EurekaMag PDF full texts Chapter 55,949
References:
Kubala, M.H.; Kovtun, O.; Alexandrov, K.; Collins, B.M. 2010: Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. Protein Science: a Publication of the Protein Society 19(12): 2389-2401
Camacho, C.J.; Katsumata, Y.; Ascherman, D.P. 2008: Structural and thermodynamic approach to peptide immunogenicity. Plos Computational Biology 4(11): E1000231
Ohki, T.; Harada, M.; Okada, T. 2007: Structural and thermodynamic aspects of ionic solvation in concentrated aqueous poly(ethylene glycol). Journal of Physical Chemistry. B 111(25): 7245-7252
Brautigam, C.A.; Wynn, R.M.; Chuang, J.L.; Naik, M.T.; Young, B.B.; Huang, T.-H.; Chuang, D.T. 2011: Structural and thermodynamic basis for weak interactions between dihydrolipoamide dehydrogenase and subunit-binding domain of the branched-chain alpha-ketoacid dehydrogenase complex. Journal of Biological Chemistry 286(26): 23476-23488
Wilderman, P.R.; Shah, M.B.; Jang, H.-H.; Stout, C.D.; Halpert, J.R. 2013: Structural and thermodynamic basis of (+)-α-pinene binding to human cytochrome P450 2B6. Journal of the American Chemical Society 135(28): 10433-10440
Aripirala, S.; Gonzalez-Pacanowska, D.; Oldfield, E.; Kaiser, M.; Amzel, L.M.; Gabelli, S.B. 2014: Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates. Acta Crystallographica. Section D Biological Crystallography 70(Part 3): 802-810
Hernandez, D.A.; Domínguez, H. 2013: Structural and thermodynamic behavior of alkane chains at the liquid/vapor interface. Journal of Chemical Physics 138(13): 134702
Gutierrez, L.J.; Enriz, R.D.; Baldoni, H.éc.A. 2010: Structural and thermodynamic characteristics of the exosite binding pocket on the human BACE1: a molecular modeling approach. Journal of Physical Chemistry. a 114(37): 10261-10269
Makbul, C.; Constantinescu Aruxandei, D.; Hofmann, E.; Schwarz, D.; Wolf, E.; Herrmann, C. 2013: Structural and thermodynamic characterization of Nore1-SARAH: a small, helical module important in signal transduction networks. Biochemistry 52(6): 1045-1054
Ando, N.; Barstow, B.; Baase, W.A.; Fields, A.; Matthews, B.W.; Gruner, S.M. 2008: Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation. Biochemistry 47(42): 11097-11109
De Jonge, N.; Hohlweg, W.; Garcia-Pino, A.; Respondek, M.; Buts, L.; Haesaerts, S.; Lah, J.; Zangger, K.; Loris, R. 2010: Structural and thermodynamic characterization of Vibrio fischeri CcdB. Journal of Biological Chemistry 285(8): 5606-5613
Pokutta, S.; Choi, H.-J.; Ahlsen, G.; Hansen, S.D.; Weis, W.I. 2014: Structural and thermodynamic characterization of cadherin·β-catenin·α-catenin complex formation. Journal of Biological Chemistry 289(19): 13589-13601
Suárez, D.F.; Consuegra, J.; Trajano, V.C.; Gontijo, S.áv.M.L.; Guimarães, P.P.G.; Cortés, M.E.; Denadai, Ân.L.; Sinisterra, R.én.D. 2014: Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions. Colloids and Surfaces. B Biointerfaces 118: 194-201
Haikarainen, T.; Thanassoulas, A.; Stavros, P.; Nounesis, G.; Haataja, S.; Papageorgiou, A.C. 2011: Structural and thermodynamic characterization of metal ion binding in Streptococcus suis Dpr. Journal of Molecular Biology 405(2): 448-460
Lima, C.F.R.A.C.; Rocha, M.A.A.; Melo, A.é; Gomes, L.íg.R.; Low, J.N.; Santos, L.ís.M.N.B.F. 2011: Structural and thermodynamic characterization of polyphenylbenzenes. Journal of Physical Chemistry. a 115(42): 11876-11888
Van Molle, I.; Moonens, K.; Garcia-Pino, A.; Buts, L.; De Kerpel, M.; Wyns, L.; Bouckaert, J.; De Greve, H. 2009: Structural and thermodynamic characterization of pre- and postpolymerization states in the F4 fimbrial subunit FaeG. Journal of Molecular Biology 394(5): 957-967
Chrencik, J.E.; Patny, A.; Leung, I.K.; Korniski, B.; Emmons, T.L.; Hall, T.; Weinberg, R.A.; Gormley, J.A.; Williams, J.M.; Day, J.E.; Hirsch, J.L.; Kiefer, J.R.; Leone, J.W.; Fischer, H.D.; Sommers, C.D.; Huang, H.-C.; Jacobsen, E.J.; Tenbrink, R.E.; Tomasselli, A.G.; Benson, T.E. 2010: Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. Journal of Molecular Biology 400(3): 413-433
Müller, J.ür.J.; Hannemann, F.; Schiffler, B.; Ewen, K.M.; Kappl, R.; Heinemann, U.; Bernhardt, R. 2011: Structural and thermodynamic characterization of the adrenodoxin-like domain of the electron-transfer protein Etp1 from Schizosaccharomyces pombe. Journal of Inorganic Biochemistry 105(7): 957-965
Wafer, L.N.; Tzul, F.O.; Pandharipande, P.P.; McCallum, S.A.; Makhatadze, G.I. 2014: Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin. Protein Science: a Publication of the Protein Society 23(9): 1247-1261
Kudo, S.; Caaveiro, J.M.M.; Miyafusa, T.; Goda, S.; Ishii, K.; Matsuura, T.; Sudou, Y.; Kodama, T.; Hamakubo, T.; Tsumoto, K. 2012: Structural and thermodynamic characterization of the self-adhesive properties of human P-cadherin. Molecular Biosystems 8(8): 2050-2053
Davies, C.W.; Paul, L.N.; Kim, M.-I.; Das, C. 2011: Structural and thermodynamic comparison of the catalytic domain of AMSH and AMSH-LP: nearly identical fold but different stability. Journal of Molecular Biology 413(2): 416-429
Zhao, Y.; Sun, L.; Muralidhara, B.K.; Kumar, S.; White, M.A.; Stout, C.David.; Halpert, J.R. 2007: Structural and thermodynamic consequences of 1-(4-chlorophenyl)imidazole binding to cytochrome P450 2B4. Biochemistry 46(41): 11559-11567
Robinson, A.C.; Castañeda, C.A.; Schlessman, J.L.; García-Moreno, E.B. 2014: Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein. Proceedings of the National Academy of Sciences of the United States of America 111(32): 11685-11690
Marsh, D. 2010: Structural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes. Biochimica et Biophysica Acta 1798(1): 40-51
Yin, Z.; Kelso, M.J.; Beck, J.L.; Oakley, A.J. 2013: Structural and thermodynamic dissection of linear motif recognition by the E. coli sliding clamp. Journal of Medicinal Chemistry 56(21): 8665-8673
Proctor, E.A.; Ding, F.; Dokholyan, N.V. 2011: Structural and thermodynamic effects of post-translational modifications in mutant and wild type Cu, Zn superoxide dismutase. Journal of Molecular Biology 408(3): 555-567
Grigorovich, N.V.; Moiseenko, D.V.; Antipova, A.S.; Anokhina, M.S.; Belyakova, L.E.; Polikarpov, Y.N.; Korica, N.; Semenova, M.G.; Baranov, B.A. 2012: Structural and thermodynamic features of covalent conjugates of sodium caseinate with maltodextrins underlying their functionality. Food and Function 3(3): 283-289
Lara-González, S.; Estrella-Hernández, P.; Ochoa-Leyva, A.án.; Del Carmen Portillo-Téllez, M.ía.; Caro-Gómez, L.A.; Figueroa-Angulo, E.E.; Salgado-Lugo, H.; Miranda Ozuna, J.ús.F.T.; Ortega-López, J.; Arroyo, R.; Brieba, L.G.; Benítez-Cardoza, C.G. 2014: Structural and thermodynamic folding characterization of triosephosphate isomerases from Trichomonas vaginalis reveals the role of destabilizing mutations following gene duplication. Proteins 82(1): 22-33
Jain, V.; Hilton, B.; Lin, B.; Jain, A.; MacKerell, A.D.; Zou, Y.; Cho, B.P. 2013: Structural and thermodynamic insight into Escherichia coli UvrABC-mediated incision of cluster diacetylaminofluorene adducts on the Nari sequence. Chemical Research in Toxicology 26(8): 1251-1262
Leiros, H.-K.S.; Flydal, M.I.; Martinez, A. 2013: Structural and thermodynamic insight into phenylalanine hydroxylase from the human pathogen Legionella pneumophila. Febs Open Bio 3: 370-378
Bocharov, E.V.; Mineev, K.S.; Goncharuk, M.V.; Arseniev, A.S. 2012: Structural and thermodynamic insight into the process of "weak" dimerization of the ErbB4 transmembrane domain by solution NMR. Biochimica et Biophysica Acta 1818(9): 2158-2170
Armstrong, A.; Hildreth, J.E.K.; Amzel, L.Mario. 2013: Structural and thermodynamic insights into the recognition of native proteins by anti-peptide antibodies. Journal of Molecular Biology 425(11): 2027-2038
Chong, S.-H.; Lee, C.; Kang, G.; Park, M.; Ham, S. 2011: Structural and thermodynamic investigations on the aggregation and folding of acylphosphatase by molecular dynamics simulations and solvation free energy analysis. Journal of the American Chemical Society 133(18): 7075-7083
Garg, I.; Deo, N. 2010: Structural and thermodynamic properties of a linearly perturbed matrix model for RNA folding. European Physical Journal. e Soft Matter 33(4): 359-367
Jedlovszky, P.ál.; Pártay, L.ív.B.; Bartók, A.P.; Voloshin, V.P.; Medvedev, N.N.; Garberoglio, G.; Vallauri, R. 2008: Structural and thermodynamic properties of different phases of supercooled liquid water. Journal of Chemical Physics 128(24): 244503
Sevastianova, T.N.; Bodensteiner, M.; Lisovenko, A.S.; Davydova, E.I.; Scheer, M.; Susliakova, T.V.; Krasnova, I.S.; Timoshkin, A.Y. 2013: Structural and thermodynamic properties of molecular complexes of aluminum and gallium trihalides with bifunctional donor pyrazine: decisive role of Lewis acidity in 1D polymer formation. Dalton Transactions 42(32): 11589-11599
Disalvo, E.A.; Martini, M.F.; Bouchet, A.M.; Hollmann, A.; Frías, M.A. 2014: Structural and thermodynamic properties of water-membrane interphases: significance for peptide/membrane interactions. Advances in Colloid and Interface Science 211: 17-33
Van der Werf, R.; Wijmenga, S.S.; Heus, H.A.; Olsthoorn, R.é C.L. 2013: Structural and thermodynamic signatures that define pseudotriloop RNA hairpins. Rna 19(12): 1833-1839
Zeilinger, M.; Fässler, T.F. 2014: Structural and thermodynamic similarities of phases in the Li-Tt (Tt = Si, Ge) systems: redetermination of the lithium-rich side of the Li-Ge phase diagram and crystal structures of Li17Si4.0-xGex for x = 2.3, 3.1, 3.5, and 4 as well as Li4.1Ge. Dalton Transactions 43(40): 14959-14970
Loch, J.I.; Polit, A.; Bonarek, P.; Olszewska, D.; Kurpiewska, K.; Dziedzicka-Wasylewska, M.; Lewiński, K. 2012: Structural and thermodynamic studies of binding saturated fatty acids to bovine β-lactoglobulin. International Journal of Biological Macromolecules 50(4): 1095-1102
Shmyt'ko, I.M.; Jiménez-Riobóo, R.J.; Hassaine, M.; Ramos, M.A. 2010: Structural and thermodynamic studies of n-butanol. Journal of Physics. Condensed Matter: An Institute of Physics Journal 22(19): 195102
Martino, L.; Virno, A.; Pagano, B.; Virgilio, A.; Di Micco, S.; Galeone, A.; Giancola, C.; Bifulco, G.; Mayol, L.; Randazzo, A. 2007: Structural and thermodynamic studies of the interaction of distamycin a with the parallel quadruplex structure [d(TGGGGT)]4. Journal of the American Chemical Society 129(51): 16048-16056
Camargo, A.I.; Wiggers, H.J.; Damalio, J.C.P.; Araujo, A.P.U.; Ribichich, K.F.; de Camargo, P.C. 2013: Structural and thermodynamic studies of two centrin isoforms from Blastocladiella emersonii upon calcium binding. Biochimica et Biophysica Acta 1834(12): 2823-2831
Hazra, S.; Suresh Kumar, G. 2014: Structural and thermodynamic studies on the interaction of iminium and alkanolamine forms of sanguinarine with hemoglobin. Journal of Physical Chemistry. B 118(14): 3771-3784
Tian, G.; Teat, S.J.; Rao, L. 2014: Structural and thermodynamic study of the complexes of Nd(III) with N,N,N',N'-tetramethyl-3-oxa-glutaramide and the acid analogues. Inorganic Chemistry 53(18): 9477-9485
Martínez Casado, F.J.; Ramos Riesco, M.; García Pérez, M.V.; Redondo, M.I.; López-Andrés, S.; Rodríguez Cheda, J.A. 2009: Structural and thermodynamic study on short metal alkanoates: lithium propanoate and pentanoate. Journal of Physical Chemistry. B 113(39): 12896-12902
Lukšič, M.; Hribar-Lee, B.; Vlachy, V.; Pizio, O. 2012: Structural and thermodynamical properties of charged hard spheres in a mixture with core-softened model solvent. Journal of Chemical Physics 137(24): 244502
Cao, Z.; Liu, L.; Wu, P.; Wang, J. 2011: Structural and thermodynamics characters of isolated α-syn12 peptide: long-time temperature replica-exchange molecular dynamics in aqueous solution. Acta Biochimica et Biophysica Sinica 43(3): 172-180
Schnurr, S.; Wiedwald, U.; Ziemann, P.; Verchenko, V.Y.; Shevelkov, A.V. 2013: Structural and thermoelectric properties of TMGa3 (TM = Fe, Co) thin films. Beilstein Journal of Nanotechnology 4: 461-466
Lopera, D.; Naranjo, T.W.; Cruz, O.G.; Restrepo, A.; Cano, L.E.; Lenzi, H.L. 2011: Structural and topographic dynamics of pulmonary histopathology and local cytokine profiles in Paracoccidioides brasiliensis conidia-infected mice. Plos Neglected Tropical Diseases 5(7): E1232
Kaseman, D.C.; Hung, I.; Gan, Z.; Aitken, B.; Currie, S.; Sen, S. 2014: Structural and topological control on physical properties of arsenic selenide glasses. Journal of Physical Chemistry. B 118(8): 2284-2293
Fourré, I.; Bergès, J.; Houée-Levin, C. 2010: Structural and topological studies of methionine radical cations in dipeptides: electron sharing in two-center three-electron bonds. Journal of Physical Chemistry. a 114(27): 7359-7368
Lee, M.; Lipfert, J.; Sanchez, H.; Wyman, C.; Dekker, N.H. 2013: Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament. Nucleic Acids Research 41(14): 7023-7030
Anderson, O.D.; Coleman-Derr, D.; Gu, Y.Q.; Heath, S. 2010: Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme. Bmc Plant Biology 10: 113
Sava, M-M.; Boulocher, C.; Matei, C.I.; Munteanu, B.; Schramme, M.; Viguier, E.; Roger, T.; Berthier, Y.; Blanchin, M-G.; Trunfio-Sfarghiu, A-M. 2013: Structural and tribological study of healthy and biomimetic SF. Computer Methods in Biomechanics and Biomedical Engineering 16 Suppl. 1: 216-218
Gonçalves, L.A.; Boldrini, S.C.; Capote, T.S.O.; Binotti, C.B.; Azeredo, R.A.; Martini, D.T.; Rosenberg, B.; Bautz, W.G.; Liberti, E.A. 2009: Structural and ultra-structural features of the first mandibular molars of young rats submitted to pre and postnatal protein deficiencies. Open Dentistry Journal 3: 125-131
Cordeiro, B.A.; Tibúrcio, V.Hugo.S.; Hallwass, M.; Paes, H.C.; Ribeiro, B.M.; Báo, Sônia.N. 2008: Structural and ultrastructural alterations of Malpighian tubules of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) larvae infected with different Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) recombinant viruses. Journal of Invertebrate Pathology 98(1): 7-19
Hernández-Fonseca, J.P.; Rincón, J.; Pedreañez, A.; Viera, N.; Arcaya, J.é L.; Carrizo, E.; Mosquera, J.ús. 2009: Structural and ultrastructural analysis of cerebral cortex, cerebellum, and hypothalamus from diabetic rats. Experimental Diabetes Research 2009: 329632
Saouter, E.; Le Menn, R.; Boudou, A.; Ribeyre, F. 1991: Structural and ultrastructural analysis of gills and gut of Hexagenia rigida nymphs (ephemeroptera) in relation to contamination mechanisms. Tissue and Cell 23(6): 929-938
Maia, F.C.L.; McCall, J.W.; Silva, V.A.; Peixoto, C.A.; Supakorndej, P.; Supakorndej, N.; Alves, L.C. 2011: Structural and ultrastructural changes in the lungs of cats Felis catus (Linnaeus, 1758) experimentally infected with D. immitis (Leidy, 1856). Veterinary Parasitology 176(4): 304-312
Roy, B.C.; Ando, M.; Itoh, T.; Tsukamasa, Y. 2012: Structural and ultrastructural changes of full-cycle cultured Pacific bluefin tuna (Thunnus orientalis) muscle slices during chilled storage. Journal of the Science of Food and Agriculture 92(8): 1755-1764
Moreira, J.; Araújo, V.íc.A.; Báo, S.ôn.N.; Lino-Neto, J.é 2010: Structural and ultrastructural characteristics of male reproductive tract and spermatozoa in two Cryptinae species (Hymenoptera: Ichneumonidae). Micron 41(3): 187-192
Fiorillo, B.S.; Lino-Neto, J.; Báo, S.N. 2008: Structural and ultrastructural characterization of male reproductive tracts and spermatozoa in fig wasps of the genus Pegoscapus (Hymenoptera, Chalcidoidea). Micron 39(8): 1271-1280
Corradi, L.S.; Jesus, M.M.; Fochi, R.A.; Vilamaior, P.S.L.; Justulin, L.A.; Góes, R.M.; Felisbino, S.ér.L.; Taboga, S.ão.R. 2013: Structural and ultrastructural evidence for telocytes in prostate stroma. Journal of Cellular and Molecular Medicine 17(3): 398-406
Da Silva Neto, I.D. 1993: Structural and ultrastructural observations of the ciliate Phacodinium metchnicoffi certes, 1891 (Heterotrichea, Phacodiniida). European Journal of Protistology 29(2): 209-218
Almášiová, V.; Holovská, Kína.; Cigánková, V.; Račeková, Eö.; Fabianová, K.; Martončíková, M. 2014: Structural and ultrastructural study of rat testes influenced by electromagnetic radiation. Journal of Toxicology and Environmental Health. Part a 77(13): 747-750
Almasiova, V.; Holovska, K.; Tarabova, L.; Cigankova, V.; Lukacinova, A.; Nistiar, F. 2012: Structural and ultrastructural study of the rabbit testes exposed to carbamate insecticide. Journal of Environmental Science and Health. Part A Toxic/Hazardous Substances and Environmental Engineering 47(9): 1319-1328
Mukherjee, D.; Saha, R.P.; Chakrabarti, P. 2009: Structural and unfolding features of HlyT, a tetrameric LysR type transcription regulator of Vibrio cholerae. Biochimica et Biophysica Acta 1794(8): 1134-1141
Singh, B.P.; Parchur, A.K.; Singh, R.K.; Ansari, A.A.; Singh, P.; Rai, S.B. 2013: Structural and up-conversion properties of Er3+ and Yb3+ co-doped Y2Ti2O7 phosphors. Physical Chemistry Chemical Physics: Pccp 15(10): 3480-3489
Matsuoka, T.; Fujihisa, H.; Hirao, N.; Ohishi, Y.; Mitsui, T.; Masuda, R.; Seto, M.; Yoda, Y.; Shimizu, K.; Machida, A.; Aoki, K. 2011: Structural and valence changes of europium hydride induced by application of high-pressure H₂. Physical Review Letters 107(2): 025501
Schwab, G.; Stern, D.; Stalke, D. 2008: Structural and variable-temperature NMR studies of 9-diisopropylphosphanylanthracenes and 9,10-bis(diisopropylphosphanyl)anthracenes and their oxidation products. Journal of Organic Chemistry 73(14): 5242-5247
Almeida, H.A.; Bártolo, P.J. 2012: Structural and vascular analysis of tissue engineering scaffolds, Part 1: Numerical fluid analysis. Methods in Molecular Biology 868: 183-207
Almeida, H.A.; Bártolo, P.J. 2012: Structural and vascular analysis of tissue engineering scaffolds, Part 2: Topology optimisation. Methods in Molecular Biology 868: 209-236
Raschi, A.B.; Romano, E.; Benavente, A.M.; Ben Altabef, A.; Tuttolomondo, M.E. 2010: Structural and vibrational analysis of thymoquinone. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 77(2): 497-505
Do Nascimento, G.M.; Kobata, P.Y.G.; Temperini, M.L.A. 2008: Structural and vibrational characterization of polyaniline nanofibers prepared from interfacial polymerization. Journal of Physical Chemistry. B 112(37): 11551-11557
Maczka, M.; Pietraszko, A.; Paraguassu, W.; Filho, A.G.S.; Freire, P.T.C.; Filho, J.M.; Hanuza, J. 2009: Structural and vibrational properties of K(3)Fe(MoO(4))(2)(Mo(2)O(7))-a novel layered molybdate. Journal of Physics. Condensed Matter: An Institute of Physics Journal 21(9): 095402
Schnaars, D.D.; Wilson, R.E. 2013: Structural and vibrational properties of U(VI)O2Cl4(2-) and Pu(VI)O2Cl4(2-) complexes. Inorganic Chemistry 52(24): 14138-14147
Pagliai, M.; Bonazzi, P.; Bindi, L.; Muniz-Miranda, M.; Cardini, G. 2011: Structural and vibrational properties of arsenic sulfides: alacranite (As8S9). Journal of Physical Chemistry. a 115(17): 4558-4562
Johansson, P.; Grondin, J.; Lassègues, J.-C. 2010: Structural and vibrational properties of diglyme and longer glymes. Journal of Physical Chemistry. a 114(39): 10700-10705
Dymińska, L.; Węgliński, Z.; Gągor, A.; Hanuza, J. 2013: Structural and vibrational properties of imidazo[4,5-c]pyridine, a structural unit in natural products. Journal of Natural Products 76(9): 1637-1646
Huang, Q-Wei.; Zhang, J.; Berlie, A.; Qin, Z-Xing.; Zhao, X-Miao.; Zhang, J-Bo.; Tang, L-Yun.; Liu, J.; Zhang, C.; Zhong, G-Hua.; Lin, H-Qing.; Chen, X-Jia. 2013: Structural and vibrational properties of phenanthrene under pressure. Journal of Chemical Physics 139(10): 104302
Arjunan, V.; Marchewka, M.K.; Raj, A.; Yang, H.; Mohan, S. 2015: Structural and vibrational spectral investigations of melaminium glutarate monohydrate by FTIR, FT-Raman and DFT methods. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 135: 540-550
Arjunan, V.; Kalaivani, M.; Marchewka, M.K.; Mohan, S. 2013: Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 107: 90-101
