zhao, B.; Li, X.Dong.; Lu, T.Hong.; Ding, X.Lan.; Huang, X.Hua., 2010:
Structural basis for the decrease in the outward potassium channel current induced by lanthanum

Yu, K.Ran.; Kim, Y.Jun.; Jung, S-Kyeong.; Ku, B.; Park, H.; Cho, S.Yeon.; Jung, H.; Chung, S.J.; Bae, K.Hee.; Lee, S.Chul.; Kim, B.Yeon.; Erikson, R.L.; Ryu, S.Eon.; Kim, S.Jun., 2013:
Structural basis for the dephosphorylating activity of PTPRQ towards phosphatidylinositide substrates

D.M.cco, S.; Chini, M.Giovanna.; Terracciano, S.; Bruno, I.; Riccio, R.; Bifulco, G., 2013:
Structural basis for the design and synthesis of selective HDAC inhibitors

Giaginis, C.; Theocharis, S.; Tsantili-Kakoulidou, A., 2009:
Structural basis for the design of PPAR-gamma ligands: a survey on quantitative structure- activity relationships

Iyaguchi, D.; Kawano, S.; Takada, K.; Toyota, E., 2010:
Structural basis for the design of novel Schiff base metal chelate inhibitors of trypsin

Fox, D.; Burgin, A.B.; Gurney, M.E., 2014:
Structural basis for the design of selective phosphodiesterase 4B inhibitors

Li, W-Fang.; Yu, J.; Ma, X-Xiao.; Teng, Y-Bin.; Luo, M.; Tang, Y-Jun.; Zhou, C-Zhao., 2010:
Structural basis for the different activities of yeast Grx1 and Grx2

Saito, T.; Yano, M.; Kawai, Y.; Asada, A.; Wada, M.; Doi, H.; Hisanaga, S-ichi., 2014:
Structural basis for the different stability and activity between the Cdk5 complexes with p35 and p39 activators

Radin, J.N.; Grass, S.A.; Meng, G.; Cotter, S.E.; Waksman, G.; S.G.me, J.W., 2009:
Structural basis for the differential binding affinities of the HsfBD1 and HsfBD2 domains in the Haemophilus influenzae Hsf adhesin

Findeisen, F.; Minor, D.L., 2011:
Structural basis for the differential effects of CaBP1 and calmodulin on Ca(V)1.2 calcium-dependent inactivation

Endo, T.; Yamano, K.; Kawano, S., 2011:
Structural basis for the disulfide relay system in the mitochondrial intermembrane space

Daughtry, K.D.; Huang, H.; Malashkevich, V.; Patskovsky, Y.; Liu, W.; Ramagopal, U.; Sauder, J.Michael.; Burley, S.K.; Almo, S.C.; Dunaway-Mariano, D.; Allen, K.N., 2013:
Structural basis for the divergence of substrate specificity and biological function within HAD phosphatases in lipopolysaccharide and sialic acid biosynthesis

Ni, F.; Kondrashkina, E.; Wang, Q., 2013:
Structural basis for the divergent evolution of influenza B virus hemagglutinin

Hastie, K.M.; King, L.B.; Zandonatti, M.A.; Saphire, E.Ollmann., 2013:
Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease

Tsuda, K.; Someya, T.; Kuwasako, K.; Takahashi, M.; He, F.; Unzai, S.; Inoue, M.; Harada, T.; Watanabe, S.; Terada, T.; Kobayashi, N.; Shirouzu, M.; Kigawa, T.; Tanaka, A.; Sugano, S.; Güntert, P.; Yokoyama, S.; Muto, Y., 2011:
Structural basis for the dual RNA-recognition modes of human Tra2-β RRM

Liu, S.; Ghalei, H.; Lührmann, R.; Wahl, M.C., 2011:
Structural basis for the dual U4 and U4atac snRNA-binding specificity of spliceosomal protein hPrp31

Luo, J.; Wu, S-Jiun.; Lacy, E.R.; Orlovsky, Y.; Baker, A.; Teplyakov, A.; Obmolova, G.; Heavner, G.A.; Richter, H-Thomas.; Benson, J., 2010:
Structural basis for the dual recognition of IL-12 and IL-23 by ustekinumab

Whittingham, J.L.; Carrero-Lerida, J.; Brannigan, J.A.; Ruiz-Perez, L.M.; Silva, A.P.G.; Fogg, M.J.; Wilkinson, A.J.; Gilbert, I.H.; Wilson, K.S.; González-Pacanowska, D., 2010:
Structural basis for the efficient phosphorylation of AZT-MP (3'-azido-3'-deoxythymidine monophosphate) and dGMP by Plasmodium falciparum type I thymidylate kinase

Sugishima, M.; Sato, H.; Higashimoto, Y.; Harada, J.; Wada, K.; Fukuyama, K.; Noguchi, M., 2014:
Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase

Buer, B.C.; Meagher, J.L.; Stuckey, J.A.; Marsh, E.Neil.G., 2012:
Structural basis for the enhanced stability of highly fluorinated proteins

Vasantha, T.; Attri, P.; Venkatesu, P.; Devi, R.S.Rama., 2013:
Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids

Schiefner, Aé.; Sinz, Q.; Neumaier, I.; Schwab, W.; Skerra, A., 2013:
Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone

Helmetag, V.; Samel, S.A.; Thomas, M.G.; Marahiel, M.A.; Essen, L-Oliver., 2009:
Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis

Meziane-Cherif, D.; Stogios, P.J.; Evdokimova, E.; Savchenko, A.; Courvalin, P., 2014:
Structural basis for the evolution of vancomycin resistance D,D-peptidases

Duca, M.; Trindle, C.O.; Hecht, S.M., 2011:
Structural basis for the exceptional stability of bisaminoacylated nucleotides and transfer RNAs

Wang, Q.; Crevenna, A.H.; Kunze, I.; Mizuno, N., 2014:
Structural basis for the extended CAP-Gly domains of p150(glued) binding to microtubules and the implication for tubulin dynamics

Eiler, D.; Wang, J.; Steitz, T.A., 2015:
Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme

Qian, X.; Gebert, M.; Höpker, J.; Yan, M.; Li, J.; Wiedemann, N.; van der Laan, M.; Pfanner, N.; Sha, B., 2011:
Structural basis for the function of Tim50 in the mitochondrial presequence translocase

Guo, Q.; Yuan, Y.; Xu, Y.; Feng, B.; Liu, L.; Chen, K.; Sun, M.; Yang, Z.; Lei, J.; Gao, N., 2011:
Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy

Zheng, C.; Fasken, M.B.; Marshall, N.J.; Brockmann, C.; Rubinson, M.E.; Wente, S.R.; Corbett, A.H.; Stewart, M., 2010:
Structural basis for the function of the Saccharomyces cerevisiae Gfd1 protein in mRNA nuclear export

Lo, J.; D.N.rdo, G.; Griswold, J.; Egbuta, C.; Jiang, W.; Gilardi, G.; Ghosh, D., 2013:
Structural basis for the functional roles of critical residues in human cytochrome p450 aromatase

Vander Kooi, C.W.; Taylor, A.O.; Pace, R.M.; Meekins, D.A.; Guo, H-Fu.; Kim, Y.; Gentry, M.S., 2010:
Structural basis for the glucan phosphatase activity of Starch Excess4

Zavialov, A.V.; Yu, X.; Spillmann, D.; Lauvau, Gégoire.; Zavialov, A.V., 2010:
Structural basis for the growth factor activity of human adenosine deaminase ADA2

Numoto, N.; Nakagawa, T.; Kita, A.; Sasayama, Y.; Fukumori, Y.; Miki, K., 2008:
Structural basis for the heterotropic and homotropic interactions of invertebrate giant hemoglobin

Vandecaetsbeek, I.; Trekels, M.; D.M.eyer, M.; Ceulemans, H.; Lescrinier, E.; Raeymaekers, L.; Wuytack, F.; Vangheluwe, P., 2009:
Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump

Chen, Y-Wen.; Jhan, C-Ru.; Neidle, S.; Hou, M-Hon., 2015:
Structural basis for the identification of an i-motif tetraplex core with a parallel-duplex junction as a structural motif in CCG triplet repeats