Kecel-Gunduz, S.; Celik, S.; Ozel, A.E.; Akyuz, S. 2015: Structural and vibrational spectroscopic elucidation of sulpiride in solid state. Journal of Biomolecular Structure and Dynamics 33(2): 322-343
Jaiswal, S.; Kushwaha, A.; Prasad, R.; Prasad, R.L.; Yadav, R.A. 2009: Structural and vibrational studies of molecular conductors using quantum mechanical methods: 1,3-Dithiole-2-thione, 1,3-dithiole-2-one, 1,3-dioxole-2-one and 1,3-dioxole-2-thione. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 74(1): 16-25
De Freitas, L.V.; da Silva, C.C.P.; Ellena, J.; Costa, L.A.ôn.S.é; Rey, N.ás.A. 2013: Structural and vibrational study of 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone--a potential metal-protein attenuating compound (MPAC) for the treatment of Alzheimer's disease. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 116: 41-48
Courcot, B.; Bridgeman, A.J. 2009: Structural and vibrational study of [Mo7O24]6- and [W7O24]6-. Journal of Physical Chemistry. a 113(39): 10540-10548
Celik, S.; Kecel-Gunduz, S.; Ozel, A.E.; Akyuz, S. 2015: Structural and vibrational study of primidone based on monomer and dimer calculations. Journal of Biomolecular Structure and Dynamics 33(4): 911-923
Rentschler, I.; Gschwind, M.; Brettel, H.; Osman, E.; Caelli, T. 2008: Structural and view-specific representations for the categorization of three-dimensional objects. Vision Research 48(25): 2501-2508
Lieleg, O.; Schmoller, K.M.; Purdy Drew, K.R.; Claessens, M.M.A.E.; Semmrich, C.; Zheng, L.; Bartles, J.R.; Bausch, A.R. 2009: Structural and viscoelastic properties of actin networks formed by espin or pathologically relevant espin mutants. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry 10(16): 2813-2817
Schmoller, K.M.; Lieleg, O.; Bausch, A.R. 2009: Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks. Biophysical Journal 97(1): 83-89
Xu, L.; Adali, T.ül.; Schretlen, D.; Pearlson, G.; Calhoun, V.D. 2012: Structural angle and power images reveal interrelated gray and white matter abnormalities in schizophrenia. Neurology Research International 2012: 735249
van der Hooft, J.J.J.; Akermi, M.; Ünlü, F.Yelda.; Mihaleva, V.; Roldan, V.Gomez.; Bino, R.J.; de Vos, R.C.H.; Vervoort, J. 2012: Structural annotation and elucidation of conjugated phenolic compounds in black, green, and white tea extracts. Journal of Agricultural and Food Chemistry 60(36): 8841-8850
Anand, P.; Sankaran, S.; Mukherjee, S.; Yeturu, K.; Laskowski, R.; Bhardwaj, A.; Bhagavat, R.; Brahmachari, S.K.; Chandra, N. 2011: Structural annotation of Mycobacterium tuberculosis proteome. Plos one 6(10): E27044
Coleman, S.J.; Zeng, Z.; Wang, K.; Luo, S.; Khrebtukova, I.; Mienaltowski, M.J.; Schroth, G.P.; Liu, J.; MacLeod, J.N. 2010: Structural annotation of equine protein-coding genes determined by mRNA sequencing. Animal Genetics 41 Suppl. 2: 121-130
Aggarwal, M.; Boone, C.D.; Kondeti, B.; McKenna, R. 2013: Structural annotation of human carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry 28(2): 267-277
Zhou, B.; Kobayashi, A.; Okano, Y.; Cui, H.; Graf, D.; Brooks, J.S.; Nakashima, T.; Aoyagi, S.; Nishibori, E.; Sakata, M.; Kobayashi, H. 2009: Structural anomalies associated with antiferromagnetic transition of single-component molecular metal [Au(tmdt)2. Inorganic Chemistry 48(21): 10151-10157
Bromley, B.; Shipp, T.D.; Benacerraf, B.R. 2010: Structural anomalies in early embryonic death: a 3-dimensional pictorial essay. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine 29(3): 445-453
Krekelberg, W.P.; Mittal, J.; Ganesan, V.; Truskett, T.M. 2008: Structural anomalies of fluids: origins in second and higher coordination shells. Physical Review. E Statistical Nonlinear and Soft Matter Physics 77(4 Part 1): 041201
Guzmán-Afonso, C.; González-Silgo, C.; Torres, M.E.; Matesanz, E.; Mujica, A. 2013: Structural anomalies related to changes in the conduction mechanisms of α-Sm2(MoO4)3. Journal of Physics. Condensed Matter: An Institute of Physics Journal 25(3): 035902
Tessa, C.; Michelucci, R.; Nobile, C.; Giannelli, M.; Della Nave, R.; Testoni, S.; Bianucci, D.; Tinuper, P.; Bisulli, F.; Sofia, V.; De Feo, M.R.; Giallonardo, A.T.; Tassinari, C.A.; Mascalchi, M. 2007: Structural anomaly of left lateral temporal lobe in epilepsy due to mutated LGI1. Neurology 69(12): 1298-1300
Cochran, J.K.; Bjerregaard, B. 2012: Structural anomie and crime: a cross-national test. International Journal of Offender Therapy and Comparative Criminology 56(2): 203-217
Mouret, S.éb. 2013: Structural anthropology of bird flu: about Un monde grippé by Frédéric Keck. Medecine Sciences: M/S 29(1): 94-97
O'Connor, P.M.; Evans, R.G. 2010: Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem?. American Journal of Physiology. Regulatory Integrative and Comparative Physiology 299(3): R723-R727
Echeverria, C.; Santibañez, J.F.; Donoso-Tauda, O.; Escobar, C.A.; Ramirez-Tagle, R. 2009: Structural antitumoral activity relationships of synthetic chalcones. International Journal of Molecular Sciences 10(1): 221-231
Haberland, A.; Zaitsev, S.; Waldöfner, N.; Erdmann, B.; Böttger, M.; Henke, W. 2009: Structural appearance of linker histone H1/siRNA complexes. Molecular Biology Reports 36(5): 1083-1093
Lafarge, F.; Descombes, X.; Zerubia, J.; Pierrot-Deseilligny, M. 2010: Structural approach for building reconstruction from a single DSM. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1): 135-147
Toriumi, D.M. 2002: Structural approach to primary rhinoplasty. Aesthetic Surgery Journal 22(1): 72-84
Masson, P.; Nachon, F.; Lockridge, O. 2010: Structural approach to the aging of phosphylated cholinesterases. Chemico-Biological Interactions 187(1-3): 157-162
Parkhurst, J.O. 2014: Structural approaches for prevention of sexually transmitted HIV in general populations: definitions and an operational approach. Journal of the International Aids Society 17: 19052
Nury, H.; Blesneac, I.; Ravaud, S.; Pebay-Peyroula, E. 2010: Structural approaches of the mitochondrial carrier family. Methods in Molecular Biology 654: 105-117
Gupta, G.Rao.; Parkhurst, J.O.; Ogden, J.A.; Aggleton, P.; Mahal, A. 2008: Structural approaches to HIV prevention. Lancet 372(9640): 764-775
Lieberman, L.; Golden, S.D.; Earp, J.A.L. 2013: Structural approaches to health promotion: what do we need to know about policy and environmental change?. Health Education and Behavior: the Official Publication of the Society for Public Health Education 40(5): 520-525
Parker, L.J.; Ascher, D.B.; Gao, C.; Miles, L.A.; Harris, H.H.; Parker, M.W. 2012: Structural approaches to probing metal interaction with proteins. Journal of Inorganic Biochemistry 115: 138-147
Orban, T.; Jastrzebska, B.; Palczewski, K. 2014: Structural approaches to understanding retinal proteins needed for vision. Current Opinion in Cell Biology 27: 32-43
Kravets, E.A.; Berezhnaia, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskiĭ, D.M. 2012: Structural architectonics of apical root meristems in coherence with the quantitative assessment of its damage by radiation. Tsitologiia i Genetika 46(2): 12-23
Grüber, A.; Manimekalai, M.S.S.; Preiser, P.R.; Grüber, G. 2012: Structural architecture and interplay of the nucleotide- and erythrocyte binding domain of the reticulocyte binding protein Py235 from Plasmodium yoelii. International Journal for Parasitology 42(12): 1083-1089
Sethe Burgie, E.; Bingman, C.A.; Makino, S.-I.; Wesenberg, G.E.; Pan, X.; Fox, B.G.; Phillips, G.N. 2011: Structural architecture of Galdieria sulphuraria DCN1L. Proteins 79(4): 1329-1336
Gamazon, E.R.; Cox, N.J.; Davis, L.K. 2014: Structural architecture of SNP effects on complex traits. American Journal of Human Genetics 95(5): 477-489
Qiao, Q.; Yang, C.; Zheng, C.; Fontán, L.; David, L.; Yu, X.; Bracken, C.; Rosen, M.; Melnick, A.; Egelman, E.H.; Wu, H. 2013: Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Molecular Cell 51(6): 766-779
Sosa, S. 2014: Structural architecture of the social network of a non-human primate (Macaca sylvanus): a study of its topology in la Forêt des Singes, Rocamadour. Folia Primatologica; International Journal of Primatology 85(3): 154-163
Dempski, R.E.; Lustig, J.; Friedrich, T.; Bamberg, E. 2008: Structural arrangement and conformational dynamics of the gamma subunit of the Na+/K+-ATPase. Biochemistry 47(1): 257-266
Hosoyamada, Y.; Sakai, T. 2012: Structural arrangement of collagen fibrils in the periarterial connective tissue of the kidney: their functional relevance as a structural stabilizer against arterial pressure. Anatomical Science International 87(2): 80-87
Benedicto, H.G.; Bombonato, P.P.; Macchiarelli, G.; Stifano, G.; Prado, I.M.M. 2011: Structural arrangement of the cardiac collagen fibers of healthy and diabetic dogs. Microscopy Research and Technique 74(11): 1018-1023
Dixit, M.; Kim, S.; Matthews, G.F.; Erreger, K.; Galli, A.; Cobb, C.E.; Hustedt, E.J.; Beth, A.H. 2013: Structural arrangement of the intracellular Ca2+ binding domains of the cardiac Na+/Ca2+ exchanger (NCX1.1): effects of Ca2+ binding. Journal of Biological Chemistry 288(6): 4194-4207
Oancea, G.; O'Mara, M.L.; Bennett, W.F.D.; Tieleman, D.P.; Abele, R.; Tampé, R. 2009: Structural arrangement of the transmission interface in the antigen ABC transport complex TAP. Proceedings of the National Academy of Sciences of the United States of America 106(14): 5551-5556
Bernoth, E.-M. 2007: Structural arrangements in Australia for managing aquatic animal disease emergencies. Developments in Biologicals 129: 55-64
Søndergaard, C.R.; Garrett, A.E.; Carstensen, T.; Pollastri, G.; Nielsen, J.E. 2009: Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions. Journal of Medicinal Chemistry 52(18): 5673-5684
Nakano, S.; Mashima, T.; Matsugami, A.; Inoue, M.; Katahira, M.; Morii, T. 2011: Structural aspects for the recognition of ATP by ribonucleopeptide receptors. Journal of the American Chemical Society 133(12): 4567-4579
Kaatze, U.; Behrends, R.; von Roden, K. 2010: Structural aspects in the dielectric properties of pentyl alcohols. Journal of Chemical Physics 133(9): 094508
Hansen, K.B.; Yuan, H.; Traynelis, S.F. 2007: Structural aspects of AMPA receptor activation, desensitization and deactivation. Current Opinion in Neurobiology 17(3): 281-288
Sohn, Y.-H.; Oh, H.-B.; Heo, Y.-S.; Kwon, O.-J. 2009: Structural aspects of B*4617 molecule, a novel HLA-B*46 allele identified by sequence-based typing. Tissue Antigens 73(1): 72-74
Hu, J.; Thor, D.; Zhou, Y.; Liu, T.; Wang, Y.; McMillin, S.M.; Mistry, R.; Challiss, R.A.John.; Costanzi, S.; Wess, Jürgen. 2012: Structural aspects of M₃ muscarinic acetylcholine receptor dimer formation and activation. FASEB Journal 26(2): 604-616
Ling, S.H.M.; Cheng, Z.; Song, H. 2009: Structural aspects of RNA helicases in eukaryotic mRNA decay. Bioscience Reports 29(5): 339-349
Fernandes, H.; Franklin, E.; Recacha, R.; Houdusse, A.; Goud, B.; Khan, A.R. 2009: Structural aspects of Rab6-effector complexes. Biochemical Society Transactions 37(Part 5): 1037-1041
Datta, P.P.; Wilson, D.N.; Kawazoe, M.; Swami, N.K.; Kaminishi, T.; Sharma, M.R.; Booth, T.M.; Takemoto, C.; Fucini, P.; Yokoyama, S.; Agrawal, R.K. 2007: Structural aspects of RbfA action during small ribosomal subunit assembly. Molecular Cell 28(3): 434-445
Choi, H.-J.; Weis, W.I. 2004: Structural aspects of adherens junctions and desmosomes. Handbook of Experimental Pharmacology 165: 23-52
Siddiqui, S.; Martin, J.G. 2008: Structural aspects of airway remodeling in asthma. Current Allergy and Asthma Reports 8(6): 540-547
Salvatella, X. 2013: Structural aspects of amyloid formation. Progress in Molecular Biology and Translational Science 117: 73-101
Miller, M.C.; Ribeiro, J.ão.P.; Roldós, V.; Martín-Santamaría, S.; Cañada, F.J.; Nesmelova, I.A.; André, S.; Pang, M.; Klyosov, A.A.; Baum, L.G.; Jiménez-Barbero, J.ús.; Gabius, H.-J.; Mayo, K.H. 2011: Structural aspects of binding of α-linked digalactosides to human galectin-1. Glycobiology 21(12): 1627-1641
Van Hemmen, J.L.; Schüz, A.; Aertsen, A.; Braitenberg, V. 2014: Structural aspects of biological cybernetics: Valentino Braitenberg, neuroanatomy, and brain function. Biological Cybernetics 108(5): 517-525
Stathopulos, P.B.; Ikura, M. 2013: Structural aspects of calcium-release activated calcium channel function. Channels 7(5): 344-353
Phan, S.; Hawley, A.; Mulet, X.; Waddington, L.; Prestidge, C.A.; Boyd, B.J. 2013: Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and Cryo-TEM. Pharmaceutical Research 30(12): 3088-3100
Niemi, M.H.; Rytkönen-Nissinen, M.; Jänis, J.; Virtanen, T.; Rouvinen, J. 2014: Structural aspects of dog allergies: the crystal structure of a dog dander allergen can f 4. Molecular Immunology 61(1): 7-15
Taoka, K.-I.; Tsuji, H.; Shimamoto, K. 2009: Structural aspects of florigen to understand the molecular mechanism of flowering. Tanpakushitsu Kakusan Koso. Protein Nucleic Acid Enzyme 54(12 Suppl): 1702-1707
Crameri, R. 2015: Structural aspects of fungal allergens. Seminars in Immunopathology 37(2): 117-121
Cantu', L.; Corti, M.; Brocca, P.; Del Favero, E. 2009: Structural aspects of ganglioside-containing membranes. Biochimica et Biophysica Acta 1788(1): 202-208
Hewage, C.M.; Venneti, K.C. 2013: Structural aspects of gut peptides with therapeutic potential for type 2 diabetes. Chemmedchem 8(4): 560-567
Bera, M.K.; Ellis, R.J.; Burton-Pye, B.P.; Antonio, M.R. 2014: Structural aspects of heteropolyacid microemulsions. Physical Chemistry Chemical Physics: Pccp 16(41): 22566-22574
Duquesnoy, R.J.; Marrari, M.; Mulder, A.; Claas, F.H.J.; Mostecki, J.; Balazs, I. 2012: Structural aspects of human leukocyte antigen class i epitopes detected by human monoclonal antibodies. Human Immunology 73(3): 267-277
Niemer, W.T.; Magoun, H.W. 1947: Structural aspects of inhibitory and facilitatory reticulospinal connections. Anatomical Record 97(3): 358
Liddington, R.C. 2014: Structural aspects of integrins. Advances in Experimental Medicine and Biology 819: 111-126
Hassel, O. 1970: Structural aspects of interatomic charge-transfer bonding. Science 170(3957): 497-502
Rezler, M.; Żołek, T.; Wolska, I.; Maciejewska, D. 2014: Structural aspects of intermolecular interactions in the solid state of 1,4-dibenzylpiperazines bearing nitrile or amidine groups. Acta Crystallographica Section B Structural Science Crystal Engineering and Materials 70(Part 5): 820-827
Toyoshima, C. 2008: Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Archives of Biochemistry and Biophysics 476(1): 3-11
Shushkov, P.; Tzvetanov, S.; Velinova, M.; Ivanova, A.; Tadjer, A. 2010: Structural aspects of lipid monolayers: computer simulation analyses. Langmuir: the Acs Journal of Surfaces and Colloids 26(11): 8081-8092
Leeman, M.; Brasile, G.; Gelens, E.; Vries, T.; Kaptein, B.; Kellogg, R. 2008: Structural aspects of nucleation inhibitors for diastereomeric resolutions and the relationship to dutch resolution. Angewandte Chemie 47(7): 1287-1290
Szilágyi, L.ás.ó; Pristovsek, P. 2007: Structural aspects of peptides with immunomodulating activity. Mini Reviews in Medicinal Chemistry 7(8): 861-870
McGinnety, J.A.; Doedens, R.J.; Ibers, J.A. 1967: Structural aspects of reversible molecular oxygen uptake. Science 155(3763): 709-710
Zhou, Z.; Song, X.; Berezov, A.; Li, B.; Greene, M.I. 2009: Structural aspects of the FOXP3 regulatory complex as an immunopharmacological target. International Immunopharmacology 9(5): 518-520
Wisniewska-Becker, A.; Nawrocki, G.; Duda, M.; Subczynski, W.K. 2012: Structural aspects of the antioxidant activity of lutein in a model of photoreceptor membranes. Acta Biochimica Polonica 59(1): 119-124
Mahony, J.; van Sinderen, D. 2012: Structural aspects of the interaction of dairy phages with their host bacteria. Viruses 4(9): 1410-1424
Lusa, L.íc.G.; Lemos-Marini, S.H.V.d.; Soardi, F.C.; Ferraz, L.F.C.; Guerra-Júnior, G.; Mello, M.P.d. 2010: Structural aspects of the p.P222Q homozygous mutation of HSD3B2 gene in a patient with congenital adrenal hyperplasia. Arquivos Brasileiros de Endocrinologia e Metabologia 54(8): 768-774
Carnevale, V.; Raugei, S. 2009: Structural aspects of the solvation shell of lysine and acetylated lysine: a Car-Parrinello and classical molecular dynamics investigation. Journal of Chemical Physics 131(22): 225103
Kang, T.S.; Stevens, R.C. 2009: Structural aspects of therapeutic enzymes to treat metabolic disorders. Human Mutation 30(12): 1591-1610
Kumar, V.K.; Farley, F. 2009: Structural aspects of three hypnotizability scales: smallest space analysis. International Journal of Clinical and Experimental Hypnosis 57(4): 343-365
Shpanchenko, O.V.; Golovin, A.V.; Bugaeva, E.Y.; Isaksson, L.A.; Dontsova, O.A. 2010: Structural aspects of trans-translation. Iubmb Life 62(2): 120-124
Huang, Y.-X.; Liu, B.; Wen, L.; Zhang, X.; Sun, W.; Lin, J.; Huang, C.-Z.; Zhuang, R.-C.; Mi, J.-X.; Zhao, J.-T. 2013: Structural assembly from phosphate to germanophosphate by applying germanate as a binder. Inorganic Chemistry 52(16): 9169-9171
Zimmerman, E.S.; Schulman, B.A.; Zheng, N. 2010: Structural assembly of cullin-RING ubiquitin ligase complexes. Current Opinion in Structural Biology 20(6): 714-721
Berlin, K.; O'Leary, D.P.; Fushman, D. 2010: Structural assembly of molecular complexes based on residual dipolar couplings. Journal of the American Chemical Society 132(26): 8961-8972
Cheng, T.M.K.; Blundell, T.L.; Fernandez-Recio, J. 2008: Structural assembly of two-domain proteins by rigid-body docking. Bmc Bioinformatics 9: 441
Gourni, E.; Bouziotis, P.; Benaki, D.; Loudos, G.; Xanthopoulos, S.; Paravatou-Petsotas, M.; Mavri-Vavagianni, M.; Pelecanou, M.; Archimandritis, S.C.; Varvarigou, A.D. 2009: Structural assessment and biological evaluation of two N3S bombesin derivatives. Journal of Medicinal Chemistry 52(14): 4234-4246
Lima, L.H.; Cella, W.; Greenstein, V.C.; Wang, N.-K.; Busuioc, M.; Smith, R.T.; Yannuzzi, L.A.; Tsang, S.H. 2009: Structural assessment of hyperautofluorescent ring in patients with retinitis pigmentosa. Retina 29(7): 1025-1031
Gan, Y.X. 2012: Structural assessment of nanocomposites. Micron 43(7): 782-817
Teng, S.; Srivastava, A.K.; Schwartz, C.E.; Alexov, E.; Wang, L. 2010: Structural assessment of the effects of amino acid substitutions on protein stability and protein protein interaction. International Journal of Computational Biology and Drug Design 3(4): 334-349
Zhao, X.; Chen, X.; Yang, G.-F.; Zhan, C.-G. 2010: Structural assignment of 6-oxy purine derivatives through computational modeling, synthesis, X-ray diffraction, and spectroscopic analysis. Journal of Physical Chemistry. B 114(20): 6968-6972
Andrews, K.G.; Frampton, C.S.; Spivey, A.C. 2013: Structural assignment of a bis-cyclopentenyl-β-cyanohydrin formed via alkene metathesis from either a triene or a tetraene precursor. Acta Crystallographica. Section C Crystal Structure Communications 69(Part 11): 1207-1211
Biemann, L.; Häber, T.; Maydt, D.; Schaper, K.; Kleinermanns, K. 2008: Structural assignment of adenine aggregates in CDCl3. Journal of Chemical Physics 128(19): 195103
Kumai, R.; Horiuchi, S.; Sagayama, H.; Arima, T.-H.; Watanabe, M.; Noda, Y.; Tokura, Y. 2007: Structural assignment of polarization in hydrogen-bonded supramolecular ferroelectrics. Journal of the American Chemical Society 129(43): 12920-12921
Devereux, M.; Meuwly, M. 2009: Structural assignment of spectra by characterization of conformational substates in bound MbCO. Biophysical Journal 96(11): 4363-4375
Boggara, M.Babu.; Mihailescu, M.; Krishnamoorti, R. 2012: Structural association of nonsteroidal anti-inflammatory drugs with lipid membranes. Journal of the American Chemical Society 134(48): 19669-19676
Stoppiello, L.A.; Mapp, P.I.; Wilson, D.; Hill, R.; Scammell, B.E.; Walsh, D.A. 2014: Structural associations of symptomatic knee osteoarthritis. Arthritis and Rheumatology 66(11): 3018-3027
Liu, Y.; Balériaux, D.; Kavec, M.; Metens, T.; Absil, J.; Denolin, V.; Pardou, A.; Avni, F.; Van Bogaert, P.; Aeby, A. 2010: Structural asymmetries in motor and language networks in a population of healthy preterm neonates at term equivalent age: a diffusion tensor imaging and probabilistic tractography study. Neuroimage 51(2): 783-788
Dubois, J.; Hertz-Pannier, L.; Cachia, A.; Mangin, J.F.; Le Bihan, D.; Dehaene-Lambertz, G. 2009: Structural asymmetries in the infant language and sensori-motor networks. Cerebral Cortex 19(2): 414-423
Dubois, J.; Benders, M.; Lazeyras, F.; Borradori-Tolsa, C.; Leuchter, R.H.-V.; Mangin, J.F.; Hüppi, P.S. 2010: Structural asymmetries of perisylvian regions in the preterm newborn. Neuroimage 52(1): 32-42
Aparicio, D.; Pérez-Luque, R.; Carpena, X.; Díaz, M.; Ferrer, J.C.; Loewen, P.C.; Fita, I. 2013: Structural asymmetry and disulfide bridges among subunits modulate the activity of human malonyl-CoA decarboxylase. Journal of Biological Chemistry 288(17): 11907-11919
Thevenot, J.ér.ôm.; Pulkkinen, P.; Kuhn, V.; Eckstein, F.; Jämsä, T. 2010: Structural asymmetry between the hips and its relation to experimental fracture type. Calcified Tissue International 87(3): 203-210
Tsai, C.-J.; Khafizov, K.; Hakulinen, J.; Forrest, L.R.; Forrest, L.R.; Krämer, R.; Kühlbrandt, W.; Ziegler, C. 2011: Structural asymmetry in a trimeric Na+/betaine symporter, BetP, from Corynebacterium glutamicum. Journal of Molecular Biology 407(3): 368-381
Chen, L.; Shi, K.; Yin, Z.; Aihara, H. 2013: Structural asymmetry in the Thermus thermophilus RuvC dimer suggests a basis for sequential strand cleavages during Holliday junction resolution. Nucleic Acids Research 41(1): 648-656
Lavery, L.A.; Partridge, J.R.; Ramelot, T.A.; Elnatan, D.; Kennedy, M.A.; Agard, D.A. 2014: Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism. Molecular Cell 53(2): 330-343
Pfoh, R.; Li, A.; Chakrabarti, N.; Payandeh, J.; Pomès, R.ég.; Pai, E.F. 2012: Structural asymmetry in the magnesium channel CorA points to sequential allosteric regulation. Proceedings of the National Academy of Sciences of the United States of America 109(46): 18809-18814
Hou, J.; Xu, J.; Liu, M.; Zhao, R.; Luo, H.-B.; Ke, H. 2011: Structural asymmetry of phosphodiesterase-9, potential protonation of a glutamic acid, and role of the invariant glutamine. Plos one 6(3): E18092
Kang, H.J.; Lee, Y.-m.; Bae, K.-H.; Kim, S.J.; Chung, S.J. 2013: Structural asymmetry of procaspase-7 bound to a specific inhibitor. Acta Crystallographica. Section D Biological Crystallography 69(Part 8): 1514-1521
French, R.L.; Gupta, N.; Copeland, P.R.; Simonović, M. 2014: Structural asymmetry of the terminal catalytic complex in selenocysteine synthesis. Journal of Biological Chemistry 289(42): 28783-28794
Okamoto, M.; Tsuzuki, D.; Clowney, L.; Dan, H.; Singh, A.K.; Dan, I. 2009: Structural atlas-based spatial registration for functional near-infrared spectroscopy enabling inter-study data integration. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 120(7): 1320-1328
Lampi, M.C.; Wu, X.; Schilke, K.F.; McGuire, J. 2013: Structural attributes affecting peptide entrapment in PEO brush layers. Colloids and Surfaces. B Biointerfaces 106: 79-85
Sunitha, M.S.; Nair, A.G.; Charya, A.; Jadhav, K.; Mukhopadhyay, S.; Sowdhamini, R. 2012: Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins. Bmc Research Notes 5: 530
Peters, Börn-Hendrik.; Molnár, F.; Ketolainen, J. 2014: Structural attributes of model protein formulations prepared by rapid freeze-drying cycles in a microscale heating stage. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik E.V 87(2): 347-356
Kravatskaya, G.I.; Chechetkin, V.R.; Kravatsky, Y.V.; Tumanyan, V.G. 2013: Structural attributes of nucleotide sequences in promoter regions of supercoiling-sensitive genes: how to relate microarray expression data with genomic sequences. Genomics 101(1): 1-11
Tennakoon, K.U.; Bolin, J.F.; Musselman, L.J.; Maass, E. 2007: Structural attributes of the hypogeous holoparasite Hydnora triceps Drege & Meyer (Hydnoraceae). American Journal of Botany 94(9): 1439-1449
Yang, S.; Wu, X.; Xu, W.; Ye, S.; Liu, X.; Liu, X. 2010: Structural augmentation with biomaterial-loaded allograft threaded cage for the treatment of femoral head osteonecrosis. Journal of Arthroplasty 25(8): 1223-1230
Maestro, B.; Santiveri, C.M.; Jiménez, M.A.; Sanz, J.ús.M. 2011: Structural autonomy of a β-hairpin peptide derived from the pneumococcal choline-binding protein LytA. Protein Engineering Design and Selection: Peds 24(1-2): 113-122
Tian, M.-L.; Zhong, X.-M.; Zhagn, Y.-X.; Yu, Y.-Y.; Pang, R.; Zhou, L.; Song, B. 2018: Concentrations and Health Risk Assessments of Heavy Metal Contents in Soil and Rice of Mine Contaminated Areas. Huan Jing Ke Xue= Huanjing Kexue 39(6): 2919-2926
Sánchez-Azqueta, A.; Musumeci, M.ía.A.; Martínez-Júlvez, M.; Ceccarelli, E.A.; Medina, M. 2012: Structural backgrounds for the formation of a catalytically competent complex with NADP(H) during hydride transfer in ferredoxin-NADP(+) reductases. Biochimica et Biophysica Acta 1817(7): 1063-1071
Caselli, M.; Vaira, G.; Calo, G.; Papini, F.; Holton, J.; Vaira, D. 2011: Structural bacterial molecules as potential candidates for an evolution of the classical concept of probiotics. Advances in Nutrition 2(5): 372-376
Zuluaga, S.; Liu, L.-H.; Shafiq, N.; Rupich, S.M.; Veyan, J.-F.ço.; Chabal, Y.J.; Thonhauser, T. 2015: Structural band-gap tuning in g-C3N4. Physical Chemistry Chemical Physics: Pccp 17(2): 957-962
Lu, S.; Gong, Y.; Iwai, S.; Stein, K.M.; Lerman, B.B.; Christini, D.J. 2006: Structural barrier increases QT-peak dispersion in swine left ventricle in vivo. Conference Proceedings: . Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2006: 4039-4042
Amon, J.J.; Kasambala, T. 2009: Structural barriers and human rights related to HIV prevention and treatment in Zimbabwe. Global Public Health 4(6): 528-545
Saigal, N.; Narayan, R. 2014: Structural barriers at the workplace for employees with vision and locomotor disabilities in New Delhi, India. Work 48(3): 329-337
Schulte, B.; Schmidt, C.Sybille.; Kuhnigk, O.; Schäfer, I.; Fischer, B.; Wedemeyer, H.; Reimer, J. 2013: Structural barriers in the context of opiate substitution treatment in Germany--a survey among physicians in primary care. Substance Abuse Treatment Prevention and Policy 8: 26
Kagee, A.; Remien, R.H.; Berkman, A.; Hoffman, S.; Campos, L.; Swartz, L. 2011: Structural barriers to ART adherence in Southern Africa: Challenges and potential ways forward. Global Public Health 6(1): 83-97
Coetzee, B.; Kagee, A.; Vermeulen, N. 2011: Structural barriers to adherence to antiretroviral therapy in a resource-constrained setting: the perspectives of health care providers. Aids Care 23(2): 146-151
Kratzer, J. 2012: Structural barriers to coping with type 1 diabetes mellitus in Ghana: experiences of diabetic youth and their families. Ghana Medical Journal 46(2 Suppl): 39-45
King, E.J.; Maman, S. 2013: Structural barriers to receiving health care services for female sex workers in Russia. Qualitative Health Research 23(8): 1079-1088
Tran, D.A.; Shakeshaft, A.; Ngo, A.D.; Rule, J.; Wilson, D.P.; Zhang, L.; Doran, C. 2012: Structural barriers to timely initiation of antiretroviral treatment in Vietnam: findings from six outpatient clinics. Plos one 7(12): E51289
VanderWyst, S.S.; Perkumas, K.M.; Read, A.T.; Overby, D.R.; Stamer, W.D. 2011: Structural basement membrane components and corresponding integrins in Schlemm's canal endothelia. Molecular Vision 17: 199-209
Schmitt, E.; Galimand, M.; Panvert, M.; Courvalin, P.; Mechulam, Y. 2009: Structural bases for 16 S rRNA methylation catalyzed by ArmA and RmtB methyltransferases. Journal of Molecular Biology 388(3): 570-582
Fernandes, C.A.H.; Comparetti, E.J.; Borges, R.J.; Huancahuire-Vega, S.ón.; Ponce-Soto, L.A.; Marangoni, S.; Soares, A.M.; Fontes, M.R.M. 2013: Structural bases for a complete myotoxic mechanism: crystal structures of two non-catalytic phospholipases A2-like from Bothrops brazili venom. Biochimica et Biophysica Acta 1834(12): 2772-2781
Thomas, V.L.; McReynolds, A.C.; Shoichet, B.K. 2010: Structural bases for stability-function tradeoffs in antibiotic resistance. Journal of Molecular Biology 396(1): 47-59
Mastrangelo, E.; Bollati, M.; Milani, M.; Selisko, B.; Peyrane, F.; Canard, B.; Grard, G.; de Lamballerie, X.; Bolognesi, M. 2007: Structural bases for substrate recognition and activity in Meaban virus nucleoside-2'-O-methyltransferase. Protein Science: a Publication of the Protein Society 16(6): 1133-1145
Gras, Séphanie.; Saulquin, X.; Reiser, J-Baptiste.; Debeaupuis, E.; Echasserieau, K.; Kissenpfennig, A.; Legoux, Fçois.; Chouquet, A.; Le Gorrec, M.; Machillot, P.; Neveu, Bérangère.; Thielens, N.; Malissen, B.; Bonneville, M.; Housset, D. 2009: Structural bases for the affinity-driven selection of a public TCR against a dominant human cytomegalovirus epitope. Journal of Immunology 183(1): 430-437
Noujaim, S.F.; Stuckey, J.A.; Ponce-Balbuena, D.; Ferrer-Villada, T.; López-Izquierdo, A.; Pandit, S.V.; Sánchez-Chapula, J.é A.; Jalife, J.é 2011: Structural bases for the different anti-fibrillatory effects of chloroquine and quinidine. Cardiovascular Research 89(4): 862-869
Rosell, A.; Meury, M.; Álvarez-Marimon, E.; Costa, M.; Pérez-Cano, L.; Zorzano, A.; Fernández-Recio, J.; Palacín, M.; Fotiadis, D. 2014: Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proceedings of the National Academy of Sciences of the United States of America 111(8): 2966-2971
Kikani, C.K.; Antonysamy, S.A.; Bonanno, J.B.; Romero, R.; Zhang, F.F.; Russell, M.; Gheyi, T.; Iizuka, M.; Emtage, S.; Sauder, J.M.; Turk, B.E.; Burley, S.K.; Rutter, J. 2010: Structural bases of PAS domain-regulated kinase (PASK) activation in the absence of activation loop phosphorylation. Journal of Biological Chemistry 285(52): 41034-41043
Reguera, J.; Santiago, C.és.; Mudgal, G.; Ordoño, D.; Enjuanes, L.; Casasnovas, J.é M. 2012: Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. Plos Pathogens 8(8): E1002859
Croci, R.; Pezzullo, M.; Tarantino, D.; Milani, M.; Tsay, S.-C.; Sureshbabu, R.; Tsai, Y.-J.; Mastrangelo, E.; Rohayem, J.; Bolognesi, M.; Hwu, J.R. 2014: Structural bases of norovirus RNA dependent RNA polymerase inhibition by novel suramin-related compounds. Plos one 9(3): E91765
Benhamou, L.; Thibon, A.; Brelot, L.; Lachkar, M.; Mandon, D. 2012: Structural bases of oxygen-sensitivity in Fe(II) complexes with tripodal ligands. Steric effects, Lewis acidity and the role of ancillary ligands. Dalton Transactions 41(47): 14369-14380
Ma, B.; Xiang, Y.; An, L. 2011: Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase. Cellular Signalling 23(8): 1244-1256
Voronkov, A.; Holsworth, D.D.; Waaler, J.; Wilson, S.R.; Ekblad, B.; Perdreau-Dahl, H.; Dinh, H.; Drewes, G.; Hopf, C.; Morth, J.P.; Krauss, S. 2013: Structural basis and SAR for G007-LK, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor. Journal of Medicinal Chemistry 56(7): 3012-3023
Zhang, Y.; Ho, A.; Yue, J.; Kong, L.; Zhou, Z.; Wu, X.; Yang, F.; Liang, H. 2014: Structural basis and anticancer properties of ruthenium-based drug complexed with human serum albumin. European Journal of Medicinal Chemistry 86: 449-455
Yin, J.; Li, L.; Shaw, N.; Li, Y.; Song, J.K.; Zhang, W.; Xia, C.; Zhang, R.; Joachimiak, A.; Zhang, H.-C.; Wang, L.-X.; Liu, Z.-J.; Wang, P. 2009: Structural basis and catalytic mechanism for the dual functional endo-beta-N-acetylglucosaminidase a. Plos one 4(3): E4658
Özen, A.şe.ül.; Lin, K.-H.; Kurt Yilmaz, N.; Schiffer, C.A. 2014: Structural basis and distal effects of Gag substrate coevolution in drug resistance to HIV-1 protease. Proceedings of the National Academy of Sciences of the United States of America 111(45): 15993-15998
Yang, L.; Hill, M.; Wang, M.; Panjikar, S.; Stöckigt, J. 2009: Structural basis and enzymatic mechanism of the biosynthesis of C9- from C10-monoterpenoid indole alkaloids. Angewandte Chemie 48(28): 5211-5213
Xiang, X.; Lee, C.-Y.; Li, T.; Chen, W.; Lou, J.; Zhu, C. 2011: Structural basis and kinetics of force-induced conformational changes of an αA domain-containing integrin. Plos one 6(11): E27946
Haikarainen, T.; Venkannagari, H.; Narwal, M.; Obaji, E.; Lee, H.-W.; Nkizinkiko, Y.; Lehtiö, L. 2013: Structural basis and selectivity of tankyrase inhibition by a Wnt signaling inhibitor WIKI4. Plos one 8(6): E65404
Tse, H.; Kao, R.Y.T.; Wu, W.L.; Lim, W.W.L.; Chen, H.; Yeung, M.Y.; Woo, P.C.Y.; Sze, K.-H.; Yuen, K.-Y. 2011: Structural basis and sequence co-evolution analysis of the hemagglutinin protein of pandemic influenza A/H1N1 (2009) virus. Experimental Biology and Medicine 236(8): 915-925
Edelmann, M.J.; Iphöfer, A.; Akutsu, M.; Altun, M.; di Gleria, K.; Kramer, H.B.; Fiebiger, E.; Dhe-Paganon, S.; Kessler, B.M. 2009: Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochemical Journal 418(2): 379-390
Peuckert, F.; Miethke, M.; Albrecht, A.G.; Essen, L.-O.; Marahiel, M.A. 2009: Structural basis and stereochemistry of triscatecholate siderophore binding by FeuA. Angewandte Chemie 48(42): 7924-7927
Zeth, K.; Fokina, O.; Forchhammer, K. 2014: Structural basis and target-specific modulation of ADP sensing by the Synechococcus elongatus PIi signaling protein. Journal of Biological Chemistry 289(13): 8960-8972
Dhruv, H.; Loftus, J.C.; Narang, P.; Petit, J.L.; Fameree, M.; Burton, J.; Tchegho, G.; Chow, D.; Yin, H.; Al-Abed, Y.; Berens, M.E.; Tran, N.L.; Meurice, N. 2013: Structural basis and targeting of the interaction between fibroblast growth factor-inducible 14 and tumor necrosis factor-like weak inducer of apoptosis. Journal of Biological Chemistry 288(45): 32261-32276
Valiente-Gabioud, A.A.; Torres-Monserrat, V.; Molina-Rubino, L.; Binolfi, A.; Griesinger, C.; Fernández, C.O. 2012: Structural basis behind the interaction of Zn²⁺ with the protein α-synuclein and the Aβ peptide: a comparative analysis. Journal of Inorganic Biochemistry 117: 334-341
Chikwana, V.M.; Khanna, M.; Baskaran, S.; Tagliabracci, V.S.; Contreras, C.J.; DePaoli-Roach, A.; Roach, P.J.; Hurley, T.D. 2013: Structural basis for 2'-phosphate incorporation into glycogen by glycogen synthase. Proceedings of the National Academy of Sciences of the United States of America 110(52): 20976-20981
Jaudzems, K.; Jia, X.; Yagi, H.; Zhulenkovs, D.; Graham, B.; Otting, G.; Liepinsh, E. 2012: Structural basis for 5'-end-specific recognition of single-stranded DNA by the R3H domain from human Sμbp-2. Journal of Molecular Biology 424(1-2): 42-53
Calabrese, M.F.; Rajamohan, F.; Harris, M.S.; Caspers, N.L.; Magyar, R.; Withka, J.M.; Wang, H.; Borzilleri, K.A.; Sahasrabudhe, P.V.; Hoth, L.R.; Geoghegan, K.F.; Han, S.; Brown, J.; Subashi, T.A.; Reyes, A.R.; Frisbie, R.K.; Ward, J.; Miller, R.A.; Landro, J.A.; Londregan, A.T.; Carpino, P.A.; Cabral, S.; Smith, A.C.; Conn, E.L.; Cameron, K.O.; Qiu, X.; Kurumbail, R.G. 2014: Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22(8): 1161-1172
Canning, P.; von Delft, F.; Bullock, A.N. 2012: Structural basis for ASPP2 recognition by the tumor suppressor p73. Journal of Molecular Biology 423(4): 515-527
Dupin, A.F.; Fribourg, S.éb. 2014: Structural basis for ATP loss by Clp1p in a G135R mutant protein. Biochimie 101: 203-207
Urbanc, B.; Betnel, M.; Cruz, L.; Li, H.; Fradinger, E.A.; Monien, B.H.; Bitan, G. 2011: Structural basis for Aβ1–42 toxicity inhibition by Aβ C-terminal fragments: discrete molecular dynamics study. Journal of Molecular Biology 410(2): 316-328
Oja, T.; Niiranen, L.; Sandalova, T.; Klika, K.D.; Niemi, J.; Mäntsälä, P.; Schneider, G.; Metsä-Ketelä, M. 2013: Structural basis for C-ribosylation in the alnumycin a biosynthetic pathway. Proceedings of the National Academy of Sciences of the United States of America 110(4): 1291-1296
Sack, J.S.; Thieffine, S.; Bandiera, T.; Fasolini, M.; Duke, G.J.; Jayaraman, L.; Kish, K.F.; Klei, H.E.; Purandare, A.V.; Rosettani, P.; Troiani, S.; Xie, D.; Bertrand, J.A. 2011: Structural basis for CARM1 inhibition by indole and pyrazole inhibitors. Biochemical Journal 436(2): 331-339
Mori, T.; Kitano, K.; Terawaki, S.-i.; Maesaki, R.; Fukami, Y.; Hakoshima, T. 2008: Structural basis for CD44 recognition by ERM proteins. Journal of Biological Chemistry 283(43): 29602-29612
Koyama, M.; Matsuura, Y. 2011: Structural basis for CRM1-mediated nuclear export. Seikagaku. Journal of Japanese Biochemical Society 83(9): 834-838
Suzuki, H.; Kawasaki, M.; Inuzuka, T.; Okumura, M.; Kakiuchi, T.; Shibata, H.; Wakatsuki, S.; Maki, M. 2008: Structural basis for Ca2+ -dependent formation of ALG-2/Alix peptide complex: Ca2+/EF3-driven arginine switch mechanism. Structure 16(10): 1562-1573
Ottmann, C.; Rose, R.; Huttenlocher, F.; Cedzich, A.; Hauske, P.; Kaiser, M.; Huber, R.; Schaller, A. 2009: Structural basis for Ca2+-independence and activation by homodimerization of tomato subtilase 3. Proceedings of the National Academy of Sciences of the United States of America 106(40): 17223-17228
Zhang, Y.; Li, Z.; Sacks, D.B.; Ames, J.B. 2012: Structural basis for Ca2+-induced activation and dimerization of estrogen receptor α by calmodulin. Journal of Biological Chemistry 287(12): 9336-9344
Canning, P.; Cooper, C.D.O.; Krojer, T.; Murray, J.W.; Pike, A.C.W.; Chaikuad, A.; Keates, T.; Thangaratnarajah, C.; Hojzan, V.; Marsden, B.D.; Gileadi, O.; Knapp, S.; von Delft, F.; Bullock, A.N. 2013: Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. Journal of Biological Chemistry 288(11): 7803-7814
Boer, D.R.; Freire-Rios, A.; van den Berg, W.A.M.; Saaki, T.; Manfield, I.W.; Kepinski, S.; López-Vidrieo, I.; Franco-Zorrilla, J.M.; de Vries, S.C.; Solano, R.; Weijers, D.; Coll, M. 2014: Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156(3): 577-589
Langelier, M-France.; Planck, J.L.; Roy, S.; Pascal, J.M. 2012: Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336(6082): 728-732
Liu, S.; Tian, L.-f.; Liu, Y.-p.; An, X.-m.; Tang, Q.; Yan, X.-x.; Liang, D.-c. 2014: Structural basis for DNA recognition and nuclease processing by the Mre11 homologue SbcD in double-strand breaks repair. Acta Crystallographica. Section D Biological Crystallography 70(Part 2): 299-309
Obsil, T.; Obsilova, V. 2011: Structural basis for DNA recognition by FOXO proteins. Biochimica et Biophysica Acta 1813(11): 1946-1953
Birrane, G.; Soni, A.; Ladias, J.A.A. 2009: Structural basis for DNA recognition by the human PAX3 homeodomain. Biochemistry 48(6): 1148-1155
Kitano, K.; Kim, S-Yong.; Hakoshima, T. 2010: Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 18(2): 177-187
Lee, A.Y.-L.; Chen, Y.-D.; Chang, Y.-Y.; Lin, Y.-C.; Chang, C.-F.; Huang, S.-J.; Wu, S.-H.; Hsu, C.-H. 2014: Structural basis for DNA-mediated allosteric regulation facilitated by the AAA+ module of Lon protease. Acta Crystallographica. Section D Biological Crystallography 70(Part 2): 218-230
Wiedenheft, B.; Zhou, K.; Jinek, M.; Coyle, S.M.; Ma, W.; Doudna, J.A. 2009: Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17(6): 904-912
Ramsland, P.A.; Farrugia, W.; Bradford, T.M.; Sardjono, C.T.; Esparon, S.; Trist, H.M.; Powell, M.S.; Tan, P.S.; Cendron, A.C.; Wines, B.D.; Scott, A.M.; Hogarth, P.M. 2011: Structural basis for Fc gamma RIIa recognition of human IgG and formation of inflammatory signaling complexes. Journal of Immunology 187(6): 3208-3217
Shi, R.; Proteau, A.; Villarroya, M.; Moukadiri, I.ïl.; Zhang, L.; Trempe, J.-F.ço.; Matte, A.; Armengod, M.E.; Cygler, M. 2010: Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. Plos Biology 8(4): E1000354
Chan, K.-H.; Li, T.; Wong, C.-O.; Wong, K.-B. 2012: Structural basis for GTP-dependent dimerization of hydrogenase maturation factor HypB. Plos one 7(1): E30547
Takahashi, Y.-H.; Shilatifard, A. 2010: Structural basis for H3K4 trimethylation by yeast Set1/COMPASS. Advances in Enzyme Regulation 50(1): 104-110
Scharf, L.; West, A.P.; Gao, H.; Lee, T.; Scheid, J.F.; Nussenzweig, M.C.; Bjorkman, P.J.; Diskin, R. 2013: Structural basis for HIV-1 gp120 recognition by a germ-line version of a broadly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America 110(15): 6049-6054