Lin, S-Yen.; Liu, C-Ling.; Chang, Y-Ming.; Zhao, J.; Perlman, S.; Hou, M-Hon., 2014:
Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target

Mei, G.; Dong, J.; Li, Z.; Liu, S.; Liu, Y.; Sun, M.; Liu, G.; Su, Z.; Liu, J., 2015:
Structural basis for the immunomodulatory function of cysteine protease inhibitor from human roundworm Ascaris lumbricoides

Ren, J.; Chamberlain, P.P.; Stamp, A.; Short, S.A.; Weaver, K.L.; Romines, K.R.; Hazen, R.; Freeman, A.; Ferris, R.G.; Andrews, C.Webster.; Boone, L.; Chan, J.H.; Stammers, D.K., 2008:
Structural basis for the improved drug resistance profile of new generation benzophenone non-nucleoside HIV-1 reverse transcriptase inhibitors

Peng, Y-Hui.; Coumar, M.Selvaraj.; Leou, J-Shyang.; Wu, J-Sung.; Shiao, H-Yi.; Lin, C-Hui.; Lin, W-Hsing.; Lien, T.Wen.; Chen, X.; Hsu, J.T-A.; Chao, Y-Sheng.; Huang, C-Fu.; Lyu, P-Chiang.; Hsieh, H-Pang.; Wu, S-Ying., 2011:
Structural basis for the improved potency of peroxisome proliferator-activated receptor (PPAR) agonists

Koag, M-Chul.; Lai, L.; Lee, S., 2015:
Structural basis for the inefficient nucleotide incorporation opposite cisplatin-DNA lesion by human DNA polymerase β

Nguyen Bich, N.; Moeyaert, B.; Van Hecke, K.; Dedecker, P.; Mizuno, H.; Hofkens, J.; Van Meervelt, L., 2013:
Structural basis for the influence of a single mutation K145N on the oligomerization and photoswitching rate of Dronpa

Sun, Q.; Collins, R.; Huang, S.; Holmberg-Schiavone, L.; Anand, G.S.; Tan, C-Hong.; van-den-Berg, S.; Deng, L-Wen.; Moore, P.K.; Karlberg, T.; Sivaraman, J., 2008:
Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S

Tsai, L-Chu.; Hsiao, C-Hua.; Liu, W-Yan.; Yin, L-Ming.; Shyur, L-Fen., 2011:
Structural basis for the inhibition of 1,3-1,4-β-D-glucanase by noncompetitive calcium ion and competitive Tris inhibitors

Zhang, L.; Zhang, H.; Zheng, X.; Zhao, Y.; Chen, S.; Chen, Y.; Zhang, R.; Li, Q.; Hu, X., 2014:
Structural basis for the inhibition of AKR1B10 by caffeic acid phenethyl ester (CAPE)

Lülf, S.; Matz, J.; Rouyez, M-Christine.; Järviluoma, A.; Saksela, K.; Benichou, S.; Geyer, M., 2014:
Structural basis for the inhibition of HIV-1 Nef by a high-affinity binding single-domain antibody

Leu, J.I-Ju.; Zhang, P.; Murphy, M.E.; Marmorstein, R.; George, D.L., 2015:
Structural basis for the inhibition of HSP70 and DnaK chaperones by small-molecule targeting of a C-terminal allosteric pocket

Kim, H.Sook.; Kim, J.; Im, H.Na.; Yoon, J.Young.; An, D.Ri.; Yoon, H.Jin.; Kim, J.Young.; Min, H.Kyeoung.; Kim, S-Jong.; Lee, J.Young.; Han, B.Woo.; Suh, S.Won., 2013:
Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains

Nilsson, M.T.; Krajewski, W.W.; Yellagunda, S.; Prabhumurthy, S.; Chamarahally, G.N.; Siddamadappa, C.; Srinivasa, B.R.; Yahiaoui, S.; Larhed, M.; Karlén, A.; Jones, T.Alwyn.; Mowbray, S.L., 2009:
Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors

Su, H-Poo.; Yan, Y.; Prasad, G.Sridhar.; Smith, R.F.; Daniels, C.L.; Abeywickrema, P.D.; Reid, J.C.; Loughran, H.Marie.; Kornienko, M.; Sharma, S.; Grobler, J.A.; Xu, B.; Sardana, V.; Allison, T.J.; Williams, P.D.; Darke, P.L.; Hazuda, D.J.; Munshi, S., 2010:
Structural basis for the inhibition of RNase H activity of HIV-1 reverse transcriptase by RNase H active site-directed inhibitors

Marek, M.; Kannan, S.; Hauser, A-Thomas.; Moraes Mourão, M.; Caby, Séphanie.; Cura, V.; Stolfa, D.A.; Schmidtkunz, K.; Lancelot, J.; Andrade, L.; Renaud, J-Paul.; Oliveira, G.; Sippl, W.; Jung, M.; Cavarelli, J.; Pierce, R.J.; Romier, C., 2014:
Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni

Grishin, A.M.; Condos, T.E.C.; Barber, K.R.; Campbell-Valois, Fçois-Xavier.; Parsot, C.; Shaw, G.S.; Cygler, M., 2015:
Structural basis for the inhibition of host protein ubiquitination by Shigella effector kinase OspG

Wu, D.; Li, Y.; Song, G.; Cheng, C.; Zhang, R.; Joachimiak, A.; Shaw, N.; Liu, Z-Jie., 2009:
Structural basis for the inhibition of human 5,10-methenyltetrahydrofolate synthetase by N10-substituted folate analogues

Lingaraju, G.M.; Davis, C.Ainsley.; Setser, J.W.; Samson, L.D.; Drennan, C.L., 2011:
Structural basis for the inhibition of human alkyladenine DNA glycosylase (AAG) by 3,N4-ethenocytosine-containing DNA

Um, S-Hyeon.; Kim, J-Sik.; Kim, K.; Kim, N.; Cho, H-Soo.; Ha, N-Chul., 2014:
Structural basis for the inhibition of human lysozyme by PliC from Brucella abortus

Aoyagi-Scharber, M.; Gardberg, A.S.; Yip, B.K.; Wang, B.; Shen, Y.; Fitzpatrick, P.A., 2015:
Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

Lebreton, A.; Job, V.; Ragon, M.; L.M.nnier, A.; Dessen, Aéa.; Cossart, P.; Bierne, Hélène., 2014:
Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA

McGowan, S.; Porter, C.J.; Lowther, J.; Stack, C.M.; Golding, S.J.; Skinner-Adams, T.S.; Trenholme, K.R.; Teuscher, F.; Donnelly, S.M.; Grembecka, J.; Mucha, A.; Kafarski, P.; Degori, R.; Buckle, A.M.; Gardiner, D.L.; Whisstock, J.C.; Dalton, J.P., 2009:
Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase

Miyano, N.; Kinoshita, T.; Nakai, R.; Kirii, Y.; Yokota, K.; Tada, T., 2010:
Structural basis for the inhibitor recognition of human Lyn kinase domain

Ipekchian, N.M., 2012:
Structural basis for the inhibitory function of the parietal cortex efferent systems

Mader, P.; Brynda, Jří.; Gitto, R.; Agnello, S.; Pachl, P.; Supuran, C.T.; Chimirri, A.; Řezáčová, Pína., 2011 :
Structural basis for the interaction between carbonic anhydrase and 1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamides

Long, A.; Zhao, H.; Huang, X., 2012:
Structural basis for the interaction between casein kinase 1 delta and a potent and selective inhibitor

García-Mayoral, Mía.F.; Martínez-Moreno, Mónica.; Albar, J.P.; Rodríguez-Crespo, I.; Bruix, M., 2010:
Structural basis for the interaction between dynein light chain 1 and the glutamate channel homolog GRINL1A

Karlberg, T.; Markova, N.; Johansson, I.; Hammarström, M.; Schütz, P.; Weigelt, J.; Schüler, H., 2010:
Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor

Wegener, K.L.; Basran, J.; Bagshaw, C.R.; Campbell, I.D.; Roberts, G.C.K.; Critchley, D.R.; Barsukov, I.L., 2008:
Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain

Huang, Q.; Szebenyi, D.M.E., 2011:
Structural basis for the interaction between the growth factor-binding protein GRB10 and the E3 ubiquitin ligase NEDD4

Hao, W.; Collier, S.M.; Moffett, P.; Chai, J., 2014:
Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2)

Ellisdon, A.M.; Jani, D.; Köhler, A.; Hurt, E.; Stewart, M., 2010:
Structural basis for the interaction between yeast Spt-Ada-Gcn5 acetyltransferase (SAGA) complex components Sgf11 and Sus1

Zhou, B.; Arnett, D.R.; Yu, X.; Brewster, A.; Sowd, G.A.; Xie, C.L.; Vila, S.; Gai, D.; Fanning, E.; Chen, X.S., 2012:
Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase α-primase

Spitaleri, A.; Mari, S.; Curnis, F.; Traversari, C.; Longhi, R.; Bordignon, C.; Corti, A.; Rizzardi, G-Paolo.; Musco, G., 2008:
Structural basis for the interaction of isoDGR with the RGD-binding site of alphavbeta3 integrin

Brown, T.; Charlier, P.; Herman, Rël.; Schofield, C.J.; Sauvage, E., 2010:
Structural basis for the interaction of lactivicins with serine beta-lactamases

Edrington, T.C.; Kintz, E.; Goldberg, J.B.; Tamm, L.K., 2011:
Structural basis for the interaction of lipopolysaccharide with outer membrane protein H (OprH) from Pseudomonas aeruginosa

Qamra, R.; Hubbard, S.R., 2014:
Structural basis for the interaction of the adaptor protein grb14 with activated ras

Kobayashi, H.; Utsunomiya, H.; Yamanaka, H.; Sei, Y.; Katunuma, N.; Okamoto, K.; Tsuge, H., 2009:
Structural basis for the kexin-like serine protease from Aeromonas sobria as sepsis-causing factor

Yin, Q.; Lamothe, B.; Darnay, B.G.; Wu, H., 2009:
Structural basis for the lack of E2 interaction in the RING domain of TRAF2

Faucher, Fédérick.; Wallace, S.S.; Doublié, S., 2009:
Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase

Hao, S.; Hamel, D.; Zhou, H.; Dahlquist, F.W., 2009:
Structural basis for the localization of the chemotaxis phosphatase CheZ by CheAS

Chiba, S.; Itoh, Y.; Sekine, S-ichi.; Yokoyama, S., 2010:
Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine

Lim, K.; Pullalarevu, S.; Surabian, K.Talin.; Howard, A.; Suzuki, T.; Moult, J.; Herzberg, O., 2010:
Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member

Hattori, M.; Nureki, O., 2008:
Structural basis for the mechanism of Mg2 homeostasis by MgtE transporter

Xia, D.; Esser, L.; Yu, L.; Yu, C-An., 2007:
Structural basis for the mechanism of electron bifurcation at the quinol oxidation site of the cytochrome bc1 complex

Berrisford, J.M.; Sazanov, L.A., 2009:
Structural basis for the mechanism of respiratory complex I

Husain, N.; Obranic, S.; Koscinski, L.; Seetharaman, J.; Babic, F.; Bujnicki, J.M.; Maravic-Vlahovicek, G.; Sivaraman, J., 2011:
Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit

Husain, N.; Tkaczuk, K.L.; Tulsidas, S.Rajesh.; Kaminska, K.H.; Cubrilo, S.; Maravić-Vlahovicek, G.; Bujnicki, J.M.; Sivaraman, J., 2010:
Structural basis for the methylation of G1405 in 16S rRNA by aminoglycoside resistance methyltransferase Sgm from an antibiotic producer: a diversity of active sites in m7G methyltransferases

Kuhlmann, S.I.; Valkov, E.; Stewart, M., 2014:
Structural basis for the molecular recognition of polyadenosine RNA by Nab2 Zn fingers

Ohnishi, H.; Tochio, H.; Kato, Z.; Orii, K.E.; Li, A.; Kimura, T.; Hiroaki, H.; Kondo, N.; Shirakawa, M., 2009:
Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling

Cong, S.; Ma, X-Tu.; Li, Y-Xue.; Wang, J-Fang., 2014:
Structural basis for the mutation-induced dysfunction of human CYP2J2: a computational study

Saponaro, A.; Pauleta, S.R.; Cantini, F.; Matzapetakis, M.; Hammann, C.; Donadoni, C.; Hu, L.; Thiel, G.; Banci, L.; Santoro, B.; Moroni, A., 2015:
Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function

Kim, D.Young.; Kwon, E.; Choi, J.; Hwang, H-Yeon.; Kim, K.Kyu., 2010:
Structural basis for the negative regulation of bacterial stress response by RseB

Tang, X.; Yang, C.; Gu, Y.; Song, C.; Zhang, X.; Wang, Y.; Zhang, J.; Hew, C.Leong.; Li, S.; Xia, N.; Sivaraman, J., 2011:
Structural basis for the neutralization and genotype specificity of hepatitis E virus

Xia, T.; Liang, S.; Wang, H.; Hu, S.; Sun, Y.; Yu, X.; Han, J.; Li, J.; Guo, S.; Dai, J.; Lou, Z.; Guo, Y., 2014:
Structural basis for the neutralization and specificity of Staphylococcal enterotoxin B against its MHC Class II binding site

Landrieu, I.; Hanoulle, X.; Bonachera, F.; Hamel, A.; Sibille, N.; Yin, Y.; Wieruszeski, J-Michel.; Horvath, D.; Wei, Q.; Vuagniaux, Gégoire.; Lippens, G., 2010:
Structural basis for the non-immunosuppressive character of the cyclosporin A analogue Debio 025

Kim, O.V.; Litvinov, R.I.; Weisel, J.W.; Alber, M.S., 2015:
Structural basis for the nonlinear mechanics of fibrin networks under compression

Byrnes, L.J.; Sondermann, H., 2011:
Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A

Puranik, S.; Acajjaoui, S.; Conn, S.; Costa, L.; Conn, V.; Vial, A.; Marcellin, R.; Melzer, R.; Brown, E.; Hart, D.; Theißen, Günter.; Silva, C.S.; Parcy, Fçois.; Dumas, R.; Nanao, M.; Zubieta, C., 2015:
Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis

Bjelić, Sša.; Wieser, M.; Frey, D.; Stirnimann, C.U.; Chance, M.R.; Jaussi, R.; Steinmetz, M.O.; Kammerer, R.A., 2014:
Structural basis for the oligomerization-state switch from a dimer to a trimer of an engineered cortexillin-1 coiled-coil variant

Morita, H.; Wanibuchi, K.; Nii, H.; Kato, R.; Sugio, S.; Abe, I., 2010:
Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa

Zander, U.; Faust, A.; Klink, Börn.U.; de Sanctis, D.; Panjikar, S.; Quentmeier, A.; Bardischewsky, F.; Friedrich, C.G.; Scheidig, A.J., 2011:
Structural basis for the oxidation of protein-bound sulfur by the sulfur cycle molybdohemo-enzyme sulfane dehydrogenase SoxCD

Carpentier, P.; Violot, S.; Blanchoin, L.; Bourgeois, D., 2009:
Structural basis for the phototoxicity of the fluorescent protein KillerRed

Colley, K.J., 2010:
Structural basis for the polysialylation of the neural cell adhesion molecule

Long, A.M.; Zhao, H.; Huang, X., 2013:
Structural basis for the potent and selective inhibition of casein kinase 1 epsilon

Donkor, I.O.; Assefa, H.; Liu, J., 2008:
Structural basis for the potent calpain inhibitory activity of peptidyl alpha-ketoacids

D.M.cco, S.; Mazué, Fédéric.; Daquino, C.; Spatafora, C.; Delmas, D.; Latruffe, N.; Tringali, C.; Riccio, R.; Bifulco, G., 2011:
Structural basis for the potential antitumour activity of DNA-interacting benzo[kl]xanthene lignans

Li, Y.; Depontieu, F.R.; Sidney, J.; Salay, T.M.; Engelhard, V.H.; Hunt, D.F.; Sette, A.; Topalian, S.L.; Mariuzza, R.A., 2010:
Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells

Xu, H.; He, X.; Zheng, H.; Huang, L.J.; Hou, F.; Yu, Z.; de la Cruz, M.Jason.; Borkowski, B.; Zhang, X.; Chen, Z.J.; Jiang, Q-Xing., 2014:
Structural basis for the prion-like MAVS filaments in antiviral innate immunity

Whitehouse, C.J.C.; Yang, W.; Yorke, J.A.; Rowlatt, B.C.; Strong, A.J.F.; Blanford, C.F.; Bell, S.G.; Bartlam, M.; Wong, L-Lok.; Rao, Z., 2011:
Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3)

Biljan, I.; Giachin, G.; Ilc, G.; Zhukov, I.; Plavec, J.; Legname, G., 2012:
Structural basis for the protective effect of the human prion protein carrying the dominant-negative E219K polymorphism

D'ambrosio, K.; Lopez, M.; Dathan, N.A.; Ouahrani-Bettache, S.; Köhler, S.; Ascione, G.; Monti, S.Maria.; Winum, J-Yves.; D.S.mone, G., 2014:
Structural basis for the rational design of new anti-Brucella agents: the crystal structure of the C366S mutant of L-histidinol dehydrogenase from Brucella suis

Shomura, Y.; Higuchi, Y., 2012:
Structural basis for the reaction mechanism of S-carbamoylation of HypE by HypF in the maturation of [NiFe]-hydrogenases

Kim, H.; Choi, J.; Kim, T.; Lokanath, N.K.; Ha, S.Chul.; Suh, S.Won.; Hwang, H-Yeon.; Kim, K.Kyu., 2010:
Structural basis for the reaction mechanism of UDP-glucose pyrophosphorylase

Lu, D.; Silhan, J.; MacDonald, J.T.; Carpenter, E.P.; Jensen, K.; Tang, C.M.; Baldwin, G.S.; Freemont, P.S., 2013:
Structural basis for the recognition and cleavage of abasic DNA in Neisseria meningitidis

Schulz, E.Christian.; Schwarzer, D.; Frank, M.; Stummeyer, K.; Mühlenhoff, M.; Dickmanns, A.; Gerardy-Schahn, R.; Ficner, R., 2010:
Structural basis for the recognition and cleavage of polysialic acid by the bacteriophage K1F tailspike protein EndoNF

Vangone, A.; Abdel-Azeim, S.; Caputo, I.; Sblattero, D.; D.N.ro, R.; Cavallo, L.; Oliva, R., 2015:
Structural basis for the recognition in an idiotype-anti-idiotype antibody complex related to celiac disease

Yu, E.Dawen.; Girardi, E.; Wang, J.; Mac, T-Thi.; Yu, K.O.A.; Van Calenbergh, S.; Porcelli, S.A.; Zajonc, D.M., 2012:
Structural basis for the recognition of C20:2-αGalCer by the invariant natural killer T cell receptor-like antibody L363

Mei, K.; Jin, Z.; Ren, F.; Wang, Y.; Chang, Z.; Wang, X., 2014:
Structural basis for the recognition of RNA polymerase II C-terminal domain by CREPT and p15RS

Tunnicliffe, R.B.; Hautbergue, G.M.; Kalra, P.; Jackson, B.R.; Whitehouse, A.; Wilson, S.A.; Golovanov, A.P., 2011:
Structural basis for the recognition of cellular mRNA export factor REF by herpes viral proteins HSV-1 ICP27 and HVS ORF57

Kropachev, K.; Ding, S.; Terzidis, M.A.; Masi, A.; Liu, Z.; Cai, Y.; Kolbanovskiy, M.; Chatgilialoglu, C.; Broyde, S.; Geacintov, N.E.; Shafirovich, V., 2014:
Structural basis for the recognition of diastereomeric 5',8-cyclo-2'-deoxypurine lesions by the human nucleotide excision repair system

Murzina, N.V.; Pei, X-Yuan.; Zhang, W.; Sparkes, M.; Vicente-Garcia, J.; Pratap, J.Venkatesh.; McLaughlin, S.H.; Ben-Shahar, T.Rolef.; Verreault, A.; Luisi, B.F.; Laue, E.D., 2008:
Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46

Spindler, N.; Diestel, U.; Stump, J.D.; Wiegers, A-Katharina.; Winkler, T.H.; Sticht, H.; Mach, M.; Muller, Y.A., 2015:
Structural basis for the recognition of human cytomegalovirus glycoprotein B by a neutralizing human antibody

Kim, H.Sook.; Kim, J.; Im, H.Na.; An, D.Ri.; Lee, M.; Hesek, D.; Mobashery, S.; Kim, J.Young.; Cho, K.; Yoon, H.Jin.; Han, B.Woo.; Lee, B.Il.; Suh, S.Won., 2015:
Structural basis for the recognition of muramyltripeptide by Helicobacter pylori Csd4, a D,L-carboxypeptidase controlling the helical cell shape

Schiebel, J.; Kapilashrami, K.; Fekete, A.; Bommineni, G.R.; Schaefer, C.M.; Mueller, M.J.; Tonge, P.J.; Kisker, C., 2014:
Structural basis for the recognition of mycolic acid precursors by KasA, a condensing enzyme and drug target from Mycobacterium tuberculosis

Koshiba, S.; Li, H.; Motoda, Y.; Tomizawa, T.; Kasai, T.; Tochio, N.; Yabuki, T.; Harada, T.; Watanabe, S.; Tanaka, A.; Shirouzu, M.; Kigawa, T.; Yamamoto, T.; Yokoyama, S., 2010:
Structural basis for the recognition of nucleophosmin-anaplastic lymphoma kinase oncoprotein by the phosphotyrosine binding domain of Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target-2

Gao, D.; Ashraf, M.Z.; Kar, N.S.; Lin, D.; Sayre, L.M.; Podrez, E.A., 2010:
Structural basis for the recognition of oxidized phospholipids in oxidized low density lipoproteins by class B scavenger receptors CD36 and SR-BI

Jenkins, R.J.; Heslip, K.A.; Meagher, J.L.; Stuckey, J.A.; Dotson, G.D., 2014:
Structural basis for the recognition of peptide RJPXD33 by acyltransferases in lipid A biosynthesis

Mardones, G.A.; Burgos, P.V.; Lin, Y.; Kloer, D.P.; Magadán, J.G.; Hurley, J.H.; Bonifacino, J.S., 2013:
Structural basis for the recognition of tyrosine-based sorting signals by the μ3A subunit of the AP-3 adaptor complex

Ishibashi, K.; Kezuka, Y.; Kobayashi, C.; Kato, M.; Inoue, T.; Nonaka, T.; Ishikawa, M.; Matsumura, H.; Katoh, E., 2014:
Structural basis for the recognition-evasion arms race between Tomato mosaic virus and the resistance gene Tm-1

Lucas, Mía.; Gaspar, A.H.; Pallara, C.; Rojas, A.Lucely.; Fernández-Recio, J.; Machner, M.P.; Hierro, A., 2014:
Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5

Zeqiraj, E.; Tang, X.; Hunter, R.W.; García-Rocha, M.; Judd, A.; Deak, M.; von Wilamowitz-Moellendorff, A.; Kurinov, I.; Guinovart, J.J.; Tyers, M.; Sakamoto, K.; Sicheri, F., 2014:
Structural basis for the recruitment of glycogen synthase by glycogenin

Shukla, J.; Gupta, R.; Thakur, K.Gopal.; Gokhale, R.; Gopal, B., 2015:
Structural basis for the redox sensitivity of the Mycobacterium tuberculosis SigK-RskA σ-anti-σ complex

Liu, Z.; Vogel, H.J., 2012:
Structural basis for the regulation of L-type voltage-gated calcium channels: interactions between the N-terminal cytoplasmic domain and Ca(2+)-calmodulin

Llácer, Jé.L.; Espinosa, J.; Castells, M.A.; Contreras, Aón.; Forchhammer, K.; Rubio, V., 2010:
Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII

Cao, L-Sha.; Wang, J.; Chen, Y.; Deng, H.; Wang, Z-Xin.; Wu, J-Wei., 2014:
Structural basis for the regulation of maternal embryonic leucine zipper kinase