Ofek, G.; Zirkle, B.; Yang, Y.; Zhu, Z.; McKee, K.; Zhang, B.; Chuang, G.-Y.; Georgiev, I.S.; O'Dell, S.; Doria-Rose, N.; Mascola, J.R.; Dimitrov, D.S.; Kwong, P.D. 2014: Structural basis for HIV-1 neutralization by 2F5-like antibodies m66 and m66.6. Journal of Virology 88(5): 2426-2441
Kangueane, P.; Sakharkar, M.K. 2007: Structural basis for HLA-A2 supertypes. Methods in Molecular Biology 409: 155-162
Kuhnert, M.; Steuber, H.; Diederich, W.E. 2014: Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir. Journal of Medicinal Chemistry 57(14): 6266-6272
Lundby, A.; Tseng, G.-N.; Schmitt, N. 2010: Structural basis for K(V)7.1-KCNE(x) interactions in the I(Ks) channel complex. Heart Rhythm 7(5): 708-713
Reshetnyak, A.V.; Nelson, B.; Shi, X.; Boggon, T.J.; Pavlenco, A.; Mandel-Bausch, E.M.; Tome, F.; Suzuki, Y.; Sidhu, S.S.; Lax, I.; Schlessinger, J. 2013: Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region. Proceedings of the National Academy of Sciences of the United States of America 110(44): 17832-17837
Liu, Y.; Olanrewaju, Y.O.; Zheng, Y.; Hashimoto, H.; Blumenthal, R.M.; Zhang, X.; Cheng, X. 2014: Structural basis for Klf4 recognition of methylated DNA. Nucleic Acids Research 42(8): 4859-4867
Bulfer, S.L.; Scott, E.M.; Pillus, L.; Trievel, R.C. 2010: Structural basis for L-lysine feedback inhibition of homocitrate synthase. Journal of Biological Chemistry 285(14): 10446-10453
Ramanan, P.; Edwards, M.R.; Shabman, R.S.; Leung, D.W.; Endlich-Frazier, A.C.; Borek, D.M.; Otwinowski, Z.; Liu, G.; Huh, J.; Basler, C.F.; Amarasinghe, G.K. 2012: Structural basis for Marburg virus VP35-mediated immune evasion mechanisms. Proceedings of the National Academy of Sciences of the United States of America 109(50): 20661-20666
McLaughlin, K.J.; Strain-Damerell, C.M.; Xie, K.; Brekasis, D.; Soares, A.S.; Paget, M.S.B.; Kielkopf, C.L. 2010: Structural basis for NADH/NAD+ redox sensing by a Rex family repressor. Molecular Cell 38(4): 563-575
Mamonova, T.; Kurnikova, M.; Friedman, P.A. 2012: Structural basis for NHERF1 PDZ domain binding. Biochemistry 51(14): 3110-3120
Del Campo, C.M.; Mishra, A.K.; Wang, Y.-H.; Roy, C.R.; Janmey, P.A.; Lambright, D.G. 2014: Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure 22(3): 397-408
Löw, C.; Quistgaard, E.M.; Kovermann, M.; Anandapadamanaban, M.; Balbach, J.; Nordlund, Pär. 2014: Structural basis for PTPA interaction with the invariant C-terminal tail of PP2A. Biological chemistry 395(7-8): 881-889
Wolf, J.; Valkov, E.; Allen, M.D.; Meineke, B.; Gordiyenko, Y.; McLaughlin, S.H.; Olsen, T.M.; Robinson, C.V.; Bycroft, M.; Stewart, M.; Passmore, L.A. 2014: Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. EMBO Journal 33(14): 1514-1526
Filippakopoulos, P.; Low, A.; Sharpe, T.D.; Uppenberg, J.; Yao, S.; Kuang, Z.; Savitsky, P.; Lewis, R.S.; Nicholson, S.E.; Norton, R.S.; Bullock, A.N. 2010: Structural basis for Par-4 recognition by the SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4. Journal of Molecular Biology 401(3): 389-402
Wu, Z.; Fu, C.; Shi, L.; Ruan, L.; Lin, D.; Guo, C. 2014: Structural basis for RKIP binding with its substrate Raf1 kinase. Biotechnology Letters 36(9): 1869-1874
Song, J.; McGivern, J.V.; Nichols, K.W.; Markley, J.L.; Sheets, M.D. 2008: Structural basis for RNA recognition by a type Ii poly(A)-binding protein. Proceedings of the National Academy of Sciences of the United States of America 105(40): 15317-15322
Mishra, A.; Eathiraj, S.; Corvera, S.; Lambright, D.G. 2010: Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal Autoantigen 1 (EEA1). Proceedings of the National Academy of Sciences of the United States of America 107(24): 10866-10871
Chen, Y.; Tascón, I.; Neunuebel, M.R.; Pallara, C.; Brady, J.; Kinch, L.N.; Fernández-Recio, J.; Rojas, A.L.; Machner, M.P.; Hierro, A. 2013: Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD. Plos Pathogens 9(5): E1003382
Guja, K.E.; Venkataraman, K.; Yakubovskaya, E.; Shi, H.; Mejia, E.; Hambardjieva, E.; Karzai, A.W.; Garcia-Diaz, M. 2013: Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1. Nucleic Acids Research 41(16): 7947-7959
Wier, A.D.; Mayekar, M.K.; Héroux, A.; Arndt, K.M.; VanDemark, A.P. 2013: Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proceedings of the National Academy of Sciences of the United States of America 110(43): 17290-17295
Kumar, P.; Vahedi-Faridi, A.; Saenger, W.; Merino, E.; López de Castro, J.é A.; Uchanska-Ziegler, B.; Ziegler, A. 2009: Structural basis for T cell alloreactivity among three HLA-B14 and HLA-B27 antigens. Journal of Biological Chemistry 284(43): 29784-29797
Zhang, Y.; Hu, Y.; Li, H.; Jin, C. 2014: Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure. Plos one 9(8): E103157
Dönhöfer, A.; Franckenberg, S.; Wickles, S.; Berninghausen, O.; Beckmann, R.; Wilson, D.N. 2012: Structural basis for TetM-mediated tetracycline resistance. Proceedings of the National Academy of Sciences of the United States of America 109(42): 16900-16905
Petersen, J.; Mitchell, C.J.; Fisher, K.; Lowe, D.J. 2008: Structural basis for VO(2+)-inhibition of nitrogenase activity: (B) pH-sensitive inner-sphere rearrangements in the 1H-environment of the metal coordination site of the nitrogenase Fe-protein identified by ENDOR spectroscopy. Journal of Biological Inorganic Chemistry: Jbic: a Publication of the Society of Biological Inorganic Chemistry 13(4): 637-650
Petersen, J.; Fisher, K.; Lowe, D.J. 2008: Structural basis for VO2+ inhibition of nitrogenase activity (A): 31P and 23Na interactions with the metal at the nucleotide binding site of the nitrogenase Fe protein identified by ENDOR spectroscopy. Journal of Biological Inorganic Chemistry: Jbic: a Publication of the Society of Biological Inorganic Chemistry 13(4): 623-635
Dharmarajan, V.; Lee, J.-H.; Patel, A.; Skalnik, D.G.; Cosgrove, M.S. 2012: Structural basis for WDR5 interaction (Win) motif recognition in human SET1 family histone methyltransferases. Journal of Biological Chemistry 287(33): 27275-27289
De Rosa, M.; Zacarias, S.; Athanasiadis, A. 2013: Structural basis for Z-DNA binding and stabilization by the zebrafish Z-DNA dependent protein kinase PKZ. Nucleic Acids Research 41(21): 9924-9933
Conrady, D.G.; Wilson, J.J.; Herr, A.B. 2013: Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms. Proceedings of the National Academy of Sciences of the United States of America 110(3): E202-E211
Martins, B.M.; Blaser, M.; Feliks, M.; Ullmann, G.M.; Buckel, W.; Selmer, T. 2011: Structural basis for a Kolbe-type decarboxylation catalyzed by a glycyl radical enzyme. Journal of the American Chemical Society 133(37): 14666-14674
Impagliazzo, A.; Tepper, A.W.; Verrips, T.C.; Ubbink, M.; van der Maarel, Sère.M. 2010: Structural basis for a PABPN1 aggregation-preventing antibody fragment in OPMD. Febs Letters 584(8): 1558-1564
Demmer, U.; Warkentin, E.; Srivastava, A.; Kockelkorn, D.; Pötter, M.; Marx, A.; Fuchs, G.; Ermler, U. 2013: Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme a reductase. Journal of Biological Chemistry 288(9): 6363-6370
Park, J.; Rhee, S. 2013: Structural basis for a cofactor-dependent oxidation protection and catalysis of cyanobacterial succinic semialdehyde dehydrogenase. Journal of Biological Chemistry 288(22): 15760-15770
Melchers, J.; Diechtierow, M.; Fehér, K.; Sinning, I.; Tews, I.; Krauth-Siegel, R.L.; Muhle-Goll, C. 2008: Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase. Journal of Biological Chemistry 283(44): 30401-30411
Zhang, Y.; Reddish, F.; Tang, S.; Zhuo, Y.; Wang, Y.-F.; Yang, J.J.; Weber, I.T. 2013: Structural basis for a hand-like site in the calcium sensor CatchER with fast kinetics. Acta Crystallographica. Section D Biological Crystallography 69(Part 12): 2309-2319
Chai, C.; Yu, Y.; Zhuo, W.; Zhao, H.; Li, X.; Wang, N.; Chai, J.; Yang, M. 2013: Structural basis for a homodimeric ATPase subunit of an ECF transporter. Protein and Cell 4(10): 793-801
Richardson, B.C.; Smith, R.D.; Ungar, D.; Nakamura, A.; Jeffrey, P.D.; Lupashin, V.V.; Hughson, F.M. 2009: Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene. Proceedings of the National Academy of Sciences of the United States of America 106(32): 13329-13334
Rhodes, D.I.; Peat, T.S.; Vandegraaff, N.; Jeevarajah, D.; Le, G.; Jones, E.D.; Smith, J.A.; Coates, J.A.V.; Winfield, L.J.; Thienthong, N.; Newman, J.; Lucent, D.; Ryan, J.H.; Savage, G.P.; Francis, C.L.; Deadman, J.J. 2011: Structural basis for a new mechanism of inhibition of HIV-1 integrase identified by fragment screening and structure-based design. Antiviral Chemistry and ChemoTherapy 21(4): 155-168
Volkers, G.; Palm, G.J.; Weiss, M.S.; Wright, G.D.; Hinrichs, W. 2011: Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. Febs Letters 585(7): 1061-1066
Chang, Y.; Bruni, R.; Kloss, B.; Assur, Z.; Kloppmann, E.; Rost, B.; Hendrickson, W.A.; Liu, Q. 2014: Structural basis for a pH-sensitive calcium leak across membranes. Science 344(6188): 1131-1135
Enchev, R.I.; Scott, D.C.; da Fonseca, P.C.A.; Schreiber, A.; Monda, J.K.; Schulman, B.A.; Peter, M.; Morris, E.P. 2012: Structural basis for a reciprocal regulation between SCF and CSN. Cell Reports 2(3): 616-627
Wu, X.; Ye, S.; Guo, S.; Yan, W.; Bartlam, M.; Rao, Z. 2010: Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity. Faseb Journal: Official Publication of the Federation of American Societies for Experimental Biology 24(1): 242-252
Bagaria, A.; Kumaran, D.; Burley, S.K.; Swaminathan, S. 2011: Structural basis for a ribofuranosyl binding protein: insights into the furanose specific transport. Proteins 79(4): 1352-1357
Umehara, T.; Nakamura, Y.; Jang, M.K.; Nakano, K.; Tanaka, A.; Ozato, K.; Padmanabhan, B.; Yokoyama, S. 2010: Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain. Journal of Biological Chemistry 285(10): 7610-7618
Murakami, K.; Yasunaga, T.; Noguchi, T.Q.P.; Gomibuchi, Y.; Ngo, K.X.; Uyeda, T.Q.P.; Wakabayashi, T. 2010: Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell 143(2): 275-287
Wang, Y.; Pascoe, H.G.; Brautigam, C.A.; He, H.; Zhang, X. 2013: Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin. Elife 2: E01279
Eren, E.; van den Berg, B. 2012: Structural basis for activation of an integral membrane protease by lipopolysaccharide. Journal of Biological Chemistry 287(28): 23971-23976
Boal, A.K.; Cotruvo, J.A.; Stubbe, J.; Rosenzweig, A.C. 2010: Structural basis for activation of class Ib ribonucleotide reductase. Science 329(5998): 1526-1530
Kidmose, R.T.; Laursen, N.S.; Dobó, József.; Kjaer, T.R.; Sirotkina, S.; Yatime, L.; Sottrup-Jensen, L.; Thiel, S.; Gál, Péter.; Andersen, G.R. 2012: Structural basis for activation of the complement system by component C4 cleavage. Proceedings of the National Academy of Sciences of the United States of America 109(38): 15425-15430
Lin, C.; Ear, J.; Midde, K.; Lopez-Sanchez, I.; Aznar, N.; Garcia-Marcos, M.; Kufareva, I.; Abagyan, R.; Ghosh, P. 2014: Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin. Molecular Biology of the Cell 25(22): 3654-3671
Stock, Lícia.; Souza, C.; Treptow, W. 2013: Structural basis for activation of voltage-gated cation channels. Biochemistry 52(9): 1501-1513
Gong, P.; Peersen, O.B. 2010: Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 107(52): 22505-22510
Eckhard, U.; Schönauer, E.; Brandstetter, H. 2013: Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T. Journal of Biological Chemistry 288(28): 20184-20194
Schmelz, S.; Botting, C.H.; Song, L.; Kadi, N.F.; Challis, G.L.; Naismith, J.H. 2011: Structural basis for acyl acceptor specificity in the achromobactin biosynthetic enzyme AcsD. Journal of Molecular Biology 412(3): 495-504
Etzold, S.; Kober, O.I.; Mackenzie, D.A.; Tailford, L.E.; Gunning, A.P.; Walshaw, J.; Hemmings, A.M.; Juge, N. 2014: Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environmental Microbiology 16(3): 888-903
Larsson, K.-M.; Logan, D.T.; Nordlund, P.är. 2010: Structural basis for adenosylcobalamin activation in AdoCbl-dependent ribonucleotide reductases. Acs Chemical Biology 5(10): 933-942
Lammens, A.; Hopfner, K.-P. 2010: Structural basis for adenylate kinase activity in ABC ATPases. Journal of Molecular Biology 401(2): 265-273
Hill, E.H.; Sanchez, D.; Evans, D.G.; Whitten, D.G. 2013: Structural basis for aggregation mode of oligo-p-phenylene ethynylenes with ionic surfactants. Langmuir: the Acs Journal of Surfaces and Colloids 29(51): 15732-15737
Lusher, S.J.; Raaijmakers, H.C.A.; Vu-Pham, D.; Dechering, K.; Lam, T.W.; Brown, A.R.; Hamilton, N.M.; Nimz, O.; Bosch, R.; McGuire, R.; Oubrie, A.; de Vlieg, J. 2011: Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators. Journal of Biological Chemistry 286(40): 35079-35086
Tolbert, W.D.; Daugherty-Holtrop, J.; Gherardi, E.; Vande Woude, G.; Xu, H.E. 2010: Structural basis for agonism and antagonism of hepatocyte growth factor. Proceedings of the National Academy of Sciences of the United States of America 107(30): 13264-13269
Velisetty, P.; Chalamalasetti, S.V.; Chakrapani, S. 2014: Structural basis for allosteric coupling at the membrane-protein interface in Gloeobacter violaceus ligand-gated ion channel (GLIC). Journal of Biological Chemistry 289(5): 3013-3025
Hohl, M.; Hürlimann, L.M.; Böhm, S.; Schöppe, J.; Grütter, M.G.; Bordignon, E.; Seeger, M.A. 2014: Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter. Proceedings of the National Academy of Sciences of the United States of America 111(30): 11025-11030
Hsu, H.-C.; Wang, C.-L.; Wang, M.; Yang, N.; Chen, Z.; Sternglanz, R.; Xu, R.-M. 2013: Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding. Genes and Development 27(1): 64-73
Turner, M.; Eidemiller, S.; Martin, B.; Narver, A.; Marshall, J.; Zemp, L.; Cornell, K.A.; McIntosh, J.M.; McDougal, O.M. 2009: Structural basis for alpha-conotoxin potency and selectivity. Bioorganic and Medicinal Chemistry 17(16): 5894-5899
Yu, X.; Seegar, T.C.M.; Dalton, A.C.; Tzvetkova-Robev, D.; Goldgur, Y.; Rajashankar, K.R.; Nikolov, D.B.; Barton, W.A. 2013: Structural basis for angiopoietin-1-mediated signaling initiation. Proceedings of the National Academy of Sciences of the United States of America 110(18): 7205-7210
Krumm, B.; Meng, X.; Li, Y.; Xiang, Y.; Deng, J. 2008: Structural basis for antagonism of human interleukin 18 by poxvirus interleukin 18-binding protein. Proceedings of the National Academy of Sciences of the United States of America 105(52): 20711-20715
McKinstry, W.J.; Polekhina, G.; Diefenbach-Jagger, H.; Ho, P.W.M.; Sato, K.; Onuma, E.; Gillespie, M.T.; Martin, T.J.; Parker, M.W. 2009: Structural basis for antibody discrimination between two hormones that recognize the parathyroid hormone receptor. Journal of Biological Chemistry 284(23): 15557-15563
Murase, T.; Eugenio, L.; Schorr, M.; Hussack, G.; Tanha, J.; Kitova, E.N.; Klassen, J.S.; Ng, K.K.S. 2014: Structural basis for antibody recognition in the receptor-binding domains of toxins a and B from Clostridium difficile. Journal of Biological Chemistry 289(4): 2331-2343
Lee, J.H.; Park, A.K.; Do, H.; Park, K.S.; Moh, S.H.; Chi, Y.M.; Kim, H.J. 2012: Structural basis for antifreeze activity of ice-binding protein from arctic yeast. Journal of Biological Chemistry 287(14): 11460-11468
Monincová, L.; Buděšínský, M.; Čujová, S.; Čeřovský, V.ác.; Veverka, V.ác. 2014: Structural basis for antimicrobial activity of lasiocepsin. Chembiochem: a European Journal of Chemical Biology 15(2): 301-308
Kvansakul, M.; Wei, A.H.; Fletcher, J.I.; Willis, S.N.; Chen, L.; Roberts, A.W.; Huang, D.C.S.; Colman, P.M. 2010: Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1. Plos Pathogens 6(12): E1001236
Ejby, M.; Fredslund, F.; Vujicic-Zagar, A.; Svensson, B.; Slotboom, D.J.; Abou Hachem, M. 2013: Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04. Molecular Microbiology 90(5): 1100-1112
Köhler, A.; Zimmerman, E.; Schneider, M.; Hurt, E.; Zheng, N. 2010: Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 141(4): 606-617
Williams, S.J.; Sohn, K.H.; Wan, L.; Bernoux, M.; Sarris, P.F.; Segonzac, C.; Ve, T.; Ma, Y.; Saucet, S.B.; Ericsson, D.J.; Casey, L.W.; Lonhienne, T.; Winzor, D.J.; Zhang, X.; Coerdt, A.; Parker, J.E.; Dodds, P.N.; Kobe, B.; Jones, J.D.G. 2014: Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344(6181): 299-303
Zhang, M.; Kadota, Y.; Prodromou, C.; Shirasu, K.; Pearl, L.H. 2010: Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors. Molecular Cell 39(2): 269-281
Dassama, L.M.K.; Krebs, C.; Bollinger, J.M.; Rosenzweig, A.C.; Boal, A.K. 2013: Structural basis for assembly of the Mn(IV)/Fe(III) cofactor in the class Ic ribonucleotide reductase from Chlamydia trachomatis. Biochemistry 52(37): 6424-6436
Im, Y.Jun.; Kang, G.Bu.; Lee, J.Hyuck.; Park, K.Ryoung.; Song, H.Eun.; Kim, E.; Song, W.Keun.; Park, D.; Eom, S.Hyun. 2010: Structural basis for asymmetric association of the betaPIX coiled coil and shank PDZ. Journal of Molecular Biology 397(2): 457-466
Ni, L.; Li, S.; Yu, J.; Min, J.; Brautigam, C.A.; Tomchick, D.R.; Pan, D.; Luo, X. 2013: Structural basis for autoactivation of human Mst2 kinase and its regulation by RASSF5. Structure 21(10): 1757-1768
Lee, J.; Taneva, S.G.; Holland, B.W.; Tieleman, D.P.; Cornell, R.B. 2014: Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix. Journal of Biological Chemistry 289(3): 1742-1755
Oh, J.; Goo, E.; Hwang, I.; Rhee, S. 2014: Structural basis for bacterial quorum sensing-mediated oxalogenesis. Journal of Biological Chemistry 289(16): 11465-11475
Pletnev, S.; Pletneva, N.V.; Souslova, E.A.; Chudakov, D.M.; Lukyanov, S.; Wlodawer, A.; Dauter, Z.; Pletnev, V. 2012: Structural basis for bathochromic shift of fluorescence in far-red fluorescent proteins eqFP650 and eqFP670. Acta Crystallographica. Section D Biological Crystallography 68(Part 9): 1088-1097
Del Mundo, I.M.A.; Siters, K.E.; Fountain, M.A.; Morrow, J.R. 2012: Structural basis for bifunctional zinc(II) macrocyclic complex recognition of thymine bulges in DNA. Inorganic Chemistry 51(9): 5444-5457
Hast, M.A.; Fletcher, S.; Cummings, C.G.; Pusateri, E.E.; Blaskovich, M.A.; Rivas, K.; Gelb, M.H.; Van Voorhis, W.C.; Sebti, S.M.; Hamilton, A.D.; Beese, L.S. 2009: Structural basis for binding and selectivity of antimalarial and anticancer ethylenediamine inhibitors to protein farnesyltransferase. Chemistry and Biology 16(2): 181-192
Tanneeru, K.; Guruprasad, L. 2013: Structural basis for binding of aurora-AG198N- INCENP complex: MD simulations and free energy calculations. Protein and Peptide Letters 20(11): 1246-1256
Conejo-Garcia, A.; McDonough, M.A.; Loenarz, C.; McNeill, L.A.; Hewitson, K.S.; Ge, W.; Liénard, B.ît.M.; Schofield, C.J.; Clifton, I.J. 2010: Structural basis for binding of cyclic 2-oxoglutarate analogues to factor-inhibiting hypoxia-inducible factor. Bioorganic and Medicinal Chemistry Letters 20(20): 6125-6128
Tan, T.C.; Spadiut, O.; Gandini, R.; Haltrich, D.; Divne, C. 2014: Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion. Plos one 9(1): E86736
Chowdhury, R.; McDonough, M.A.; Mecinović, J.; Loenarz, C.; Flashman, E.; Hewitson, K.S.; Domene, C.; Schofield, C.J. 2009: Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Structure 17(7): 981-989
Jani, D.; Valkov, E.; Stewart, M. 2014: Structural basis for binding the TREX2 complex to nuclear pores, GAL1 localisation and mRNA export. Nucleic Acids Research 42(10): 6686-6697
Nishida, N.; Shimada, I. 2008: Structural basis for biological processes activated by collagen-binding proteins. Seikagaku. Journal of Japanese Biochemical Society 80(6): 483-492
Cossu, F.; Milani, M.; Mastrangelo, E.; Vachette, P.; Servida, F.; Lecis, D.; Canevari, G.; Delia, D.; Drago, C.; Rizzo, V.; Manzoni, L.; Seneci, P.; Scolastico, C.; Bolognesi, M. 2009: Structural basis for bivalent Smac-mimetics recognition in the IAP protein family. Journal of Molecular Biology 392(3): 630-644
Rocha, B.A.M.; Delatorre, P.; Oliveira, T.á M.; Benevides, R.G.; Pires, A.F.; Sousa, A.A.S.; Souza, L.A.G.; Assreuy, A.M.S.; Debray, H.; de Azevedo, W.F.; Sampaio, A.H.; Cavada, B.S. 2011: Structural basis for both pro- and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum. Biochimie 93(5): 806-816
Santos, C.R.; Tonoli, C.C.C.; Trindade, D.M.; Betzel, C.; Takata, H.; Kuriki, T.; Kanai, T.; Imanaka, T.; Arni, R.K.; Murakami, M.ár.T. 2011: Structural basis for branching-enzyme activity of glycoside hydrolase family 57: structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Proteins 79(2): 547-557
Zhou, T.; Georgiev, I.; Wu, X.; Yang, Z.-Y.; Dai, K.; Finzi, A.és.; Kwon, Y.D.; Scheid, J.F.; Shi, W.; Xu, L.; Yang, Y.; Zhu, J.; Nussenzweig, M.C.; Sodroski, J.; Shapiro, L.; Nabel, G.J.; Mascola, J.R.; Kwong, P.D. 2010: Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329(5993): 811-817
Lapierre, P.; Troesch, M.; Alvarez, F.; Soudeyns, H. 2011: Structural basis for broad neutralization of hepatitis C virus quasispecies. Plos one 6(10): E26981
Zadjali, F.; Pike, A.C.W.; Vesterlund, M.; Sun, J.; Wu, C.; Li, S.S.C.; Rönnstrand, L.; Knapp, S.; Bullock, A.N.; Flores-Morales, A. 2011: Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase. Journal of Biological Chemistry 286(1): 480-490
Navarro, M.V.A.S.; Newell, P.D.; Krasteva, P.V.; Chatterjee, D.; Madden, D.R.; O'Toole, G.A.; Sondermann, H. 2011: Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. Plos Biology 9(2): E1000588
Popovych, N.; Tzeng, S.-R.; Tonelli, M.; Ebright, R.H.; Kalodimos, C.G. 2009: Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proceedings of the National Academy of Sciences of the United States of America 106(17): 6927-6932
Liu, H.-W.; Hou, P.-P.; Guo, X.-Y.; Zhao, Z.-W.; Hu, B.; Li, X.; Wang, L.-Y.; Ding, J.-P.; Wang, S. 2014: Structural basis for calcium and magnesium regulation of a large conductance calcium-activated potassium channel with β1 subunits. Journal of Biological Chemistry 289(24): 16914-16923
Lomasney, J.W.; Cheng, H.-F.; Kobayashi, M.; King, K. 2012: Structural basis for calcium and phosphatidylserine regulation of phospholipase C δ1. Biochemistry 51(11): 2246-2257
Zhang, M.; Abrams, C.; Wang, L.; Gizzi, A.; He, L.; Lin, R.; Chen, Y.; Loll, P.J.; Pascal, J.M.; Zhang, J.-f. 2012: Structural basis for calmodulin as a dynamic calcium sensor. Structure 20(5): 911-923
Zwolak, A.; Fujiwara, I.; Hammer, J.A.; Tjandra, N. 2010: Structural basis for capping protein sequestration by myotrophin (V-1). Journal of Biological Chemistry 285(33): 25767-25781
Smith, C.A.; Antunes, N.T.; Stewart, N.K.; Toth, M.; Kumarasiri, M.; Chang, M.; Mobashery, S.; Vakulenko, S.B. 2013: Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii. Chemistry and Biology 20(9): 1107-1115
Pandey, A.S.; Mulder, D.W.; Ensign, S.A.; Peters, J.W. 2011: Structural basis for carbon dioxide binding by 2-ketopropyl coenzyme M oxidoreductase/carboxylase. Febs Letters 585(3): 459-464
Chou, C.-Y.; Lai, H.-Y.; Chen, H.-Y.; Cheng, S.-C.; Cheng, K.-W.; Chou, Y.-W. 2014: Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease. Acta Crystallographica. Section D Biological Crystallography 70(Part 2): 572-581
Nocek, B.P.; Gillner, D.M.; Fan, Y.; Holz, R.C.; Joachimiak, A. 2010: Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase. Journal of Molecular Biology 397(3): 617-626
Pegan, S.D.; Rukseree, K.; Franzblau, S.G.; Mesecar, A.D. 2009: Structural basis for catalysis of a tetrameric class IIa fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis. Journal of Molecular Biology 386(4): 1038-1053
Arakawa, T.; Kawano, Y.; Katayama, Y.; Nakayama, H.; Dohmae, N.; Yohda, M.; Odaka, M. 2009: Structural basis for catalytic activation of thiocyanate hydrolase involving metal-ligated cysteine modification. Journal of the American Chemical Society 131(41): 14838-14843
Yamamoto, K.; Usuda, K.; Kakuta, Y.; Kimura, M.; Higashiura, A.; Nakagawa, A.; Aso, Y.; Suzuki, M. 2012: Structural basis for catalytic activity of a silkworm Delta-class glutathione transferase. Biochimica et Biophysica Acta 1820(10): 1469-1474
Zhang, L.; Liu, W.; Hu, T.; Du, L.; Luo, C.; Chen, K.; Shen, X.; Jiang, H. 2008: Structural basis for catalytic and inhibitory mechanisms of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ). Journal of Biological Chemistry 283(9): 5370-5379
Kobayashi, J.; Matsuura, Y. 2013: Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p. Journal of Molecular Biology 425(11): 1852-1868
Wang, P.; Bai, H.-W.; Zhu, B.T. 2010: Structural basis for certain naturally occurring bioflavonoids to function as reducing co-substrates of cyclooxygenase i and Ii. Plos one 5(8): E12316
Otagiri, M.; Ui, S.; Takusagawa, Y.; Ohtsuki, T.; Kurisu, G.; Kusunoki, M. 2010: Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. Febs Letters 584(1): 219-223
Steiner, R.A.; Janssen, H.J.; Roversi, P.; Oakley, A.J.; Fetzner, S. 2010: Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold. Proceedings of the National Academy of Sciences of the United States of America 107(2): 657-662
Bhattacharjee, A.; Oeemig, J.S.; Kolodziejczyk, R.; Meri, T.; Kajander, T.; Lehtinen, M.J.; Iwaï, H.; Jokiranta, T.Sakari.; Goldman, A. 2013: Structural basis for complement evasion by Lyme disease pathogen Borrelia burgdorferi. Journal of Biological Chemistry 288(26): 18685-18695
Prosser, B.E.; Johnson, S.; Roversi, P.; Herbert, A.P.; Blaum, Bärbel.S.; Tyrrell, J.; Jowitt, T.A.; Clark, S.J.; Tarelli, E.; Uhrín, D.; Barlow, P.N.; Sim, R.B.; Day, A.J.; Lea, S.M. 2007: Structural basis for complement factor H linked age-related macular degeneration. Journal of Experimental Medicine 204(10): 2277-2283
Handa, N.; Takagi, T.; Saijo, S.; Kishishita, S.; Takaya, D.; Toyama, M.; Terada, T.; Shirouzu, M.; Suzuki, A.; Lee, S.; Yamauchi, T.; Okada-Iwabu, M.; Iwabu, M.; Kadowaki, T.; Minokoshi, Y.; Yokoyama, S. 2011: Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Acta Crystallographica. Section D Biological Crystallography 67(Part 5): 480-487
Nyrönen, T.H.; Söderholm, A.A. 2010: Structural basis for computational screening of non-steroidal androgen receptor ligands. Expert Opinion on Drug Discovery 5(1): 5-20
Shima, F.; Ijiri, Y.; Muraoka, S.; Liao, J.; Ye, M.; Araki, M.; Matsumoto, K.; Yamamoto, N.; Sugimoto, T.; Yoshikawa, Y.; Kumasaka, T.; Yamamoto, M.; Tamura, A.; Kataoka, T. 2010: Structural basis for conformational dynamics of GTP-bound Ras protein. Journal of Biological Chemistry 285(29): 22696-22705
Lepesheva, G.I.; Waterman, M.R. 2011: Structural basis for conservation in the CYP51 family. Biochimica et Biophysica Acta 1814(1): 88-93
Engelstoft, M.S.; Norn, C.; Hauge, M.; Holliday, N.D.; Elster, L.; Lehmann, J.; Jones, R.M.; Frimurer, T.M.; Schwartz, T.W. 2014: Structural basis for constitutive activity and agonist-induced activation of the enteroendocrine fat sensor GPR119. British Journal of Pharmacology 171(24): 5774-5789
Ohnishi, S.; Tochio, N.; Tomizawa, T.; Akasaka, R.; Harada, T.; Seki, E.; Sato, M.; Watanabe, S.; Fujikura, Y.; Koshiba, S.; Terada, T.; Shirouzu, M.; Tanaka, A.; Kigawa, T.; Yokoyama, S. 2008: Structural basis for controlling the dimerization and stability of the WW domains of an atypical subfamily. Protein Science: a Publication of the Protein Society 17(9): 1531-1541
Kaczanowska, K.; Harel, M.; Radić, Z.; Changeux, J.-P.; Finn, M.G.; Taylor, P. 2014: Structural basis for cooperative interactions of substituted 2-aminopyrimidines with the acetylcholine binding protein. Proceedings of the National Academy of Sciences of the United States of America 111(29): 10749-10754
Monecke, T.; Haselbach, D.; Voß, B.él.; Russek, A.; Neumann, P.; Thomson, E.; Hurt, E.; Zachariae, U.; Stark, H.; Grubmüller, H.; Dickmanns, A.; Ficner, R. 2013: Structural basis for cooperativity of CRM1 export complex formation. Proceedings of the National Academy of Sciences of the United States of America 110(3): 960-965
Davidovich, C.; Bashan, A.; Yonath, A. 2008: Structural basis for cross-resistance to ribosomal PTC antibiotics. Proceedings of the National Academy of Sciences of the United States of America 105(52): 20665-20670
Chenoweth, D.M.; Dervan, P.B. 2010: Structural basis for cyclic Py-Im polyamide allosteric inhibition of nuclear receptor binding. Journal of the American Chemical Society 132(41): 14521-14529
Huang, G.Y.; Kim, J.J.; Reger, A.S.; Lorenz, R.; Moon, E.-W.; Zhao, C.; Casteel, D.E.; Bertinetti, D.; Vanschouwen, B.; Selvaratnam, R.; Pflugrath, J.W.; Sankaran, B.; Melacini, G.; Herberg, F.W.; Kim, C. 2014: Structural basis for cyclic-nucleotide selectivity and cGMP-selective activation of PKG i. Structure 22(1): 116-124
Satou, R.; Miyanaga, A.; Ozawa, H.; Funa, N.; Katsuyama, Y.; Miyazono, K.-I.; Tanokura, M.; Ohnishi, Y.; Horinouchi, S. 2013: Structural basis for cyclization specificity of two Azotobacter type IIi polyketide synthases: a single amino acid substitution reverses their cyclization specificity. Journal of Biological Chemistry 288(47): 34146-34157
Lan, W.; Wang, Z.; Yang, Z.; Ying, T.; Zhang, X.; Tan, X.; Liu, M.; Cao, C.; Huang, Z.-X. 2014: Structural basis for cytochrome c Y67H mutant to function as a peroxidase. Plos one 9(9): E107305
Donovan, J.; Dufner, M.; Korennykh, A. 2013: Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proceedings of the National Academy of Sciences of the United States of America 110(5): 1652-1657
Zhang, N.; Zhong, R. 2010: Structural basis for decreased affinity of Emodin binding to Val66-mutated human CK2 alpha as determined by molecular dynamics. Journal of Molecular Modeling 16(4): 771-780
Ma, X.; Shen, Y. 2012: Structural basis for degeneracy among thermosensory neurons in Caenorhabditis elegans. Journal of Neuroscience: the Official Journal of the Society for Neuroscience 32(1): 1-3
Iwema, T.; Picciocchi, A.; Traore, D.A.K.; Ferrer, J.-L.; Chauvat, F.; Jacquamet, L. 2009: Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin. Biochemistry 48(26): 6041-6043
Mas, C.; Norwood, S.J.; Bugarcic, A.; Kinna, G.; Leneva, N.; Kovtun, O.; Ghai, R.; Ona Yanez, L.E.; Davis, J.L.; Teasdale, R.D.; Collins, B.M. 2014: Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling. Journal of Biological Chemistry 289(41): 28554-28568
Bunkoczi, G.; Misquitta, S.; Wu, X.; Lee, W.H.; Rojkova, A.; Kochan, G.; Kavanagh, K.L.; Oppermann, U.; Smith, S. 2009: Structural basis for different specificities of acyltransferases associated with the human cytosolic and mitochondrial fatty acid synthases. Chemistry and Biology 16(6): 667-675
Ravindran, A.; Joseph, P.R.B.; Rajarathnam, K. 2009: Structural basis for differential binding of the interleukin-8 monomer and dimer to the CXCR1 N-domain: role of coupled interactions and dynamics. Biochemistry 48(37): 8795-8805
Xia, S.; Eom, S.H.; Konigsberg, W.H.; Wang, J. 2012: Structural basis for differential insertion kinetics of dNMPs opposite a difluorotoluene nucleotide residue. Biochemistry 51(7): 1476-1485
Bale, S.; Dias, J.M.; Fusco, M.L.; Hashiguchi, T.; Wong, A.C.; Liu, T.; Keuhne, A.I.; Li, S.; Woods, V.L.; Chandran, K.; Dye, J.M.; Saphire, E.O. 2012: Structural basis for differential neutralization of ebolaviruses. Viruses 4(4): 447-470
Bai, Y.; Srivastava, S.K.; Chang, J.H.; Manley, J.L.; Tong, L. 2011: Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase. Molecular Cell 41(3): 311-320
Li, P.-Y.; Ji, P.; Li, C.-Y.; Zhang, Y.; Wang, G.-L.; Zhang, X.-Y.; Xie, B.-B.; Qin, Q.-L.; Chen, X.-L.; Zhou, B.-C.; Zhang, Y.-Z. 2014: Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family. Journal of Biological Chemistry 289(27): 19031-19041
Bradley, C.Marchetti.; Jones, S.; Huang, Y.; Suzuki, Y.; Kvaratskhelia, M.; Hickman, A.Burgess.; Craigie, R.; Dyda, F. 2007: Structural basis for dimerization of LAP2alpha, a component of the nuclear lamina. Structure 15(6): 643-653
Sulistijo, E.S.; Mackenzie, K.R. 2009: Structural basis for dimerization of the BNIP3 transmembrane domain. Biochemistry 48(23): 5106-5120
Cheung, Y.-W.; Kwok, J.; Law, A.W.L.; Watt, R.M.; Kotaka, M.; Tanner, J.A. 2013: Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. Proceedings of the National Academy of Sciences of the United States of America 110(40): 15967-15972
Satoh, T.; Suzuki, K.; Yamaguchi, T.; Kato, K. 2014: Structural basis for disparate sugar-binding specificities in the homologous cargo receptors ERGIC-53 and VIP36. Plos one 9(2): E87963
Bian, C.-F.; Zhang, Y.; Sun, H.; Li, D.-F.; Wang, D.-C. 2011: Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen. Plos one 6(9): E25007
Gursky, O.; Jones, M.K.; Mei, X.; Segrest, J.P.; Atkinson, D. 2013: Structural basis for distinct functions of the naturally occurring Cys mutants of human apolipoprotein A-i. Journal of Lipid Research 54(12): 3244-3257
Springer, T.A.; Zhu, J.; Xiao, T. 2008: Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3. Journal of Cell Biology 182(4): 791-800
Inaba, K.; Ito, K. 2007: Structural basis for disulfide bond generation in the cell. Tanpakushitsu Kakusan Koso. Protein Nucleic Acid Enzyme 52(8): 853-861
Trausch, J.J.; Xu, Z.; Edwards, A.L.; Reyes, F.E.; Ross, P.E.; Knight, R.; Batey, R.T. 2014: Structural basis for diversity in the SAM clan of riboswitches. Proceedings of the National Academy of Sciences of the United States of America 111(18): 6624-6629
Lin, Y.C.; Perryman, A.L.; Olson, A.J.; Torbett, B.E.; Elder, J.H.; Stout, C.D. 2011: Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease. Acta Crystallographica. Section D Biological Crystallography 67(Part 6): 540-548
Wu, B.; Peisley, A.; Richards, C.; Yao, H.; Zeng, X.; Lin, C.; Chu, F.; Walz, T.; Hur, S. 2013: Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152(1-2): 276-289
Shi, K.; Berghuis, A.M. 2012: Structural basis for dual nucleotide selectivity of aminoglycoside 2''-phosphotransferase IVa provides insight on determinants of nucleotide specificity of aminoglycoside kinases. Journal of Biological Chemistry 287(16): 13094-13102
Weber, G.; Cristão, V.F.; Santos, K.F.; Jovin, S.M.; Heroven, A.C.; Holton, N.; Lührmann, R.; Beggs, J.D.; Wahl, M.C. 2013: Structural basis for dual roles of Aar2p in U5 snRNP assembly. Genes and Development 27(5): 525-540
Mizushima, T.; Tanaka, K. 2009: Structural basis for dynamic formation and mechanistic actions of huge and complicated proteolytic machinery. Tanpakushitsu Kakusan Koso. Protein Nucleic Acid Enzyme 54(12 Suppl): 1670-1675
Doki, S.; Kato, H.E.; Solcan, N.; Iwaki, M.; Koyama, M.; Hattori, M.; Iwase, N.; Tsukazaki, T.; Sugita, Y.; Kandori, H.; Newstead, S.; Ishitani, R.; Nureki, O. 2013: Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proceedings of the National Academy of Sciences of the United States of America 110(28): 11343-11348
Han, S.; Zaniewski, R.P.; Marr, E.S.; Lacey, B.M.; Tomaras, A.P.; Evdokimov, A.; Miller, J.R.; Shanmugasundaram, V. 2010: Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 107(51): 22002-22007
Arpino, J.A.J.; Czapinska, H.; Piasecka, A.; Edwards, W.R.; Barker, P.; Gajda, M.J.; Bochtler, M.; Jones, D.Dafydd. 2012: Structural basis for efficient chromophore communication and energy transfer in a constructed didomain protein scaffold. Journal of the American Chemical Society 134(33): 13632-13640
Kervinen, J.; Abad, M.; Crysler, C.; Kolpak, M.; Mahan, A.D.; Masucci, J.A.; Bayoumy, S.; Cummings, M.D.; Yao, X.; Olson, M.; de Garavilla, L.; Kuo, L.; Deckman, I.; Spurlino, J. 2008: Structural basis for elastolytic substrate specificity in rodent alpha-chymases. Journal of Biological Chemistry 283(1): 427-436
Jost, C.; Schilling, J.; Tamaskovic, R.; Schwill, M.; Honegger, A.; Plückthun, A. 2013: Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Structure 21(11): 1979-1991
Day, E.B.; Guillonneau, C.; Gras, S.; La Gruta, N.L.; Vignali, D.A.A.; Doherty, P.C.; Purcell, A.W.; Rossjohn, J.; Turner, S.J. 2011: Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8+ T-cell responses. Proceedings of the National Academy of Sciences of the United States of America 108(23): 9536-9541
Reguera, J.; Malet, Hélène.; Weber, F.; Cusack, S. 2013: Structural basis for encapsidation of genomic RNA by La Crosse Orthobunyavirus nucleoprotein. Proceedings of the National Academy of Sciences of the United States of America 110(18): 7246-7251
Ghai, R.; Bugarcic, A.; Liu, H.; Norwood, S.J.; Skeldal, S.; Coulson, E.J.; Li, S.S.-C.; Teasdale, R.D.; Collins, B.M. 2013: Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins. Proceedings of the National Academy of Sciences of the United States of America 110(8): E643-E652
Wu, Y.; West, A.P.; Kim, H.J.; Thornton, M.E.; Ward, A.B.; Bjorkman, P.J. 2013: Structural basis for enhanced HIV-1 neutralization by a dimeric immunoglobulin G form of the glycan-recognizing antibody 2G12. Cell Reports 5(5): 1443-1455
Georgelis, N.; Yennawar, N.H.; Cosgrove, D.J. 2012: Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proceedings of the National Academy of Sciences of the United States of America 109(37): 14830-14835
Liu, Q.; Graeff, R.; Kriksunov, I.A.; Jiang, H.; Zhang, B.; Oppenheimer, N.; Lin, H.; Potter, B.V.L.; Lee, H.C.; Hao, Q. 2009: Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase. Journal of Biological Chemistry 284(40): 27637-27645
Silverstein, T.D.; Jain, R.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K. 2010: Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η. Structure 18(11): 1463-1470
Galant, A.; Arkus, K.A.J.; Zubieta, C.; Cahoon, R.E.; Jez, J.M. 2009: Structural basis for evolution of product diversity in soybean glutathione biosynthesis. Plant Cell 21(11): 3450-3458
Fu, G.; Chumanevich, A.A.; Agniswamy, J.; Fang, B.; Harrison, R.W.; Weber, I.T. 2008: Structural basis for executioner caspase recognition of P5 position in substrates. Apoptosis: An International Journal on Programmed Cell Death 13(11): 1291-1302
Huang, J.; Makabe, K.; Biancalana, M.; Koide, A.; Koide, S. 2009: Structural basis for exquisite specificity of affinity clamps, synthetic binding proteins generated through directed domain-interface evolution. Journal of Molecular Biology 392(5): 1221-1231
Kusano, S.; Kukimoto-Niino, M.; Hino, N.; Ohsawa, N.; Okuda, K.-i.; Sakamoto, K.; Shirouzu, M.; Shindo, T.; Yokoyama, S. 2012: Structural basis for extracellular interactions between calcitonin receptor-like receptor and receptor activity-modifying protein 2 for adrenomedullin-specific binding. Protein Science: a Publication of the Protein Society 21(2): 199-210
Tars, K.; Olin, B.; Mannervik, B. 2010: Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases. Journal of Molecular Biology 397(1): 332-340
Albanesi, D.; Reh, G.; Guerin, M.E.; Schaeffer, F.; Debarbouille, M.; Buschiazzo, A.; Schujman, G.E.; de Mendoza, D.; Alzari, P.M. 2013: Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus. Plos Pathogens 9(1): E1003108
Biterova, E.I.; Barycki, J.J. 2010: Structural basis for feedback and pharmacological inhibition of Saccharomyces cerevisiae glutamate cysteine ligase. Journal of Biological Chemistry 285(19): 14459-14466
Sun, Y.; Li, L.; Macho, A.P.; Han, Z.; Hu, Z.; Zipfel, C.; Zhou, J.-M.; Chai, J. 2013: Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342(6158): 624-628
Santos, K.F.; Jovin, S.M.; Weber, G.; Pena, V.; Lührmann, R.; Wahl, M.C. 2012: Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proceedings of the National Academy of Sciences of the United States of America 109(43): 17418-17423
Hare, S.; Di Nunzio, F.; Labeja, A.; Wang, J.; Engelman, A.; Cherepanov, P. 2009: Structural basis for functional tetramerization of lentiviral integrase. Plos Pathogens 5(7): E1000515
Elantak, L.; Espeli, M.; Boned, A.; Bornet, O.; Bonzi, J.; Gauthier, L.; Feracci, M.; Roche, P.; Guerlesquin, F.ço.; Schiff, C. 2012: Structural basis for galectin-1-dependent pre-B cell receptor (pre-BCR) activation. Journal of Biological Chemistry 287(53): 44703-44713
Kodan, A.; Yamaguchi, T.; Nakatsu, T.; Sakiyama, K.; Hipolito, C.J.; Fujioka, A.; Hirokane, R.; Ikeguchi, K.; Watanabe, B.; Hiratake, J.; Kimura, Y.; Suga, H.; Ueda, K.; Kato, H. 2014: Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog. Proceedings of the National Academy of Sciences of the United States of America 111(11): 4049-4054