Steichen, J.M.; Kuchinskas, M.; Keshwani, M.M.; Yang, J.; Adams, J.A.; Taylor, S.S., 2012:
Structural basis for the regulation of protein kinase A by activation loop phosphorylation

Kumar, G.Senthil.; Zettl, H.; Page, R.; Peti, W., 2013:
Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution

Deng, Z.; Lehmann, K.C.; Li, X.; Feng, C.; Wang, G.; Zhang, Q.; Qi, X.; Yu, L.; Zhang, X.; Feng, W.; Wu, W.; Gong, P.; Tao, Y.; Posthuma, C.C.; Snijder, E.J.; Gorbalenya, A.E.; Chen, Z., 2014:
Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase

James, T.W.; Frias-Staheli, N.; Bacik, J-Paul.; Levingston Macleod, J.M.; Khajehpour, M.; García-Sastre, A.; Mark, B.L., 2011:
Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease

Purohit, R.; Sethumadhavan, R., 2010:
Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease

Michielssens, S.; Moors, S.L.C.; Froeyen, M.; Herdewijn, P.; Ceulemans, A., 2011:
Structural basis for the role of LYS220 as proton donor for nucleotidyl transfer in HIV-1 reverse transcriptase

Das, K.; Bandwar, R.P.; White, K.L.; Feng, J.Y.; Sarafianos, S.G.; Tuske, S.; Tu, X.; Clark, A.D.; Boyer, P.L.; Hou, X.; Gaffney, B.L.; Jones, R.A.; Miller, M.D.; Hughes, S.H.; Arnold, E., 2010:
Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance

Kovaleva, E.G.; Lipscomb, J.D., 2013:
Structural basis for the role of tyrosine 257 of homoprotocatechuate 2,3-dioxygenase in substrate and oxygen activation

Jobichen, C.; Chakraborty, S.; Li, M.; Zheng, J.; Joseph, L.; Mok, Y-Keung.; Leung, K.Yin.; Sivaraman, J., 2011:
Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda

Thomas, J.L.; Bucholtz, K.M.; Sun, J.; Mack, V.L.; Kacsoh, B., 2008:
Structural basis for the selective inhibition of human 3beta-hydroxysteroid dehydrogenase 1 in human breast tumor MCF-7 cells

Choi, S.; Yamashita, E.; Yasuhara, N.; Song, J.; Son, S-Young.; Won, Y.Han.; Hong, H.Rim.; Shin, Y.Sik.; Sekimoto, T.; Park, I.Yeong.; Yoneda, Y.; Lee, S.Jae., 2015:
Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin β

Ramachandran, S.; Temple, B.R.; Chaney, S.G.; Dokholyan, N.V., 2009:
Structural basis for the sequence-dependent effects of platinum-DNA adducts

Tsuda, K.; Kuwasako, K.; Takahashi, M.; Someya, T.; Inoue, M.; Terada, T.; Kobayashi, N.; Shirouzu, M.; Kigawa, T.; Tanaka, A.; Sugano, S.; Güntert, P.; Muto, Y.; Yokoyama, S., 2009:
Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3

Arolas, J.L.; Broder, C.; Jefferson, T.; Guevara, T.; Sterchi, E.E.; Bode, W.; Stöcker, W.; Becker-Pauly, C.; Gomis-Rüth, F.Xavier., 2013:
Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane

Flügel, V.; Vrabel, M.; Schneider, S., 2015:
Structural basis for the site-specific incorporation of lysine derivatives into proteins

Circolone, F.; Granzin, J.; Jentzsch, K.; Drepper, T.; Jaeger, K-Erich.; Willbold, D.; Krauss, U.; Batra-Safferling, R., 2012:
Structural basis for the slow dark recovery of a full-length LOV protein from Pseudomonas putida

An, Y.Jun.; Ahn, B-Eun.; Han, A-Reum.; Kim, H-Mi.; Chung, K.Min.; Shin, J-Ho.; Cho, Y-Bok.; Roe, J-Hye.; Cha, S-Shin., 2009:
Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition

Nishimura, A.; Kitano, K.; Takasaki, J.; Taniguchi, M.; Mizuno, N.; Tago, K.; Hakoshima, T.; Itoh, H., 2010:
Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule

Wei, H.; Wang, D.; Qian, Y.; Liu, X.; Fan, S.; Yin, H-Sheng.; Wang, X., 2015:
Structural basis for the specific recognition of IL-18 by its alpha receptor

Bao, R.; Nair, M.K.M.; Tang, W-kwan.; Esser, L.; Sadhukhan, A.; Holland, R.L.; Xia, D.; Schifferli, D.M., 2013:
Structural basis for the specific recognition of dual receptors by the homopolymeric pH 6 antigen (Psa) fimbriae of Yersinia pestis

Kusano, S.; Kukimoto-Niino, M.; Satta, Y.; Ohsawa, N.; Uchikubo-Kamo, T.; Wakiyama, M.; Ikeda, M.; Terada, T.; Yamamoto, K.; Nishimura, Y.; Shirouzu, M.; Sasazuki, T.; Yokoyama, S., 2014:
Structural basis for the specific recognition of the major antigenic peptide from the Japanese cedar pollen allergen Cry j 1 by HLA-DP5

Fang, P.; Li, X.; Wang, J.; Niu, L.; Teng, M., 2010:
Structural basis for the specificity of the GAE domain of yGGA2 for its accessory proteins Ent3 and Ent5

Garrido, F.; Taylor, J.C.; Alfonso, C.; Markham, G.D.; Pajares, Mía.A., 2012:
Structural basis for the stability of a thermophilic methionine adenosyltransferase against guanidinium chloride

Alcorlo, Mín.; Tortajada, Aín.; Rodríguez de Córdoba, S.; Llorca, O., 2013:
Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin

Ito, K.; Murakami, R.; Mochizuki, M.; Qi, H.; Shimizu, Y.; Miura, K-ichiro.; Ueda, T.; Uchiumi, T., 2013:
Structural basis for the substrate recognition and catalysis of peptidyl-tRNA hydrolase

Shao, C.; Wang, C.; Zang, J., 2016:
Structural basis for the substrate selectivity of PvuRts1I, a 5-hydroxymethylcytosine DNA restriction endonuclease

Kolomytseva, M.; Ferraroni, M.; Chernykh, A.; Golovleva, L.; Scozzafava, A., 2014:
Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP

Kim, D.; San, B.Hoa.; Moh, S.Hyun.; Park, H.; Kim, D.Young.; Lee, S.; Kim, K.Kyu., 2010:
Structural basis for the substrate specificity of PepA from Streptococcus pneumoniae, a dodecameric tetrahedral protease

Jiang, Y-Liang.; Yu, W-Li.; Zhang, J-Wei.; Frolet, C.; Di Guilmi, A-Marie.; Zhou, C-Zhao.; Vernet, T.; Chen, Y., 2012:
Structural basis for the substrate specificity of a novel β-N-acetylhexosaminidase StrH protein from Streptococcus pneumoniae R6

Robins, L.I.; Williams, A.H.; Raetz, C.R.H., 2009:
Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA

Mok, Y-Foong.; Lin, F-Hsu.; Graham, L.A.; Celik, Y.; Braslavsky, I.; Davies, P.L., 2010:
Structural basis for the superior activity of the large isoform of snow flea antifreeze protein

Obeid, S.; Baccaro, A.; Welte, W.; Diederichs, K.; Marx, A., 2011:
Structural basis for the synthesis of nucleobase modified DNA by Thermus aquaticus DNA polymerase

Nueangaudom, A.; Lugsanangarm, K.; Pianwanit, S.; Kokpol, S.; Nunthaboot, N.; Tanaka, F., 2012:
Structural basis for the temperature-induced transition of D-amino acid oxidase from pig kidney revealed by molecular dynamic simulation and photo-induced electron transfer

Sawai, H.; Yamanaka, M.; Sugimoto, H.; Shiro, Y.; Aono, S., 2012:
Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis

Bond, A.D.; Cornett, C.; Larsen, F.H.; Qu, H.; Raijada, D.; Rantanen, J., 2014:
Structural basis for the transformation pathways of the sodium naproxen anhydrate-hydrate system