West, A.P.; Diskin, R.; Nussenzweig, M.C.; Bjorkman, P.J. 2012: Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120. Proceedings of the National Academy of Sciences of the United States of America 109(30): E2083-E2090
De Giuseppe, P.O.; Souza, T.d.A.C.B.; Souza, F.H.M.; Zanphorlin, L.M.; Machado, C.B.; Ward, R.J.; Jorge, J.A.; Furriel, R.d.P.M.; Murakami, M.T. 2014: Structural basis for glucose tolerance in GH1 β-glucosidases. Acta Crystallographica. Section D Biological Crystallography 70(Part 6): 1631-1639
Baskaran, S.; Roach, P.J.; DePaoli-Roach, A.A.; Hurley, T.D. 2010: Structural basis for glucose-6-phosphate activation of glycogen synthase. Proceedings of the National Academy of Sciences of the United States of America 107(41): 17563-17568
Vey, J.L.; Yang, J.; Li, M.; Broderick, W.E.; Broderick, J.B.; Drennan, C.L. 2008: Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proceedings of the National Academy of Sciences of the United States of America 105(42): 16137-16141
Cozzi, R.; Prigozhin, D.; Rosini, R.; Abate, F.; Bottomley, M.J.; Grandi, G.; Telford, J.L.; Rinaudo, C.D.; Maione, D.; Alber, T. 2012: Structural basis for group B streptococcus pilus 1 sortases C regulation and specificity. Plos one 7(11): E49048
Lee, J.Y.; Yang, J.G.; Zhitnitsky, D.; Lewinson, O.; Rees, D.C. 2014: Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 343(6175): 1133-1136
Krishna Kumar, K.; Jacques, D.A.; Pishchany, G.; Caradoc-Davies, T.; Spirig, T.; Malmirchegini, G.Reza.; Langley, D.B.; Dickson, C.F.; Mackay, J.P.; Clubb, R.T.; Skaar, E.P.; Guss, J.Mitchell.; Gell, D.A. 2011: Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein, IsdH. Journal of Biological Chemistry 286(44): 38439-38447
Hou, F.; Miyakawa, T.; Kataoka, M.; Takeshita, D.; Kumashiro, S.; Uzura, A.; Urano, N.; Nagata, K.; Shimizu, S.; Tanokura, M. 2014: Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR. Biochemical and Biophysical Research Communications 446(4): 911-915
Eigenbrot, C.; Ultsch, M.; Dubnovitsky, A.; Abrahmsén, L.; Härd, T. 2010: Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proceedings of the National Academy of Sciences of the United States of America 107(34): 15039-15044
Eidahl, J.O.; Crowe, B.L.; North, J.A.; McKee, C.J.; Shkriabai, N.; Feng, L.; Plumb, M.; Graham, R.L.; Gorelick, R.J.; Hess, S.; Poirier, M.G.; Foster, M.P.; Kvaratskhelia, M. 2013: Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Research 41(6): 3924-3936
Pazgier, M.; Liu, M.; Zou, G.; Yuan, W.; Li, C.; Li, C.; Li, J.; Monbo, J.; Zella, D.; Tarasov, S.G.; Lu, W. 2009: Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proceedings of the National Academy of Sciences of the United States of America 106(12): 4665-4670
Acharya, P.; Luongo, T.S.; Louder, M.K.; McKee, K.; Yang, Y.; Kwon, Y.D.; Mascola, J.R.; Kessler, P.; Martin, L.ïc.; Kwong, P.D. 2013: Structural basis for highly effective HIV-1 neutralization by CD4-mimetic miniproteins revealed by 1.5 Å cocrystal structure of gp120 and M48U1. Structure 21(6): 1018-1029
Zanier, K.; Charbonnier, S.; Sidi, A.O.M.'h.O.; McEwen, A.G.; Ferrario, M.G.; Poussin-Courmontagne, P.; Cura, V.; Brimer, N.; Babah, K.O.; Ansari, T.; Muller, I.; Stote, R.H.; Cavarelli, J.; Vande Pol, S.; Travé, G. 2013: Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science 339(6120): 694-698
Zhou, B.; Liu, C.; Xu, Z.; Zhu, G. 2012: Structural basis for homeodomain recognition by the cell-cycle regulator Geminin. Proceedings of the National Academy of Sciences of the United States of America 109(23): 8931-8936
Meyer, N.H.; Tripsianes, K.; Vincendeau, M.; Madl, T.; Kateb, F.; Brack-Werner, R.; Sattler, M. 2010: Structural basis for homodimerization of the Src-associated during mitosis, 68-kDa protein (Sam68) Qua1 domain. Journal of Biological Chemistry 285(37): 28893-28901
Pal, K.; Swaminathan, K.; Xu, H.Eric.; Pioszak, A.A. 2010: Structural basis for hormone recognition by the Human CRFR2{alpha} G protein-coupled receptor. Journal of Biological Chemistry 285(51): 40351-40361
Xia, C.; Panda, S.P.; Marohnic, C.C.; Martásek, P.; Masters, B.S.; Kim, J.-J.P. 2011: Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency. Proceedings of the National Academy of Sciences of the United States of America 108(33): 13486-13491
Horton, J.R.; Upadhyay, A.K.; Hashimoto, H.; Zhang, X.; Cheng, X. 2011: Structural basis for human PHF2 Jumonji domain interaction with metal ions. Journal of Molecular Biology 406(1): 1-8
Bertrand, T.; Augé, F.; Houtmann, J.; Rak, A.; Vallée, F.; Mikol, V.; Berne, P.F.; Michot, N.; Cheuret, D.; Hoornaert, C.; Mathieu, M. 2010: Structural basis for human monoglyceride lipase inhibition. Journal of Molecular Biology 396(3): 663-673
Kohler, A.C.; Gae, D.D.; Richley, M.A.; Stoll, S.; Gunn, A.; Lim, S.; Martin, S.S.; Doukov, T.I.; Britt, R.D.; Ames, J.B.; Lagarias, J.C.; Fisher, A.J. 2010: Structural basis for hydration dynamics in radical stabilization of bilin reductase mutants. Biochemistry 49(29): 6206-6218
Jin, L.; Martynowski, D.; Zheng, S.; Wada, T.; Xie, W.; Li, Y. 2010: Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORgamma. Molecular Endocrinology 24(5): 923-929
Zhou, T.; Xiong, J.; Wang, M.; Yang, N.; Wong, J.; Zhu, B.; Xu, R.-M. 2014: Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2. Molecular Cell 54(5): 879-886
Borovinskaya, M.A.; Shoji, S.; Fredrick, K.; Cate, J.H.D. 2008: Structural basis for hygromycin B inhibition of protein biosynthesis. Rna 14(8): 1590-1599
Jin, L.; Lin, S.; Rong, H.; Zheng, S.; Jin, S.; Wang, R.; Li, Y. 2011: Structural basis for iloprost as a dual peroxisome proliferator-activated receptor alpha/delta agonist. Journal of Biological Chemistry 286(36): 31473-31479
Galkin, A.; Kulakova, L.; Lim, K.; Chen, C.Z.; Zheng, W.; Turko, I.V.; Herzberg, O. 2014: Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram. Journal of Biological Chemistry 289(15): 10502-10509
Pauwels, K.; Williams, T.L.; Morris, K.L.; Jonckheere, W.; Vandersteen, A.; Kelly, G.; Schymkowitz, J.; Rousseau, F.; Pastore, A.; Serpell, L.C.; Broersen, K. 2012: Structural basis for increased toxicity of pathological aβ42:aβ40 ratios in Alzheimer disease. Journal of Biological Chemistry 287(8): 5650-5660
Jegerschöld, C.; Pawelzik, S.-C.; Purhonen, P.; Bhakat, P.; Gheorghe, K.R.; Gyobu, N.; Mitsuoka, K.; Morgenstern, R.; Jakobsson, P.-J.; Hebert, H. 2008: Structural basis for induced formation of the inflammatory mediator prostaglandin E2. Proceedings of the National Academy of Sciences of the United States of America 105(32): 11110-11115
Etzerodt, A.; Rasmussen, M.R.; Svendsen, P.; Chalaris, A.; Schwarz, J.; Galea, I.; Møller, H.J.; Moestrup, S.ør.K. 2014: Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-α in macrophages. Journal of Biological Chemistry 289(2): 778-788
Kasson, P.M.; Pande, V.S. 2008: Structural basis for influence of viral glycans on ligand binding by influenza hemagglutinin. Biophysical Journal 95(7): L48-L50
Frydman-Marom, A.; Convertino, M.; Pellarin, R.; Lampel, A.; Shaltiel-Karyo, R.; Segal, D.; Caflisch, A.; Shalev, D.E.; Gazit, E. 2011: Structural basis for inhibiting β-amyloid oligomerization by a non-coded β-breaker-substituted endomorphin analogue. Acs Chemical Biology 6(11): 1265-1276
Kaan, H.Y.K.; Ulaganathan, V.; Rath, O.; Prokopcová, H.; Dallinger, D.; Kappe, C.O.; Kozielski, F. 2010: Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. Journal of Medicinal Chemistry 53(15): 5676-5683
Yoshimoto, N.; Itoh, T.; Inaba, Y.; Ishii, H.; Yamamoto, K. 2013: Structural basis for inhibition of carboxypeptidase B by selenium-containing inhibitor: selenium coordinates to zinc in enzyme. Journal of Medicinal Chemistry 56(19): 7527-7535
Jílková, A.él.; Řezáčová, P.ín.; Lepšík, M.; Horn, M.; Váchová, J.; Fanfrlík, J.ři.; Brynda, J.ří; McKerrow, J.H.; Caffrey, C.R.; Mareš, M. 2011: Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. Journal of Biological Chemistry 286(41): 35770-35781
Laursen, N.S.; Gordon, N.; Hermans, S.; Lorenz, N.; Jackson, N.; Wines, B.; Spillner, E.; Christensen, J.B.; Jensen, M.; Fredslund, F.; Bjerre, M.; Sottrup-Jensen, L.; Fraser, J.D.; Andersen, G.R. 2010: Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America 107(8): 3681-3686
Snášel, J.; Nauš, P.; Dostál, J.ří; Hnízda, A.š; Fanfrlík, J.ři.; Brynda, J.ří; Bourderioux, A.; Dušek, M.; Dvořáková, H.; Stolaříková, J.ři.; Zábranská, H.; Pohl, R.; Konečný, P.; Džubák, P.; Votruba, I.; Hajdúch, M.án.; Rezáčová, P.ín.; Veverka, V.ác.; Hocek, M.; Pichová, I. 2014: Structural basis for inhibition of mycobacterial and human adenosine kinase by 7-substituted 7-(Het)aryl-7-deazaadenine ribonucleosides. Journal of Medicinal Chemistry 57(20): 8268-8279
Nagata, T.; Shirakawa, K.; Kobayashi, N.; Shiheido, H.; Tabata, N.; Sakuma-Yonemura, Y.; Horisawa, K.; Katahira, M.; Doi, N.; Yanagawa, H. 2014: Structural basis for inhibition of the MDM2:p53 interaction by an optimized MDM2-binding peptide selected with mRNA display. Plos one 9(10): E109163
Aik, W.; Demetriades, M.; Hamdan, M.K.K.; Bagg, E.A.L.; Yeoh, K.K.; Lejeune, C.; Zhang, Z.; McDonough, M.A.; Schofield, C.J. 2013: Structural basis for inhibition of the fat mass and obesity associated protein (FTO). Journal of Medicinal Chemistry 56(9): 3680-3688
Yoshizawa, T.; Shimizu, T.; Hirano, H.; Sato, M.; Hashimoto, H. 2012: Structural basis for inhibition of xyloglucan-specific endo-β-1,4-glucanase (XEG) by XEG-protein inhibitor. Journal of Biological Chemistry 287(22): 18710-18716
Lehtiö, L.; Jemth, A.-S.; Collins, R.; Loseva, O.; Johansson, A.; Markova, N.; Hammarström, M.; Flores, A.; Holmberg-Schiavone, L.; Weigelt, J.; Helleday, T.; Schüler, H.; Karlberg, T. 2009: Structural basis for inhibitor specificity in human poly(ADP-ribose) polymerase-3. Journal of Medicinal Chemistry 52(9): 3108-3111
Nojiri, M. 2013: Structural basis for inter-protein electron transfer. Seikagaku. Journal of Japanese Biochemical Society 85(1): 5-12
Yang, S.; Gao, Z.; Li, T.; Yang, M.; Zhang, T.; Dong, Y.; He, Z.-G. 2013: Structural basis for interaction between Mycobacterium smegmatis Ms6564, a TetR family master regulator, and its target DNA. Journal of Biological Chemistry 288(33): 23687-23695
Sun, F.; Kale, S.D.; Azurmendi, H.F.; Li, D.; Tyler, B.M.; Capelluto, D.G.S. 2013: Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry. Molecular Plant-Microbe Interactions: Mpmi 26(3): 330-344
Biter, A.B.; Lee, S.; Sung, N.; Tsai, F.T.F. 2012: Structural basis for intersubunit signaling in a protein disaggregating machine. Proceedings of the National Academy of Sciences of the United States of America 109(31): 12515-12520
Quade, N.; Mendonca, C.; Herbst, K.; Heroven, A.K.; Ritter, C.; Heinz, D.W.; Dersch, P. 2012: Structural basis for intrinsic thermosensing by the master virulence regulator RovA of Yersinia. Journal of Biological Chemistry 287(43): 35796-35803
Obata, R.; Nakasako, M. 2010: Structural basis for inverting the enantioselectivity of arylmalonate decarboxylase revealed by the structural analysis of the Gly74Cys/Cys188Ser mutant in the liganded form. Biochemistry 49(9): 1963-1969
Crow, A.; Lawson, T.L.; Lewin, A.; Moore, G.R.; Le Brun, N.E. 2009: Structural basis for iron mineralization by bacterioferritin. Journal of the American Chemical Society 131(19): 6808-6813
Collier, P.N.; Martinez-Botella, G.; Cornebise, M.; Cottrell, K.M.; Doran, J.D.; Griffith, J.P.; Mahajan, S.; Maltais, F.ço.; Moody, C.S.; Huck, E.P.; Wang, T.; Aronov, A.M. 2015: Structural basis for isoform selectivity in a class of benzothiazole inhibitors of phosphoinositide 3-kinase γ. Journal of Medicinal Chemistry 58(1): 517-521
Poulos, T.L.; Li, H. 2013: Structural basis for isoform-selective inhibition in nitric oxide synthase. Accounts of Chemical Research 46(2): 390-398
Malito, E.; Bursulaya, B.; Chen, C.; Lo Surdo, P.; Picchianti, M.; Balducci, E.; Biancucci, M.; Brock, A.; Berti, F.; Bottomley, M.J.; Nissum, M.; Costantino, P.; Rappuoli, R.; Spraggon, G. 2012: Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proceedings of the National Academy of Sciences of the United States of America 109(14): 5229-5234
Feinberg, H.; Taylor, M.E.; Razi, N.; McBride, R.; Knirel, Y.A.; Graham, S.A.; Drickamer, K.; Weis, W.I. 2011: Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site. Journal of Molecular Biology 405(4): 1027-1039
Tomita, T.; Kuzuyama, T.; Nishiyama, M. 2011: Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase. Journal of Biological Chemistry 286(43): 37406-37413
Langereis, M.A.; Zeng, Q.; Gerwig, G.J.; Frey, B.; von Itzstein, M.; Kamerling, J.P.; de Groot, R.J.; Huizinga, E.G. 2009: Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases. Proceedings of the National Academy of Sciences of the United States of America 106(37): 15897-15902
Huber, T.; Menon, S.; Sakmar, T.P. 2008: Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery. Biochemistry 47(42): 11013-11023
Ni, T.W.; Tofanelli, M.A.; Phillips, B.D.; Ackerson, C.J. 2014: Structural basis for ligand exchange on Au(25)(SR)(18). Inorganic Chemistry 53(13): 6500-6502
Koch, M.; Chitayat, S.; Dattilo, B.M.; Schiefner, A.; Diez, J.; Chazin, W.J.; Fritz, G.ün. 2010: Structural basis for ligand recognition and activation of RAGE. Structure 18(10): 1342-1352
Kirchdoerfer, R.N.; Garner, A.L.; Flack, C.E.; Mee, J.M.; Horswill, A.R.; Janda, K.D.; Kaufmann, G.F.; Wilson, I.A. 2011: Structural basis for ligand recognition and discrimination of a quorum-quenching antibody. Journal of Biological Chemistry 286(19): 17351-17358
Vijayan, R.S.K.; Ghoshal, N. 2008: Structural basis for ligand recognition at the benzodiazepine binding site of GABAA alpha 3 receptor, and pharmacophore-based virtual screening approach. Journal of Molecular Graphics and Modelling 27(3): 286-298
Gauto, D.F.; Di Lella, S.; Estrin, D.ío.A.; Monaco, H.L.; Martí, M.A. 2011: Structural basis for ligand recognition in a mushroom lectin: solvent structure as specificity predictor. Carbohydrate Research 346(7): 939-948
Underwood, C.R.; Parthier, C.; Reedtz-Runge, S. 2010: Structural basis for ligand recognition of incretin receptors. Vitamins and Hormones 84: 251-278
Armstrong, E.H.; Goswami, D.; Griffin, P.R.; Noy, N.; Ortlund, E.A. 2014: Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. Journal of Biological Chemistry 289(21): 14941-14954
Dvir, H.; Wang, J.; Ly, N.; Dascher, C.C.; Zajonc, D.M. 2010: Structural basis for lipid-antigen recognition in avian immunity. Journal of Immunology 184(5): 2504-2511
Zhou, Y.; Li, X.; Zhang, N.; Zhong, R. 2015: Structural basis for low-affinity binding of non-R2 carboxylate-substituted tricyclic quinoline analogs to CK2α: comparative molecular dynamics simulation studies. Chemical Biology and Drug Design 85(2): 189-200
Monecke, T.; Dickmanns, A.; Ficner, R. 2009: Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1. Nucleic Acids Research 37(12): 3865-3877
Kobayashi, K.; Kikuno, I.; Kuroha, K.; Saito, K.; Ito, K.; Ishitani, R.; Inada, T.; Nureki, O. 2010: Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1α complex. Proceedings of the National Academy of Sciences of the United States of America 107(41): 17575-17579
Iverson, T.M.; Maklashina, E.; Cecchini, G. 2012: Structural basis for malfunction in complex Ii. Journal of Biological Chemistry 287(42): 35430-35438
Bertini, I.; Fragai, M.; Luchinat, C.; Melikian, M.; Toccafondi, M.; Lauer, J.L.; Fields, G.B. 2012: Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis. Journal of the American Chemical Society 134(4): 2100-2110
Hashimoto, H.; Takeuchi, T.; Komatsu, K.; Miyazaki, K.; Sato, M.; Higashi, S. 2011: Structural basis for matrix metalloproteinase-2 (MMP-2)-selective inhibitory action of β-amyloid precursor protein-derived inhibitor. Journal of Biological Chemistry 286(38): 33236-33243
Maenaka, K.; Hashiguchi, T.; Yanagi, Y. 2012: Structural basis for measles virus-receptor recognition and its functional implications for viral entry and vaccination. Nihon Rinsho. Japanese Journal of Clinical Medicine 70(4): 695-703
Le Trong, I.; Aprikian, P.; Kidd, B.A.; Forero-Shelton, M.; Tchesnokova, V.; Rajagopal, P.; Rodriguez, V.; Interlandi, G.; Klevit, R.; Vogel, V.; Stenkamp, R.E.; Sokurenko, E.V.; Thomas, W.E. 2010: Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 141(4): 645-655
Yan, L.; Ma, Y.; Sun, Y.; Gao, J.; Chen, X.; Liu, J.; Wang, C.; Rao, Z.; Lou, Z. 2011: Structural basis for mechanochemical role of Arabidopsis thaliana dynamin-related protein in membrane fission. Journal of Molecular Cell Biology 3(6): 378-381
Neumann, P.; Weidner, A.; Pech, A.; Stubbs, M.T.; Tittmann, K. 2008: Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 105(45): 17390-17395
Paczkowski, J.E.; Fromme, J.C. 2014: Structural basis for membrane binding and remodeling by the exomer secretory vesicle cargo adaptor. Developmental Cell 30(5): 610-624
Nakamura, K.; Man, Z.; Xie, Y.; Hanai, A.; Makyio, H.; Kawasaki, M.; Kato, R.; Shin, H.-W.; Nakayama, K.; Wakatsuki, S. 2012: Structural basis for membrane binding specificity of the Bin/Amphiphysin/Rvs (BAR) domain of Arfaptin-2 determined by Arl1 GTPase. Journal of Biological Chemistry 287(30): 25478-25489
Malaby, A.W.; van den Berg, B.; Lambright, D.G. 2013: Structural basis for membrane recruitment and allosteric activation of cytohesin family Arf GTPase exchange factors. Proceedings of the National Academy of Sciences of the United States of America 110(35): 14213-14218
Boura, E.; Hurley, J.H. 2012: Structural basis for membrane targeting by the MVB12-associated β-prism domain of the human ESCRT-I MVB12 subunit. Proceedings of the National Academy of Sciences of the United States of America 109(6): 1901-1906
Trepreau, J.; Girard, E.; Maillard, A.P.; de Rosny, E.; Petit-Haertlein, I.; Kahn, R.; Covès, J. 2011: Structural basis for metal sensing by CnrX. Journal of Molecular Biology 408(4): 766-779
Liu, H.; Wang, J.-Y.S.; Huang, Y.; Li, Z.; Gong, W.; Lehmann, R.; Xu, R.-M. 2010: Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes and Development 24(17): 1876-1881
Schirle, N.T.; Sheu-Gruttadauria, J.; MacRae, I.J. 2014: Structural basis for microRNA targeting. Science 346(6209): 608-613
Agarwal, V.; Metlitskaya, A.; Severinov, K.; Nair, S.K. 2011: Structural basis for microcin C7 inactivation by the MccE acetyltransferase. Journal of Biological Chemistry 286(24): 21295-21303
Mase, Y.; Yokogawa, M.; Osawa, M.; Shimada, I. 2012: Structural basis for modulation of gating property of G protein-gated inwardly rectifying potassium ion channel (GIRK) by i/o-family G protein α subunit (Gαi/o). Journal of Biological Chemistry 287(23): 19537-19549
Mouilleron, S.ép.; Badet-Denisot, M.-A.; Pecqueur, L.; Madiona, K.; Assrir, N.; Badet, B.; Golinelli-Pimpaneau, B.éa. 2012: Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer. Journal of Biological Chemistry 287(41): 34533-34546
Chen, L.; Lin, Y.-L.; Peng, G.; Li, F. 2012: Structural basis for multifunctional roles of mammalian aminopeptidase N. Proceedings of the National Academy of Sciences of the United States of America 109(44): 17966-17971
Watanabe, M.; Tanaka, Y.; Suenaga, A.; Kuroda, M.; Yao, M.; Watanabe, N.; Arisaka, F.; Ohta, T.; Tanaka, I.; Tsumoto, K. 2008: Structural basis for multimeric heme complexation through a specific protein-heme interaction: the case of the third neat domain of IsdH from Staphylococcus aureus. Journal of Biological Chemistry 283(42): 28649-28659
Kanagawa, M.; Liu, Y.; Hanashima, S.; Ikeda, A.; Chai, W.; Nakano, Y.; Kojima-Aikawa, K.; Feizi, T.; Yamaguchi, Y. 2014: Structural basis for multiple sugar recognition of Jacalin-related human ZG16p lectin. Journal of Biological Chemistry 289(24): 16954-16965
Ilangovan, A.; Fletcher, M.; Rampioni, G.; Pustelny, C.; Rumbaugh, K.; Heeb, S.; Cámara, M.; Truman, A.; Chhabra, S.R.; Emsley, J.; Williams, P. 2013: Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). Plos Pathogens 9(7): E1003508
Alvarado, D.; Klein, D.E.; Lemmon, M.A. 2010: Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Cell 142(4): 568-579
Putcha, B.-D.K.; Wright, E.; Brunzelle, J.S.; Fernandez, E.J. 2012: Structural basis for negative cooperativity within agonist-bound TR:RXR heterodimers. Proceedings of the National Academy of Sciences of the United States of America 109(16): 6084-6087
Shiro, Y.; Sugimoto, H.; Tosha, T.; Nagano, S.; Hino, T. 2012: Structural basis for nitrous oxide generation by bacterial nitric oxide reductases. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences 367(1593): 1195-1203
Bonnefond, L.; Arai, T.; Sakaguchi, Y.; Suzuki, T.; Ishitani, R.; Nureki, O. 2011: Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog. Proceedings of the National Academy of Sciences of the United States of America 108(10): 3912-3917
Hishiki, A.; Hashimoto, H.; Hanafusa, T.; Kamei, K.; Ohashi, E.; Shimizu, T.; Ohmori, H.; Sato, M. 2009: Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. Journal of Biological Chemistry 284(16): 10552-10560
Maertens, G.N.; Cook, N.J.; Wang, W.; Hare, S.; Gupta, S.S.; Öztop, I.; Lee, K.; Pye, V.E.; Cosnefroy, O.él.; Snijders, A.P.; KewalRamani, V.N.; Fassati, A.; Engelman, A.; Cherepanov, P. 2014: Structural basis for nuclear import of splicing factors by human Transportin 3. Proceedings of the National Academy of Sciences of the United States of America 111(7): 2728-2733
Hodgson, M.C.; Shen, H.C.; Hollenberg, A.N.; Balk, S.P. 2008: Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. Molecular Cancer Therapeutics 7(10): 3187-3194
Shimizu, T.; Sato, M. 2008: Structural basis for nuclear transport mechanism. Seikagaku. Journal of Japanese Biochemical Society 80(6): 493-500
Barta, M.L.; McWhorter, W.J.; Miziorko, H.M.; Geisbrecht, B.V. 2012: Structural basis for nucleotide binding and reaction catalysis in mevalonate diphosphate decarboxylase. Biochemistry 51(28): 5611-5621
Satoh, T.; Chen, Y.; Hu, D.; Hanashima, S.; Yamamoto, K.; Yamaguchi, Y. 2010: Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. Molecular Cell 40(6): 905-916
Bommer, M.; Kunze, C.; Fesseler, J.; Schubert, T.; Diekert, G.; Dobbek, H. 2014: Structural basis for organohalide respiration. Science 346(6208): 455-458
Collins, P.J.; Haire, L.F.; Lin, Y.P.; Liu, J.; Russell, R.J.; Walker, P.A.; Martin, S.R.; Daniels, R.S.; Gregory, V.; Skehel, J.J.; Gamblin, S.J.; Hay, A.J. 2009: Structural basis for oseltamivir resistance of influenza viruses. Vaccine 27(45): 6317-6323
Van den Berg, B. 2012: Structural basis for outer membrane sugar uptake in pseudomonads. Journal of Biological Chemistry 287(49): 41044-41052
Kim, S.J.; Cho, J.; Song, E.J.; Kim, S.J.; Kim, H.M.; Lee, K.E.; Suh, S.W.; Kim, E.E. 2014: Structural basis for ovarian tumor domain-containing protein 1 (OTU1) binding to p97/valosin-containing protein (VCP). Journal of Biological Chemistry 289(18): 12264-12274
Sawai, H.; Sugimoto, H.; Shiro, Y.; Ishikawa, H.; Mizutani, Y.; Aono, S. 2012: Structural basis for oxygen sensing and signal transduction of the heme-based sensor protein Aer2 from Pseudomonas aeruginosa. Chemical Communications 48(52): 6523-6525
Singh, M.; Kumar, P.; Karthikeyan, S. 2011: Structural basis for pH dependent monomer-dimer transition of 3,4-dihydroxy 2-butanone-4-phosphate synthase domain from Mycobacterium tuberculosis. Journal of Structural Biology 174(2): 374-384
Walther, M.; Roffeis, J.; Jansen, C.; Anton, M.; Ivanov, I.; Kuhn, H. 2009: Structural basis for pH-dependent alterations of reaction specificity of vertebrate lipoxygenase isoforms. Biochimica et Biophysica Acta 1791(8): 827-835
Pioszak, A.A.; Parker, N.R.; Gardella, T.J.; Xu, H.E. 2009: Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. Journal of Biological Chemistry 284(41): 28382-28391
Gadd, M.S.; Bhati, M.; Jeffries, C.M.; Langley, D.B.; Trewhella, J.; Guss, J.M.; Matthews, J.M. 2011: Structural basis for partial redundancy in a class of transcription factors, the LIM homeodomain proteins, in neural cell type specification. Journal of Biological Chemistry 286(50): 42971-42980
Xie, J.; Reverdatto, S.; Frolov, A.; Hoffmann, R.; Burz, D.S.; Shekhtman, A. 2008: Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). Journal of Biological Chemistry 283(40): 27255-27269
Stiegler, A.L.; Draheim, K.M.; Li, X.; Chayen, N.E.; Calderwood, D.A.; Boggon, T.J. 2012: Structural basis for paxillin binding and focal adhesion targeting of β-parvin. Journal of Biological Chemistry 287(39): 32566-32577
Trésaugues, L.; Silvander, C.; Flodin, S.; Welin, M.; Nyman, T.; Gräslund, S.; Hammarström, M.; Berglund, H.; Nordlund, P.är. 2014: Structural basis for phosphoinositide substrate recognition, catalysis, and membrane interactions in human inositol polyphosphate 5-phosphatases. Structure 22(5): 744-755
Liu, Y.; Zheng, T.; Bruner, S.D. 2011: Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases. Chemistry and Biology 18(11): 1482-1488
Wu, M.; Tao, Y.; Liu, X.; Zang, J. 2013: Structural basis for phosphorylated autoinducer-2 modulation of the oligomerization state of the global transcription regulator LsrR from Escherichia coli. Journal of Biological Chemistry 288(22): 15878-15887
Parker, B.L.; Shepherd, N.E.; Trefely, S.; Hoffman, N.J.; White, M.Y.; Engholm-Keller, K.; Hambly, B.D.; Larsen, M.R.; James, D.E.; Cordwell, S.J. 2014: Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection. Journal of Biological Chemistry 289(37): 25890-25906
Kobashigawa, Y.; Inagaki, F. 2013: Structural basis for phosphorylation induced regulation mechanism of human cancer and autoimmune diseases related ubiquitin ligase Cbl. Seikagaku. Journal of Japanese Biochemical Society 85(9): 794-798
Pal, M.; Morgan, M.; Phelps, S.E.L.; Roe, S.M.; Parry-Morris, S.; Downs, J.A.; Polier, S.; Pearl, L.H.; Prodromou, C. 2014: Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22(6): 805-818
Rogov, V.V.; Suzuki, H.; Fiskin, E.; Wild, P.; Kniss, A.; Rozenknop, A.; Kato, R.; Kawasaki, M.; McEwan, D.G.; Löhr, F.; Güntert, P.; Dikic, I.; Wakatsuki, S.; Dötsch, V. 2013: Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Biochemical Journal 454(3): 459-466
Pletnev, S.; Gurskaya, N.G.; Pletneva, N.V.; Lukyanov, K.A.; Chudakov, D.M.; Martynov, V.I.; Popov, V.O.; Kovalchuk, M.V.; Wlodawer, A.; Dauter, Z.; Pletnev, V. 2009: Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. Journal of Biological Chemistry 284(46): 32028-32039
Tian, Y.; Simanshu, D.K.; Ma, J-Biao.; Patel, D.J. 2011: Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proceedings of the National Academy of Sciences of the United States of America 108(3): 903-910
Ono, K.; Ueda, H.; Yoshizawa, Y.; Akazawa, D.; Tanimura, R.; Shimada, I.; Takahashi, H. 2010: Structural basis for platelet antiaggregation by angiotensin Ii type 1 receptor antagonist losartan (DuP-753) via glycoprotein Vi. Journal of Medicinal Chemistry 53(5): 2087-2093
Brockmann, C.; Soucek, S.; Kuhlmann, S.I.; Mills-Lujan, K.; Kelly, S.M.; Yang, J.-C.; Iglesias, N.; Stutz, F.; Corbett, A.H.; Neuhaus, D.; Stewart, M. 2012: Structural basis for polyadenosine-RNA binding by Nab2 Zn fingers and its function in mRNA nuclear export. Structure 20(6): 1007-1018
Lyons, J.A.; Parker, J.L.; Solcan, N.; Brinth, A.; Li, D.; Shah, S.T.A.; Caffrey, M.; Newstead, S. 2014: Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters. Embo Reports 15(8): 886-893
Yamagata, K.; Goto, Y.; Nishimasu, H.; Morimoto, J.; Ishitani, R.; Dohmae, N.; Takeda, N.; Nagai, R.; Komuro, I.; Suga, H.; Nureki, O. 2014: Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change. Structure 22(2): 345-352
Jenner, L.; Starosta, A.L.; Terry, D.S.; Mikolajka, A.; Filonava, L.; Yusupov, M.; Blanchard, S.C.; Wilson, D.N.; Yusupova, G. 2013: Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proceedings of the National Academy of Sciences of the United States of America 110(10): 3812-3816
Strushkevich, N.; MacKenzie, F.; Cherkesova, T.; Grabovec, I.; Usanov, S.; Park, H.-W. 2011: Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proceedings of the National Academy of Sciences of the United States of America 108(25): 10139-10143
Pence, M.G.; Choi, J.-Y.; Egli, M.; Guengerich, F.P. 2010: Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota. Journal of Biological Chemistry 285(52): 40666-40672
Porta, J.C.; Borgstahl, G.E.O. 2012: Structural basis for profilin-mediated actin nucleotide exchange. Journal of Molecular Biology 418(1-2): 103-116
Smith, C.A.; Frase, H.; Toth, M.; Kumarasiri, M.; Wiafe, K.; Munoz, J.; Mobashery, S.; Vakulenko, S.B. 2012: Structural basis for progression toward the carbapenemase activity in the GES family of β-lactamases. Journal of the American Chemical Society 134(48): 19512-19515
Zhao, X.; Pang, H.; Wang, S.; Zhou, W.; Yang, K.; Bartlam, M. 2010: Structural basis for prokaryotic calcium-mediated regulation by a Streptomyces coelicolor calcium binding protein. Protein and Cell 1(8): 771-779
Maestre-Reyna, M.; Diderrich, R.; Veelders, M.S.; Eulenburg, G.; Kalugin, V.; Brückner, S.; Keller, P.; Rupp, S.; Mösch, H.-U.; Essen, L.-O. 2012: Structural basis for promiscuity and specificity during Candida glabrata invasion of host epithelia. Proceedings of the National Academy of Sciences of the United States of America 109(42): 16864-16869
Tagami, S.; Sekine, S.-i.; Minakhin, L.; Esyunina, D.; Akasaka, R.; Shirouzu, M.; Kulbachinskiy, A.; Severinov, K.; Yokoyama, S. 2014: Structural basis for promoter specificity switching of RNA polymerase by a phage factor. Genes and Development 28(5): 521-531
Feklistov, A.; Darst, S.A. 2011: Structural basis for promoter-10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147(6): 1257-1269
Wischgoll, S.; Demmer, U.; Warkentin, E.; Günther, R.; Boll, M.; Ermler, U. 2010: Structural basis for promoting and preventing decarboxylation in glutaryl-coenzyme a dehydrogenases. Biochemistry 49(25): 5350-5357
Koag, M.-C.; Min, K.; Lee, S. 2014: Structural basis for promutagenicity of 8-halogenated guanine. Journal of Biological Chemistry 289(9): 6289-6298
Satoh, T.; Saeki, Y.; Hiromoto, T.; Wang, Y.-H.; Uekusa, Y.; Yagi, H.; Yoshihara, H.; Yagi-Utsumi, M.; Mizushima, T.; Tanaka, K.; Kato, K. 2014: Structural basis for proteasome formation controlled by an assembly chaperone nas2. Structure 22(5): 731-743
Saio, T.; Guan, X.; Rossi, P.; Economou, A.; Kalodimos, C.G. 2014: Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344(6184): 1250494
Noeske, J.; Cate, J.H.D. 2012: Structural basis for protein synthesis: snapshots of the ribosome in motion. Current Opinion in Structural Biology 22(6): 743-749
Wu, L.; Wang, L.; Hua, G.; Liu, K.; Yang, X.; Zhai, Y.; Bartlam, M.; Sun, F.; Fan, Z. 2009: Structural basis for proteolytic specificity of the human apoptosis-inducing granzyme M. Journal of Immunology 183(1): 421-429
Hong, M.; DeGrado, W.F. 2012: Structural basis for proton conduction and inhibition by the influenza M2 protein. Protein Science: a Publication of the Protein Society 21(11): 1620-1633
Bale, S.; Lopez, M.M.; Makhatadze, G.I.; Fang, Q.; Pegg, A.E.; Ealick, S.E. 2008: Structural basis for putrescine activation of human S-adenosylmethionine decarboxylase. Biochemistry 47(50): 13404-13417
Friggeri, L.; Hargrove, T.Y.; Rachakonda, G.; Williams, A.D.; Wawrzak, Z.; Di Santo, R.; De Vita, D.; Waterman, M.R.; Tortorella, S.; Villalta, F.; Lepesheva, G.I. 2014: Structural basis for rational design of inhibitors targeting Trypanosoma cruzi sterol 14α-demethylase: two regions of the enzyme molecule potentiate its inhibition. Journal of Medicinal Chemistry 57(15): 6704-6717
Logsdon, N.J.; Deshpande, A.; Harris, B.D.; Rajashankar, K.R.; Walter, M.R. 2012: Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proceedings of the National Academy of Sciences of the United States of America 109(31): 12704-12709
Edwards, A.L.; Reyes, F.E.; Héroux, A.; Batey, R.T. 2010: Structural basis for recognition of S-adenosylhomocysteine by riboswitches. Rna 16(11): 2144-2155
Liu, K.; Chen, C.; Guo, Y.; Lam, R.; Bian, C.; Xu, C.; Zhao, D.Y.; Jin, J.; MacKenzie, F.; Pawson, T.; Min, J. 2010: Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proceedings of the National Academy of Sciences of the United States of America 107(43): 18398-18403
Li, Y.; Mariuzza, R.A. 2014: Structural basis for recognition of cellular and viral ligands by NK cell receptors. Frontiers in Immunology 5: 123
Olson, L.J.; Peterson, F.C.; Castonguay, A.; Bohnsack, R.N.; Kudo, M.; Gotschall, R.R.; Canfield, W.M.; Volkman, B.F.; Dahms, N.M. 2010: Structural basis for recognition of phosphodiester-containing lysosomal enzymes by the cation-independent mannose 6-phosphate receptor. Proceedings of the National Academy of Sciences of the United States of America 107(28): 12493-12498
Zhang, J.; Zhang, H.; Gao, Z.; Hu, H.; Dong, C.; Dong, Y.-H. 2014: Structural basis for recognition of the type Vi spike protein VgrG3 by a cognate immunity protein. Febs Letters 588(10): 1891-1898
Lin, Z.; Jiang, L.; Yuan, C.; Jensen, J.K.; Zhang, X.; Luo, Z.; Furie, B.C.; Furie, B.; Andreasen, P.A.; Huang, M. 2011: Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1. Journal of Biological Chemistry 286(9): 7027-7032
Ren, X.; Farías, G.G.; Canagarajah, B.J.; Bonifacino, J.S.; Hurley, J.H. 2013: Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152(4): 755-767
Suto, K.; Masuda, H.; Takenaka, Y.; Tsuji, F.I.; Mizuno, H. 2009: Structural basis for red-shifted emission of a GFP-like protein from the marine copepod Chiridius poppei. Genes to Cells: Devoted to Molecular and Cellular Mechanisms 14(6): 727-737
Schärer, M.A.; Eliot, A.C.; Grütter, M.G.; Capitani, G. 2011: Structural basis for reduced activity of 1-aminocyclopropane-1-carboxylate synthase affected by a mutation linked to andromonoecy. Febs Letters 585(1): 111-114
Knauer, S.H.; Buckel, W.; Dobbek, H. 2011: Structural basis for reductive radical formation and electron recycling in (R)-2-hydroxyisocaproyl-CoA dehydratase. Journal of the American Chemical Society 133(12): 4342-4347
Armstrong, D.R.; Blair, V.L.; Clegg, W.; Dale, S.H.; Garcia-Alvarez, J.; Honeyman, G.W.; Hevia, E.; Mulvey, R.E.; Russo, L. 2010: Structural basis for regioisomerization in the alkali-metal-mediated zincation (AMMZn) of trifluoromethyl benzene by isolation of kinetic and thermodynamic intermediates. Journal of the American Chemical Society 132(27): 9480-9487
Beck, T.; Miller, B.G. 2013: Structural basis for regulation of human glucokinase by glucokinase regulatory protein. Biochemistry 52(36): 6232-6239
Sekiyama, N.; Arita, K.; Ikeda, Y.; Hashiguchi, K.; Ariyoshi, M.; Tochio, H.; Saitoh, H.; Shirakawa, M. 2010: Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Proteins 78(6): 1491-1502
Lee, S.G.; Krishnan, H.B.; Jez, J.M. 2014: Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR. Proceedings of the National Academy of Sciences of the United States of America 111(17): 6509-6514
Hengesbach, M.; Schwalbe, H. 2014: Structural basis for regulation of ribosomal RNA 2'-o-methylation. Angewandte Chemie 53(7): 1742-1744
Swarbrick, C.M.D.; Roman, N.; Cowieson, N.; Patterson, E.I.; Nanson, J.; Siponen, M.I.; Berglund, H.; Lehtiö, L.; Forwood, J.K. 2014: Structural basis for regulation of the human acetyl-CoA thioesterase 12 and interactions with the steroidogenic acute regulatory protein-related lipid transfer (START) domain. Journal of Biological Chemistry 289(35): 24263-24274
Rydberg, E.H.; Cellucci, A.; Bartholomew, L.; Mattu, M.; Barbato, G.; Ludmerer, S.W.; Graham, D.J.; Altamura, S.; Paonessa, G.; De Francesco, R.; Migliaccio, G.; Carfí, A. 2009: Structural basis for resistance of the genotype 2b hepatitis C virus NS5B polymerase to site a non-nucleoside inhibitors. Journal of Molecular Biology 390(5): 1048-1059
Wang, W.; Elkins, K.; Oh, A.; Ho, Y.-C.; Wu, J.; Li, H.; Xiao, Y.; Kwong, M.; Coons, M.; Brillantes, B.; Cheng, E.; Crocker, L.; Dragovich, P.S.; Sampath, D.; Zheng, X.; Bair, K.W.; O'Brien, T.; Belmont, L.D. 2014: Structural basis for resistance to diverse classes of NAMPT inhibitors. Plos one 9(10): E109366
Zhang, H.; Chen, L.; Chen, J.; Jiang, H.; Shen, X. 2011: Structural basis for retinoic X receptor repression on the tetramer. Journal of Biological Chemistry 286(28): 24593-24598
Shenoy, R.T.; Sivaraman, J. 2011: Structural basis for reversible and irreversible inhibition of human cathepsin L by their respective dipeptidyl glyoxal and diazomethylketone inhibitors. Journal of Structural Biology 173(1): 14-19
Touhara, K.K.; Nihira, T.; Kitaoka, M.; Nakai, H.; Fushinobu, S. 2014: Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase. Journal of Biological Chemistry 289(26): 18067-18075
Zhang, X.; Chen, J.; Wu, M.; Wu, H.; Arokiaraj, A.W.; Wang, C.; Zhang, W.; Tao, Y.; Huen, M.S.Y.; Zang, J. 2013: Structural basis for role of ring finger protein RNF168 RING domain. Cell Cycle 12(2): 312-321
You, D.-J.; Jongruja, N.; Tannous, E.; Angkawidjaja, C.; Koga, Y.; Kanaya, S. 2014: Structural basis for salt-dependent folding of ribonuclease H1 from halophilic archaeon Halobacterium sp. NRC-1. Journal of Structural Biology 187(2): 119-128
Chen, D.-H.; Baker, M.L.; Hryc, C.F.; DiMaio, F.; Jakana, J.; Wu, W.; Dougherty, M.; Haase-Pettingell, C.; Schmid, M.F.; Jiang, W.; Baker, D.; King, J.A.; Chiu, W. 2011: Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proceedings of the National Academy of Sciences of the United States of America 108(4): 1355-1360
Springer, T.A. 2009: Structural basis for selectin mechanochemistry. Proceedings of the National Academy of Sciences of the United States of America 106(1): 91-96
Parker, M.J.; Gomery, K.; Richard, G.; MacKenzie, C.R.; Cox, A.D.; Richards, J.C.; Evans, S.V. 2014: Structural basis for selective cross-reactivity in a bactericidal antibody against inner core lipooligosaccharide from Neisseria meningitidis. Glycobiology 24(5): 442-449
Castilho, M.S.; Postigo, M.P.; Pereira, H.M.; Oliva, G.; Andricopulo, A.D. 2010: Structural basis for selective inhibition of purine nucleoside phosphorylase from Schistosoma mansoni: kinetic and structural studies. Bioorganic and Medicinal Chemistry 18(4): 1421-1427
Guido, R.V.C.; Oliva, G.; Montanari, C.A.; Andricopulo, A.D. 2008: Structural basis for selective inhibition of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase: molecular docking and 3D QSAR studies. Journal of Chemical Information and Modeling 48(4): 918-929
Rickert, K.W.; Patel, S.B.; Allison, T.J.; Byrne, N.J.; Darke, P.L.; Ford, R.E.; Guerin, D.J.; Hall, D.L.; Kornienko, M.; Lu, J.; Munshi, S.K.; Reid, J.C.; Shipman, J.M.; Stanton, E.F.; Wilson, K.J.; Young, J.R.; Soisson, S.M.; Lumb, K.J. 2011: Structural basis for selective small molecule kinase inhibition of activated c-Met. Journal of Biological Chemistry 286(13): 11218-11225
Parker, M.W.; Xu, P.; Li, X.; Vander Kooi, C.W. 2012: Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. Journal of Biological Chemistry 287(14): 11082-11089
Shioi, G.; Konno, D.; Shitamukai, A.; Matsuzaki, F. 2009: Structural basis for self-renewal of neural progenitors in cortical neurogenesis. Cerebral Cortex 19(Suppl 1): I55-I61
Zhang, Y.; Larsen, C.A.; Stadler, H.S.; Ames, J.B. 2011: Structural basis for sequence specific DNA binding and protein dimerization of HOXA13. Plos one 6(8): E23069
Yamasaki, K.; Kigawa, T.; Watanabe, S.; Inoue, M.; Yamasaki, T.; Seki, M.; Shinozaki, K.; Yokoyama, S. 2012: Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. Journal of Biological Chemistry 287(10): 7683-7691
Deng, D.; Yan, C.; Pan, X.; Mahfouz, M.; Wang, J.; Zhu, J.-K.; Shi, Y.; Yan, N. 2012: Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335(6069): 720-723
Suzuki, Y.; Kiyokage, E.; Sohn, J.; Hioki, H.; Toida, K. 2015: Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb. Journal of Comparative Neurology 523(2): 262-280
Campagne, S.éb.; Damberger, F.F.; Kaczmarczyk, A.; Francez-Charlot, A.; Allain, F.éd.ér.H.-T.; Vorholt, J.A. 2012: Structural basis for sigma factor mimicry in the general stress response of Alphaproteobacteria. Proceedings of the National Academy of Sciences of the United States of America 109(21): E1405-E1414