Kobashigawa, Y.; Tanaka, S.; Inagaki, F., 2008:
Structural basis for the transforming activity of human cancer-related signaling adaptor protein Crk

Raman, S.Sundar.; Gopalakrishnan, R.; Wade, R.C.; Subramanian, V., 2011:
Structural basis for the varying propensities of different amino acids to adopt the collagen conformation

Aragón, E.; Goerner, N.; Xi, Q.; Gomes, T.; Gao, S.; Massagué, J.; Macias, M.J., 2013:
Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-β Pathways

Pérez-Victoria, F.Javier.; Abascal-Palacios, G.; Tascón, I.; Kajava, A.; Magadán, J.G.; Pioro, E.P.; Bonifacino, J.S.; Hierro, A., 2010:
Structural basis for the wobbler mouse neurodegenerative disorder caused by mutation in the Vps54 subunit of the GARP complex

Roy, K.K.; Saxena, A.K., 2011:
Structural basis for the β-adrenergic receptor subtype selectivity of the representative agonists and antagonists

Cha, S-Shin.; An, Y.Jun.; Jeong, C-Sook.; Kim, M-Kyu.; Jeon, J.Ho.; Lee, C-Muk.; Lee, H.Sook.; Kang, S.Gyun.; Lee, J-Hyun., 2014:
Structural basis for the β-lactamase activity of EstU1, a family VIII carboxylesterase

Ngo, J.Chi.Ki.; Jiang, L.; Lin, Z.; Yuan, C.; Chen, Z.; Zhang, X.; Yu, H.; Wang, J.; Lin, L.; Huang, M., 2012:
Structural basis for therapeutic intervention of uPA/uPAR system

Hawwa, R.; Aikens, J.; Turner, R.J.; Santarsiero, B.D.; Mesecar, A.D., 2009:
Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus

Mast, N.; Annalora, A.J.; Lodowski, D.T.; Palczewski, K.; Stout, C.David.; Pikuleva, I.A., 2011:
Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1

Gan, G.; Yi, H.; Chen, M.; Sun, L.; Li, W.; Wu, Y.; Ding, J., 2008:
Structural basis for toxin resistance of beta4-associated calcium-activated potassium (BK) channels

Kamiya, Y.; Kato, K., 2011:
Structural basis for trafficking and quality control of glycoproteins by intracellular lectins

Naganuma, T.; Nomura, N.; Yao, M.; Mochizuki, M.; Uchiumi, T.; Tanaka, I., 2010:
Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes

Kobayashi, K.; Saito, K.; Ishitani, R.; Ito, K.; Nureki, O., 2012:
Structural basis for translation termination by archaeal RF1 and GTP-bound EF1α complex

Bhushan, S.; Meyer, H.; Starosta, A.L.; Becker, T.; Mielke, T.; Berninghausen, O.; Sattler, M.; Wilson, D.N.; Beckmann, R., 2010:
Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide

Lyumkis, D.; Oliveira dos Passos, D.; Tahara, E.B.; Webb, K.; Bennett, E.J.; Vinterbo, S.; Potter, C.S.; Carragher, B.; Joazeiro, C.A.P., 2015:
Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex

Liang, S.; Dai, J.; Hou, S.; Su, L.; Zhang, D.; Guo, H.; Hu, S.; Wang, H.; Rao, Z.; Guo, Y.; Lou, Z., 2013:
Structural basis for treating tumor necrosis factor α (TNFα)-associated diseases with the therapeutic antibody infliximab

Zhou, X.; Keller, R.; Volkmer, R.; Krauss, N.; Scheerer, P.; Hunke, S., 2011:
Structural basis for two-component system inhibition and pilus sensing by the auxiliary CpxP protein

Srikannathasan, V.; English, G.; Bui, N.Khai.; Trunk, K.; O'Rourke, P.E.F.; Rao, V.A.; Vollmer, W.; Coulthurst, S.J.; Hunter, W.N., 2014:
Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens

Li, M.; L.T.ong, I.; Carl, M.A.; Larson, E.T.; Chou, S.; D.L.on, J.A.; Dove, S.L.; Stenkamp, R.E.; Mougous, J.D., 2012:
Structural basis for type VI secretion effector recognition by a cognate immunity protein

Fu, Q-Shan.; Zhou, C-Jie.; Gao, H-Chang.; Jiang, Y-Jun.; Zhou, Z-Ren.; Hong, J.; Yao, W-Ming.; Song, A-Xin.; Lin, D-Hai.; Hu, H-Yu., 2009:
Structural basis for ubiquitin recognition by a novel domain from human phospholipase A2-activating protein

Yagawa, K.; Yamano, K.; Oguro, T.; Maeda, M.; Sato, T.; Momose, T.; Kawano, S.; Endo, T., 2010:
Structural basis for unfolding pathway-dependent stability of proteins: vectorial unfolding versus global unfolding

Xu, H.; Xie, L.; Jiang, X.; Hakkarainen, M.; Chen, J-Bin.; Zhong, G-Ji.; Li, Z-Ming., 2015:
Structural basis for unique hierarchical cylindrites induced by ultrahigh shear gradient in single natural fiber reinforced poly(lactic acid) green composites

Furger, E.; Frei, D.C.; Schibli, R.; Fischer, E.; Prota, A.E., 2013:
Structural basis for universal corrinoid recognition by the cobalamin transport protein haptocorrin

Kolev, K., 2008:
Structural basis for variable lytic susceptibility of fibrin bridging structure with function in fibrinolysis

Tanaka, H.; Nogi, T.; Yasui, N.; Iwasaki, K.; Takagi, J., 2011:
Structural basis for variant-specific neuroligin-binding by α-neurexin

Shimizu, T., 2014:
Structural basis for β-galactosidase associated with lysosomal disease

Obsil, T.; Obsilova, V., 2012:
Structural basis of 14-3-3 protein functions

Fong, D.H.; Berghuis, A.M., 2009:
Structural basis of APH(3')-IIIa-mediated resistance to N1-substituted aminoglycoside antibiotics

Metlagel, Z.; Otomo, C.; Takaesu, G.; Otomo, T., 2014:
Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12

Umitsu, M.; Nishimasu, H.; Noma, A.; Suzuki, T.; Ishitani, R.; Nureki, O., 2009:
Structural basis of AdoMet-dependent aminocarboxypropyl transfer reaction catalyzed by tRNA-wybutosine synthesizing enzyme, TYW2

Verma, S.; Kumar, S.; Gupta, V.Prakash.; Gourinath, S.; Bhatnagar, S.; Bhatnagar, R., 2016:
Structural basis of Bacillus anthracis MoxXT disruption and the modulation of MoxT ribonuclease activity by rationally designed peptides

Denis, C.M.; Chitayat, S.; Plevin, M.J.; Wang, F.; Thompson, P.; Liu, S.; Spencer, H.L.; Ikura, M.; LeBrun, D.P.; Smith, S.P., 2013:
Structural basis of CBP/p300 recruitment in leukemia induction by E2A-PBX1

Ferguson, A.D.; Sheth, P.R.; Basso, A.D.; Paliwal, S.; Gray, K.; Fischmann, T.O.; Le, H.V., 2011:
Structural basis of CX-4945 binding to human protein kinase CK2

Veldkamp, C.T.; Seibert, C.; Peterson, F.C.; De la Cruz, N.B.; Haugner, J.C.; Basnet, H.; Sakmar, T.P.; Volkman, B.F., 2008:
Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12

Adams, J.J.; Gregg, K.; Bayer, E.A.; Boraston, A.B.; Smith, S.P., 2008:
Structural basis of Clostridium perfringens toxin complex formation

Rocha, B.A.M.; Teixeira, C.S.; Silva-Filho, Jé.C.; Nóbrega, R.B.; Alencar, D.B.; Nascimento, K.S.; Freire, V.N.; Gottfried, C.J.S.; Nagano, C.S.; Sampaio, A.H.; Saker-Sampaio, S.; Cavada, B.S.; Delatorre, Pínio., 2015:
Structural basis of ConM binding with resveratrol, an anti-inflammatory and antioxidant polyphenol

Mori, T.; Gotoh, S.; Shirakawa, M.; Hakoshima, T., 2015:
Structural basis of DDB1-and-Cullin 4-associated Factor 1 (DCAF1) recognition by merlin/NF2 and its implication in tumorigenesis by CD44-mediated inhibition of merlin suppression of DCAF1 function

D.I.annes, P.; Malu, S.; Cortes, P.; Aggarwal, A.K., 2013:
Structural basis of DNA ligase IV-Artemis interaction in nonhomologous end-joining

Campbell, N.H.; Parkinson, G.N.; Reszka, A.P.; Neidle, S., 2008:
Structural basis of DNA quadruplex recognition by an acridine drug

Lim, K.Wai.; Phan, A.Tuân., 2013:
Structural basis of DNA quadruplex-duplex junction formation

Doucleff, M.; Pelton, J.G.; Lee, P.S.; Nixon, B.Tracy.; Wemmer, D.E., 2007:
Structural basis of DNA recognition by the alternative sigma-factor, sigma54

Ko, S.; Kang, G.Bu.; Song, S.Min.; Lee, J-Gyu.; Shin, D.Yeon.; Yun, J-Hye.; Sheng, Y.; Cheong, C.; Jeon, Y.Ho.; Jung, Y-Keun.; Arrowsmith, C.H.; Avvakumov, G.V.; Dhe-Paganon, S.; Yoo, Y.Joon.; Eom, S.Hyun.; Lee, W., 2011:
Structural basis of E2-25K/UBB+1 interaction leading to proteasome inhibition and neurotoxicity

Coquelle, Fédéric.M.; Vitre, B.; Arnal, I., 2009:
Structural basis of EB1 effects on microtubule dynamics

Lu, D.; Keck, J.L., 2008:
Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I

Babayeva, N.D.; Wilder, P.J.; Shiina, M.; Mino, K.; Desler, M.; Ogata, K.; Rizzino, A.; Tahirov, T.H., 2010:
Structural basis of Ets1 cooperative binding to palindromic sequences on stromelysin-1 promoter DNA

Babayeva, N.D.; Baranovskaya, O.I.; Tahirov, T.H., 2012:
Structural basis of Ets1 cooperative binding to widely separated sites on promoter DNA

Edeling, M.A.; Diamond, M.S.; Fremont, D.H., 2014:
Structural basis of Flavivirus NS1 assembly and antibody recognition

Mnpotra, J.S.; Qiao, Z.; Cai, J.; Lynch, D.L.; Grossfield, A.; Leioatts, N.; Hurst, D.P.; Pitman, M.C.; Song, Z-Hui.; Reggio, P.H., 2014:
Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex

Stamos, J.L.; Chu, M.Ling-Hon.; Enos, M.D.; Shah, N.; Weis, W.I., 2014:
Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6

Krey, T.; Meola, A.; Keck, Z-Yong.; Damier-Piolle, L.; Foung, S.K.H.; Rey, F.A., 2013:
Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape

Jia, X.; Weber, E.; Tokarev, A.; Lewinski, M.; Rizk, M.; Suarez, M.; Guatelli, J.; Xiong, Y., 2014:
Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1

Stroud, J.C.; Oltman, A.; Han, A.; Bates, D.L.; Chen, L., 2009:
Structural basis of HIV-1 activation by NF-kappaB--a higher-order complex of p50:RelA bound to the HIV-1 LTR

Gustchina, E.; Li, M.; Louis, J.M.; Anderson, D.Eric.; Lloyd, J.; Frisch, C.; Bewley, C.A.; Gustchina, A.; Wlodawer, A.; Clore, G.Marius., 2011:
Structural basis of HIV-1 neutralization by affinity matured Fabs directed against the internal trimeric coiled-coil of gp41

Hinz, A.; Miguet, N.; Natrajan, G.; Usami, Y.; Yamanaka, H.; Renesto, P.; Hartlieb, B.; McCarthy, A.A.; Simorre, J-Pierre.; Göttlinger, H.; Weissenhorn, W., 2010:
Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain

Xiao, J.; Chen, X-Wei.; Davies, B.A.; Saltiel, A.R.; Katzmann, D.J.; Xu, Z., 2010:
Structural basis of Ist1 function and Ist1-Did2 interaction in the multivesicular body pathway and cytokinesis

Battula, P.; Dubnovitsky, A.P.; Papageorgiou, A.C., 2014:
Structural basis of L-phosphoserine binding to Bacillus alcalophilus phosphoserine aminotransferase

McMillin, S.M.; Heusel, M.; Liu, T.; Costanzi, S.; Wess, Jürgen., 2012:
Structural basis of M3 muscarinic receptor dimer/oligomer formation

Niemann, H.H., 2013:
Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1

Wolkowicz, U.M.; Morris, E.R.; Robson, M.; Trubitsyna, M.; Richardson, J.M., 2014:
Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir

Mony, L.; Krzaczkowski, L.; Leonetti, M.; L.G.ff, A.; Alarcon, K.; Neyton, J.; Bertrand, H-Olivier.; Acher, F.; Paoletti, P., 2008:
Structural basis of NR2B-selective antagonist recognition by N-methyl-D-aspartate receptors

Aramini, J.M.; Tubbs, J.L.; Kanugula, S.; Rossi, P.; Ertekin, A.; Maglaqui, M.; Hamilton, K.; Ciccosanti, C.T.; Jiang, M.; Xiao, R.; Soong, T-Tsen.; Rost, B.; Acton, T.B.; Everett, J.K.; Pegg, A.E.; Tainer, J.A.; Montelione, G.T., 2010:
Structural basis of O6-alkylguanine recognition by a bacterial alkyltransferase-like DNA repair protein

Seebohm, G.; Wrobel, E.; Pusch, M.; Dicks, M.; Terhag, J.; Matschke, V.; Rothenberg, I.; Ursu, O.N.; Hertel, F.; Pott, L.; Lang, F.; Schulze-Bahr, E.; Hollmann, M.; Stoll, R.; Strutz-Seebohm, N., 2015:
Structural basis of PI(4,5)P2-dependent regulation of GluA1 by phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP5K2A)

Aitio, O.; Hellman, M.; Kesti, T.; Kleino, I.; Samuilova, O.; Pääkkönen, K.; Tossavainen, H.; Saksela, K.; Permi, P., 2008:
Structural basis of PxxDY motif recognition in SH3 binding

Nikolaev, Y.; Pervushin, K., 2012:
Structural basis of RNA binding by leucine zipper GCN4

Wybenga-Groot, L.E.; Ho, C.S.; Sweeney, Fédéric.D.; Ceccarelli, D.F.; McGlade, C.Jane.; Durocher, D.; Sicheri, F., 2015:
Structural basis of Rad53 kinase activation by dimerization and activation segment exchange

Gallego del Sol, F.; Marina, A., 2013:
Structural basis of Rap phosphatase inhibition by Phr peptides

Wojtaszek, J.; Lee, C-Jin.; D'Souza, S.; Minesinger, B.; Kim, H.; D'Andrea, A.D.; Walker, G.C.; Zhou, P., 2012:
Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ

Wang, H.; Hota, P.K.; Tong, Y.; Li, B.; Shen, L.; Nedyalkova, L.; Borthakur, S.; Kim, S.; Tempel, W.; Buck, M.; Park, H-Won., 2011:
Structural basis of Rnd1 binding to plexin Rho GTPase binding domains (RBDs)

Ren, W.; Chen, H.; Sun, Q.; Tang, X.; Lim, S.Choo.; Huang, J.; Song, H., 2015:
Structural basis of SOSS1 complex assembly and recognition of ssDNA

Cherry, A.L.; Finta, C.; Karlström, M.; Jin, Q.; Schwend, T.; Astorga-Wells, J.; Zubarev, R.A.; Del Campo, M.; Criswell, A.R.; de Sanctis, D.; Jovine, L.; Toftgård, R., 2014:
Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation

Smith, C.L.; Ghosh, J.; Elam, J.Stine.; Pinkner, J.S.; Hultgren, S.J.; Caparon, M.G.; Ellenberger, T., 2011:
Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin

Stirnimann, C.U.; Ptchelkine, D.; Grimm, C.; Müller, C.W., 2010:
Structural basis of TBX5-DNA recognition: the T-box domain in its DNA-bound and -unbound form

Huynh, M-Hang.; Liu, B.; Henry, M.; Liew, L.; Matthews, S.J.; Carruthers, V.B., 2015:
Structural basis of Toxoplasma gondii MIC2-associated protein interaction with MIC2

Tumbale, P.; Jamaluddin, H.; Thiyagarajan, N.; Brew, K.; Acharya, K.Ravi., 2008:
Structural basis of UDP-galactose binding by alpha-1,3-galactosyltransferase (alpha3GT): role of negative charge on aspartic acid 316 in structure and activity

Yang, Q.; Gilmartin, G.M.; Doublié, S., 2010:
Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing

Scrima, A.; Konícková, R.; Czyzewski, B.K.; Kawasaki, Y.; Jeffrey, P.D.; Groisman, R.; Nakatani, Y.; Iwai, S.; Pavletich, N.P.; Thomä, N.H., 2009:
Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex

Graham, S.C.; Wartosch, L.; Gray, S.R.; Scourfield, E.J.; Deane, J.E.; Luzio, J.Paul.; Owen, D.J., 2013:
Structural basis of Vps33A recruitment to the human HOPS complex by Vps16

Adam, V.; Carpentier, P.; Violot, S.; Lelimousin, Mël.; Darnault, C.; Nienhaus, G.Ulrich.; Bourgeois, D., 2010:
Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein

Chen, L.; Chan, S.Wee.; Zhang, X.; Walsh, M.; Lim, C.Jye.; Hong, W.; Song, H., 2010:
Structural basis of YAP recognition by TEAD4 in the hippo pathway

Watanabe, S.; Sasaki, D.; Tominaga, T.; Miki, K., 2013:
Structural basis of [NiFe] hydrogenase maturation by Hyp proteins

Chen, Q.; Chen, X.; Wang, Q.; Zhang, F.; Lou, Z.; Zhang, Q.; Zhou, D-Xiu., 2013:
Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice

Xie, T.; Hou, Y.; Li, D.; Yue, Y.; Qian, S.; Chao, Y., 2015 :
Structural basis of a mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to β-/γ-cyclodextrin

Seo, K.Hye.; Zhuang, N.; Park, Y.Shik.; Park, K.Hun.; Lee, K.Ho., 2015:
Structural basis of a novel activity of bacterial 6-pyruvoyltetrahydropterin synthase homologues distinct from mammalian 6-pyruvoyltetrahydropterin synthase activity

Luo, S-Chi.; Lou, Y-Chao.; Rajasekaran, M.; Chang, Y-Wei.; Hsiao, C-Deng.; Chen, C., 2013:
Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae

Han, S.; Yi, H.; Yin, S-Jin.; Chen, Z-Yun.; Liu, H.; Cao, Z-Jian.; Wu, Y-Liang.; Li, W-Xin., 2008:
Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease

Herrou, J.; Rotskoff, G.; Luo, Y.; Roux, Bît.; Crosson, S., 2012:
Structural basis of a protein partner switch that regulates the general stress response of α-proteobacteria

Podgornaia, A.I.; Casino, P.; Marina, A.; Laub, M.T., 2014:
Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling

Marszalkowski, M.; Willkomm, D.K.; Hartmann, R.K., 2007:
Structural basis of a ribozyme's thermostability: P1-L9 interdomain interaction in RNase P RNA

Tsuge, H.; Nagahama, M.; Oda, M.; Iwamoto, S.; Utsunomiya, H.; Marquez, V.E.; Katunuma, N.; Nishizawa, M.; Sakurai, J., 2008:
Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin

Singh, N.; Pydi, S.Prasad.; Upadhyaya, J.; Chelikani, P., 2011:
Structural basis of activation of bitter taste receptor T2R1 and comparison with Class A G-protein-coupled receptors (GPCRs)

Bartos, M.; Corradi, Jías.; Bouzat, C., 2010:
Structural basis of activation of cys-loop receptors: the extracellular-transmembrane interface as a coupling region

Zhang, H.; Liu, J-Huan.; Yang, W.; Springer, T.; Shimaoka, M.; Wang, J-Huai., 2009:
Structural basis of activation-dependent binding of ligand-mimetic antibody AL-57 to integrin LFA-1

Churchill, M.E.A.; Chen, L., 2011:
Structural basis of acyl-homoserine lactone-dependent signaling

Gu, R-Xu.; Zhong, Y-Qing.; Wei, D-Qing., 2011:
Structural basis of agonist selectivity for different nAChR subtypes: insights from crystal structures, mutation experiments and molecular simulations

Koharudin, L.M.I.; Wu, Y.; DeLucia, M.; Mehrens, J.; Gronenborn, A.M.; Ahn, J., 2015:
Structural basis of allosteric activation of sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates

Wu, H-Ju.; Ho, C-Wen.; Ko, T-Ping.; Popat, S.D.; Lin, C-Hung.; Wang, A.H-J., 2010:
Structural basis of alpha-fucosidase inhibition by iminocyclitols with K(i) values in the micro- to picomolar range

Kurokawa, H.; Motohashi, H.; Sueno, S.; Kimura, M.; Takagawa, H.; Kanno, Y.; Yamamoto, M.; Tanaka, T., 2009:
Structural basis of alternative DNA recognition by Maf transcription factors

Hagiwara, M.; Maegawa, K-Ichi.; Suzuki, M.; Ushioda, R.; Araki, K.; Matsumoto, Y.; Hoseki, J.; Nagata, K.; Inaba, K., 2011:
Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5

Fanning, S.W.; Walter, R.; Horn, J.R., 2015:
Structural basis of an engineered dual-specific antibody: conformational diversity leads to a hypervariable loop metal-binding site

Sundberg, E.J., 2009:
Structural basis of antibody-antigen interactions

Lodhi, M.Arif.; Shams, S.; Choudhary, M.Iqbal.; Lodhi, A.; Ul-Haq, Z.; Jalil, S.; Nawaz, S.Ahmad.; Khan, K.Mohammed.; Iqbal, S.; Rahman, A-ur., 2015:
Structural basis of binding and rationale for the potent urease inhibitory activity of biscoumarins

Kozlov, G.; Safaee, N.; Rosenauer, A.; Gehring, K., 2010:
Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein

Ryan, A.J.; Ghuman, J.; Zunszain, P.A.; Chung, C-wa.; Curry, S., 2011:
Structural basis of binding of fluorescent, site-specific dansylated amino acids to human serum albumin

Hino, T.; Matsumoto, Y.; Nagano, S.; Sugimoto, H.; Fukumori, Y.; Murata, T.; Iwata, S.; Shiro, Y., 2011:
Structural basis of biological N2O generation by bacterial nitric oxide reductase

Maalcke, W.J.; Dietl, A.; Marritt, S.J.; Butt, J.N.; Jetten, M.S.M.; Keltjens, J.T.; Barends, T.R.M.; Kartal, B., 2014:
Structural basis of biological NO generation by octaheme oxidoreductases

Chikwana, V.M.; Stec, B.; Lee, B.W.K.; de Crécy-Lagard, Vérie.; Iwata-Reuyl, D.; Swairjo, M.A., 2012:
Structural basis of biological nitrile reduction

Ye, Q.; Feng, Y.; Yin, Y.; Faucher, Fédérick.; Currie, M.A.; Rahman, M.N.; Jin, J.; Li, S.; Wei, Q.; Jia, Z., 2014:
Structural basis of calcineurin activation by calmodulin

Kozlov, G.; Pocanschi, C.L.; Rosenauer, A.; Bastos-Aristizabal, S.; Gorelik, A.; Williams, D.B.; Gehring, K., 2010:
Structural basis of carbohydrate recognition by calreticulin

Wei, Z.; Liu, X.; Yu, C.; Zhang, M., 2013:
Structural basis of cargo recognitions for class V myosins

Zoll, S.; Pätzold, B.; Schlag, M.; Götz, F.; Kalbacher, H.; Stehle, T., 2010:
Structural basis of cell wall cleavage by a staphylococcal autolysin