Wagner, S.; Stuttmann, J.; Rietz, S.; Guerois, R.; Brunstein, E.; Bautor, J.; Niefind, K.; Parker, J.E. 2013: Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host and Microbe 14(6): 619-630
Kuroki, K.; Wang, J.; Ose, T.; Yamaguchi, M.; Tabata, S.; Maita, N.; Nakamura, S.; Kajikawa, M.; Kogure, A.; Satoh, T.; Arase, H.; Maenaka, K. 2014: Structural basis for simultaneous recognition of an O-glycan and its attached peptide of mucin family by immune receptor PILRα. Proceedings of the National Academy of Sciences of the United States of America 111(24): 8877-8882
Yuan, H.; Marmorstein, R. 2012: Structural basis for sirtuin activity and inhibition. Journal of Biological Chemistry 287(51): 42428-42435
Sanders, B.D.; Jackson, B.; Marmorstein, R. 2010: Structural basis for sirtuin function: what we know and what we don't. Biochimica et Biophysica Acta 1804(8): 1604-1616
Li, X.; Zhang, R.; Draheim, K.M.; Liu, W.; Calderwood, D.A.; Boggon, T.J. 2012: Structural basis for small G protein effector interaction of Ras-related protein 1 (Rap1) and adaptor protein Krev interaction trapped 1 (KRIT1). Journal of Biological Chemistry 287(26): 22317-22327
Tanabe, M.; Nimigean, C.M.; Iverson, T.M. 2010: Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB. Proceedings of the National Academy of Sciences of the United States of America 107(15): 6811-6816
Ichimura, Y.; Kumanomidou, T.; Sou, Y.-s.; Mizushima, T.; Ezaki, J.; Ueno, T.; Kominami, E.; Yamane, T.; Tanaka, K.; Komatsu, M. 2008: Structural basis for sorting mechanism of p62 in selective autophagy. Journal of Biological Chemistry 283(33): 22847-22857
Klein, T.; Henn, C.; Negri, M.; Frotscher, M. 2011: Structural basis for species specific inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): computational study and biological validation. Plos one 6(8): E22990
Li, J.; Li, Z.; Ruan, J.; Xu, C.; Tong, Y.; Pan, P.W.; Tempel, W.; Crombet, L.; Min, J.; Zang, J. 2011: Structural basis for specific binding of human MPP8 chromodomain to histone H3 methylated at lysine 9. Plos one 6(10): E25104
Takagi, K.; Kim, S.; Yukii, H.; Ueno, M.; Morishita, R.; Endo, Y.; Kato, K.; Tanaka, K.; Saeki, Y.; Mizushima, T. 2012: Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p. Journal of Biological Chemistry 287(15): 12172-12182
Wang, Y.; Opperman, L.; Wickens, M.; Hall, T.M.T. 2009: Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein. Proceedings of the National Academy of Sciences of the United States of America 106(48): 20186-20191
Yasui, N.; Nogi, T.; Takagi, J. 2010: Structural basis for specific recognition of reelin by its receptors. Structure 18(3): 320-331
Yokoyama, M.; Oka, T.; Kojima, H.; Nagano, T.; Okabe, T.; Katayama, K.; Wakita, T.; Kanda, T.; Sato, H. 2012: Structural basis for specific recognition of substrates by sapovirus protease. Frontiers in Microbiology 3: 312
Xiao, H.; Edwards, T.E.; Ferré-D'Amaré, A.R. 2008: Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chemistry and Biology 15(10): 1125-1137
Cambra, I.és.; Hernández, D.; Diaz, I.; Martinez, M. 2012: Structural basis for specificity of propeptide-enzyme interaction in barley C1A cysteine peptidases. Plos one 7(5): E37234
Ipsaro, J.J.; Mondragón, A. 2010: Structural basis for spectrin recognition by ankyrin. Blood 115(20): 4093-4101
Muskotál, A.él.; Seregélyes, C.; Sebestyén, A.; Vonderviszt, F. 2010: Structural basis for stabilization of the hypervariable D3 domain of Salmonella flagellin upon filament formation. Journal of Molecular Biology 403(4): 607-615
Zheng, S.; Chen, Y.; Donahue, C.P.; Wolfe, M.S.; Varani, G. 2009: Structural basis for stabilization of the tau pre-mRNA splicing regulatory element by novantrone (mitoxantrone). Chemistry and Biology 16(5): 557-566
Machebœuf, P.; Ghosh, P. 2011: Structural basis for streptococcal toxic shock syndrome. Medecine Sciences: M/S 27(10): 814-816
Koutmos, M.; Kabil, O.; Smith, J.L.; Banerjee, R. 2010: Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine {beta}-synthase. Proceedings of the National Academy of Sciences of the United States of America 107(49): 20958-20963
Xue, S.; Wang, R.; Yang, F.; Terns, R.M.; Terns, M.P.; Zhang, X.; Maxwell, E.Stuart.; Li, H. 2010: Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Molecular Cell 39(6): 939-949
Unno, H.; Yamashita, T.; Ujita, S.; Okumura, N.; Otani, H.; Okumura, A.; Nagai, K.; Kusunoki, M. 2008: Structural basis for substrate recognition and hydrolysis by mouse carnosinase CN2. Journal of Biological Chemistry 283(40): 27289-27299
Lindqvist, Y.; Koskiniemi, H.; Jansson, A.; Sandalova, T.; Schnell, R.; Liu, Z.; Mäntsälä, P.; Niemi, J.; Schneider, G. 2009: Structural basis for substrate recognition and specificity in aklavinone-11-hydroxylase from rhodomycin biosynthesis. Journal of Molecular Biology 393(4): 966-977
Urbániková, L.; Vršanská, Mária.; Mørkeberg Krogh, K.B.R.; Hoff, T.; Biely, P. 2011: Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. Febs Journal 278(12): 2105-2116
Hsu, F.; Zhu, W.; Brennan, L.; Tao, L.; Luo, Z.-Q.; Mao, Y. 2012: Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proceedings of the National Academy of Sciences of the United States of America 109(34): 13567-13572
Sundriyal, A.; Roberts, A.K.; Shone, C.C.; Acharya, K.R. 2009: Structural basis for substrate recognition in the enzymatic component of ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Journal of Biological Chemistry 284(42): 28713-28719
Sim, L.; Willemsma, C.; Mohan, S.; Naim, H.Y.; Pinto, B.M.; Rose, D.R. 2010: Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. Journal of Biological Chemistry 285(23): 17763-17770
Wu, H.; Moshkina, N.; Min, J.; Zeng, H.; Joshua, J.; Zhou, M.-M.; Plotnikov, A.N. 2012: Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1. Proceedings of the National Academy of Sciences of the United States of America 109(23): 8925-8930
Huynh, N.; Aye, A.; Li, Y.; Yu, H.; Cao, H.; Tiwari, V.K.; Shin, D.-W.; Chen, X.; Fisher, A.J. 2013: Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida. Biochemistry 52(47): 8570-8579
Lee, M.; Sousa, M.C. 2014: Structural basis for substrate specificity in ArnB. a key enzyme in the polymyxin resistance pathway of Gram-negative bacteria. Biochemistry 53(4): 796-805
Pilka, E.S.; Niesen, F.H.; Lee, W.H.; El-Hawari, Y.; Dunford, J.E.; Kochan, G.; Wsol, V.; Martin, H.-J.; Maser, E.; Oppermann, U. 2009: Structural basis for substrate specificity in human monomeric carbonyl reductases. Plos one 4(10): E7113
Chan, K.K.; Fedorov, A.A.; Fedorov, E.V.; Almo, S.C.; Gerlt, J.A. 2008: Structural basis for substrate specificity in phosphate binding (beta/alpha)8-barrels: D-allulose 6-phosphate 3-epimerase from Escherichia coli K-12. Biochemistry 47(36): 9608-9617
Oldham, M.L.; Chen, S.; Chen, J. 2013: Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proceedings of the National Academy of Sciences of the United States of America 110(45): 18132-18137
Russo, A.T.; Malmstrom, R.D.; White, M.A.; Watowich, S.J. 2010: Structural basis for substrate specificity of alphavirus nsP2 proteases. Journal of Molecular Graphics and Modelling 29(1): 46-53
Smutova, V.; Albohy, A.; Pan, X.; Korchagina, E.; Miyagi, T.; Bovin, N.; Cairo, C.W.; Pshezhetsky, A.V. 2014: Structural basis for substrate specificity of mammalian neuraminidases. Plos one 9(9): E106320
Li, X.; Beeson, W.T.; Phillips, C.M.; Marletta, M.A.; Cate, J.H.D. 2012: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20(6): 1051-1061
Ferreon, J.C.; Martinez-Yamout, M.A.; Dyson, H.J.; Wright, P.E. 2009: Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proceedings of the National Academy of Sciences of the United States of America 106(32): 13260-13265
Maveyraud, L.; Niwa, H.; Guillet, V.ér.; Svergun, D.I.; Konarev, P.V.; Palmer, R.A.; Peumans, W.J.; Rougé, P.; Van Damme, E.J.M.; Reynolds, C.D.; Mourey, L. 2009: Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNA-Ii from Sambucus nigra. Proteins 75(1): 89-103
Das, K.; Ma, L.-C.; Xiao, R.; Radvansky, B.; Aramini, J.; Zhao, L.; Marklund, J.; Kuo, R.-L.; Twu, K.Y.; Arnold, E.; Krug, R.M.; Montelione, G.T. 2008: Structural basis for suppression of a host antiviral response by influenza a virus. Proceedings of the National Academy of Sciences of the United States of America 105(35): 13093-13098
Yang, X.; Xie, X.; Chen, L.; Zhou, H.; Wang, Z.; Zhao, W.; Tian, R.; Zhang, R.; Tian, C.; Long, J.; Shen, Y. 2010: Structural basis for tandem L27 domain-mediated polymerization. Faseb Journal: Official Publication of the Federation of American Societies for Experimental Biology 24(12): 4806-4815
Oda, S.-I.; Schröder, M.; Khan, A.R. 2009: Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure 17(11): 1528-1537
Alfieri, C.; Gambetta, M.Cristina.; Matos, R.; Glatt, S.; Sehr, P.; Fraterman, S.; Wilm, M.; Müller, Jürg.; Müller, C.W. 2013: Structural basis for targeting the chromatin repressor Sfmbt to Polycomb response elements. Genes and Development 27(21): 2367-2379
Singh, M.; Wang, Z.; Koo, B.-K.; Patel, A.; Cascio, D.; Collins, K.; Feigon, J. 2012: Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme la family protein p65. Molecular Cell 47(1): 16-26
Collie, G.W.; Promontorio, R.; Hampel, S.M.; Micco, M.; Neidle, S.; Parkinson, G.N. 2012: Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands. Journal of the American Chemical Society 134(5): 2723-2731
Rezabkova, L.; Man, P.; Novak, P.; Herman, P.; Vecer, J.; Obsilova, V.; Obsil, T. 2011: Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. Journal of Biological Chemistry 286(50): 43527-43536
Xu, L.-H.; Ikeda, H.; Liu, L.; Arakawa, T.; Wakagi, T.; Shoun, H.; Fushinobu, S. 2015: Structural basis for the 4'-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase. Applied Microbiology and Biotechnology 99(7): 3081-3091
Vigan-Womas, I.ès.; Guillotte, M.; Juillerat, A.; Hessel, A.; Raynal, B.; England, P.; Cohen, J.H.; Bertrand, O.; Peyrard, T.; Bentley, G.A.; Lewit-Bentley, A.; Mercereau-Puijalon, O. 2012: Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting. Plos Pathogens 8(7): E1002781
Liu, X.; Ladias, J.A.A. 2013: Structural basis for the BRCA1 BRCT interaction with the proteins ATRIP and BAAT1. Biochemistry 52(43): 7618-7627
Kagawa, W.; Sagawa, T.; Niki, H.; Kurumizaka, H. 2011: Structural basis for the DNA-binding activity of the bacterial β-propeller protein YncE. Acta Crystallographica. Section D Biological Crystallography 67(Part 12): 1045-1053
Little, D.J.; Bamford, N.C.; Pokrovskaya, V.; Robinson, H.; Nitz, M.; Howell, P.L. 2014: Structural basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-D-glucosamine in Gram-positive bacteria. Journal of Biological Chemistry 289(52): 35907-35917
Sugiki, T.; Takeuchi, K.; Yamaji, T.; Takano, T.; Tokunaga, Y.; Kumagai, K.; Hanada, K.; Takahashi, H.; Shimada, I. 2012: Structural basis for the Golgi association by the pleckstrin homology domain of the ceramide trafficking protein (CERT). Journal of Biological Chemistry 287(40): 33706-33718
Tsuge, H.; Tsurumura, T.; Utsunomiya, H.; Kise, D.; Kuzuhara, T.; Watanabe, T.; Fujiki, H.; Suganuma, M. 2009: Structural basis for the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. Biochemical and Biophysical Research Communications 388(2): 193-198
Bhandari, D.; Raisch, T.; Weichenrieder, O.; Jonas, S.; Izaurralde, E. 2014: Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes and Development 28(8): 888-901
Merino, F.; Ng, C.K.L.; Veerapandian, V.; Schöler, H.R.; Jauch, R.; Cojocaru, V. 2014: Structural basis for the SOX-dependent genomic redistribution of OCT4 in stem cell differentiation. Structure 22(9): 1274-1286
Ciesielski, F.; Sato, Y.; Chebaro, Y.; Moras, D.; Dejaegere, A.; Rochel, N. 2012: Structural basis for the accommodation of bis- and tris-aromatic derivatives in vitamin D nuclear receptor. Journal of Medicinal Chemistry 55(19): 8440-8449
Xu, Q.; Ye, X.; Li, L.-Y.; Cheng, Z.-M.; Guo, H. 2010: Structural basis for the action of xyloglucan endotransglycosylases/hydrolases: insights from homology modeling. Interdisciplinary Sciences Computational Life Sciences 2(2): 133-139
Grenha, R.; Slamti, L.; Nicaise, M.; Refes, Y.; Lereclus, D.; Nessler, S. 2013: Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR. Proceedings of the National Academy of Sciences of the United States of America 110(3): 1047-1052
Kochoyan, A.; Poulsen, F.M.; Berezin, V.; Bock, E.; Kiselyov, V.V. 2008: Structural basis for the activation of FGFR by NCAM. Protein Science: a Publication of the Protein Society 17(10): 1698-1705
Itoh, T.; Fairall, L.; Amin, K.; Inaba, Y.; Szanto, A.; Balint, B.L.; Nagy, L.; Yamamoto, K.; Schwabe, J.W.R. 2008: Structural basis for the activation of PPARgamma by oxidized fatty acids. Nature Structural and Molecular Biology 15(9): 924-931
Huang, H.; Vogel, H.J. 2012: Structural basis for the activation of platelet integrin αIIbβ3 by calcium- and integrin-binding protein 1. Journal of the American Chemical Society 134(8): 3864-3872
Dias, M.V.B.; Huang, F.; Chirgadze, D.Y.; Tosin, M.; Spiteller, D.; Dry, E.F.V.; Leadlay, P.F.; Spencer, J.B.; Blundell, T.L. 2010: Structural basis for the activity and substrate specificity of fluoroacetyl-CoA thioesterase FlK. Journal of Biological Chemistry 285(29): 22495-22504
Golczak, M.; Kiser, P.D.; Sears, A.E.; Lodowski, D.T.; Blaner, W.S.; Palczewski, K. 2012: Structural basis for the acyltransferase activity of lecithin:retinol acyltransferase-like proteins. Journal of Biological Chemistry 287(28): 23790-23807
Zhao, M.-X.; Jiang, Y.-L.; He, Y.-X.; Chen, Y.-F.; Teng, Y.-B.; Chen, Y.; Zhang, C.-C.; Zhou, C.-Z. 2010: Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proceedings of the National Academy of Sciences of the United States of America 107(28): 12487-12492
Thangavelu, K.; Pan, C.Q.; Karlberg, T.; Balaji, G.; Uttamchandani, M.; Suresh, V.; Schüler, H.; Low, B.C.; Sivaraman, J. 2012: Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proceedings of the National Academy of Sciences of the United States of America 109(20): 7705-7710
Preller, M.; Bauer, S.; Adamek, N.; Fujita-Becker, S.; Fedorov, R.; Geeves, M.A.; Manstein, D.J. 2011: Structural basis for the allosteric interference of myosin function by reactive thiol region mutations G680A and G680V. Journal of Biological Chemistry 286(40): 35051-35060
Walldén, K.; Nordlund, P.är. 2011: Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5'-nucleotidase Ii. Journal of Molecular Biology 408(4): 684-696
Tadeo, X.; López-Méndez, B.; Trigueros, T.; Laín, A.; Castaño, D.; Millet, O. 2009: Structural basis for the aminoacid composition of proteins from halophilic archea. Plos Biology 7(12): E1000257
Lee, C.-C.; Lin, L.-L.; Chan, W.-E.; Ko, T.-P.; Lai, J.-S.; Wang, A.H.-J. 2013: Structural basis for the antibody neutralization of herpes simplex virus. Acta Crystallographica. Section D Biological Crystallography 69(Part 10): 1935-1945
Horiuchi, M.; Takeuchi, K.; Noda, N.; Muroya, N.; Suzuki, T.; Nakamura, T.; Kawamura-Tsuzuku, J.; Takahasi, K.; Yamamoto, T.; Inagaki, F. 2009: Structural basis for the antiproliferative activity of the Tob-hCaf1 complex. Journal of Biological Chemistry 284(19): 13244-13255
Valkov, E.; Dean, J.C.; Jani, D.; Kuhlmann, S.I.; Stewart, M. 2012: Structural basis for the assembly and disassembly of mRNA nuclear export complexes. Biochimica et Biophysica Acta 1819(6): 578-592
Scholey, J.E.; Nithianantham, S.; Scholey, J.M.; Al-Bassam, J. 2014: Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers. Elife 3: E02217
Lefèvre, J.; Savarin, P.; Gans, P.; Hamon, Lïc.; Clément, M-Jeanne.; David, M-Odile.; Bosc, C.; Andrieux, A.; Curmi, P.A. 2013: Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin. Journal of Biological Chemistry 288(34): 24910-24922
Dames, S.A. 2010: Structural basis for the association of the redox-sensitive target of rapamycin FATC domain with membrane-mimetic micelles. Journal of Biological Chemistry 285(10): 7766-7775
Goksoy, E.; Ma, Y.-Q.; Wang, X.; Kong, X.; Perera, D.; Plow, E.F.; Qin, J. 2008: Structural basis for the autoinhibition of talin in regulating integrin activation. Molecular Cell 31(1): 124-133
Li, D.; Fu, T.M.; Nan, J.; Liu, C.; Li, L.F.; Su, X.D. 2012: Structural basis for the autoinhibition of the C-terminal kinase domain of human RSK1. Acta Crystallographica. Section D Biological Crystallography 68(Part 6): 680-685
Gao, X.; Wang, J.; Yu, D.-Q.; Bian, F.; Xie, B.-B.; Chen, X.-L.; Zhou, B.-C.; Lai, L.-H.; Wang, Z.-X.; Wu, J.-W.; Zhang, Y.-Z. 2010: Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family. Proceedings of the National Academy of Sciences of the United States of America 107(41): 17569-17574
Westblade, L.F.; Campbell, E.A.; Pukhrambam, C.; Padovan, J.C.; Nickels, B.E.; Lamour, V.; Darst, S.A. 2010: Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Research 38(22): 8357-8369
Vyas, R.; Zahurancik, W.J.; Suo, Z. 2014: Structural basis for the binding and incorporation of nucleotide analogs with L-stereochemistry by human DNA polymerase λ. Proceedings of the National Academy of Sciences of the United States of America 111(30): E3033-E3042
Muhs, M.; Yamamoto, H.; Ismer, J.; Takaku, H.; Nashimoto, M.; Uchiumi, T.; Nakashima, N.; Mielke, T.; Hildebrand, P.W.; Nierhaus, K.H.; Spahn, C.M.T. 2011: Structural basis for the binding of IRES RNAs to the head of the ribosomal 40S subunit. Nucleic Acids Research 39(12): 5264-5275
Federici, L.; Lo Sterzo, C.; Pezzola, S.; Di Matteo, A.; Scaloni, F.; Federici, G.; Caccuri, A.M. 2009: Structural basis for the binding of the anticancer compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol to human glutathione s-transferases. Cancer Research 69(20): 8025-8034
Esaki, K.; Yoshinaga, S.; Tsuji, T.; Toda, E.; Terashima, Y.; Saitoh, T.; Kohda, D.; Kohno, T.; Osawa, M.; Ueda, T.; Shimada, I.; Matsushima, K.; Terasawa, H. 2014: Structural basis for the binding of the membrane-proximal C-terminal region of chemokine receptor CCR2 with the cytosolic regulator FROUNT. Febs Journal 281(24): 5552-5566
Chao, K.L.; Gorlatova, N.V.; Eisenstein, E.; Herzberg, O. 2014: Structural basis for the binding specificity of human Recepteur d'Origine Nantais (RON) receptor tyrosine kinase to macrophage-stimulating protein. Journal of Biological Chemistry 289(43): 29948-29960
Du, J.; Yang, H.; Zhang, D.; Wang, J.; Guo, H.; Peng, B.; Guo, Y.; Ding, J. 2010: Structural basis for the blockage of IL-2 signaling by therapeutic antibody basiliximab. Journal of Immunology 184(3): 1361-1368
Teramoto, T.; Sakakibara, Y.; Liu, M.-C.; Suiko, M.; Kimura, M.; Kakuta, Y. 2009: Structural basis for the broad range substrate specificity of a novel mouse cytosolic sulfotransferase--mSULT1D1. Biochemical and Biophysical Research Communications 379(1): 76-80
Espaillat, A.; Carrasco-López, C.és.; Bernardo-García, N.; Pietrosemoli, N.; Otero, L.H.; Álvarez, L.; de Pedro, M.A.; Pazos, F.; Davis, B.M.; Waldor, M.K.; Hermoso, J.A.; Cava, F. 2014: Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Crystallographica. Section D Biological Crystallography 70(Part 1): 79-90
Dickmanns, A.; Damerow, S.; Neumann, P.; Schulz, E.-C.; Lamerz, A.-C.; Routier, F.ço.H.; Ficner, R. 2011: Structural basis for the broad substrate range of the UDP-sugar pyrophosphorylase from Leishmania major. Journal of Molecular Biology 405(2): 461-478
Liénard, B.ît.M.R.; Garau, G.; Horsfall, L.; Karsisiotis, A.I.; Damblon, C.; Lassaux, P.; Papamicael, C.; Roberts, G.C.K.; Galleni, M.; Dideberg, O.; Frère, J.-M.; Schofield, C.J. 2008: Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Organic and Biomolecular Chemistry 6(13): 2282-2294
Xu, X.; Vysotskaya, Z.V.; Liu, Q.; Zhou, L. 2010: Structural basis for the cAMP-dependent gating in the human HCN4 channel. Journal of Biological Chemistry 285(47): 37082-37091
Fibriansah, G.; Veetil, V.P.; Poelarends, G.J.; Thunnissen, A.-M.W.H. 2011: Structural basis for the catalytic mechanism of aspartate ammonia lyase. Biochemistry 50(27): 6053-6062
Liu, S.; Mansour, M.N.; Dillman, K.S.; Perez, J.R.; Danley, D.E.; Aeed, P.A.; Simons, S.P.; Lemotte, P.K.; Menniti, F.S. 2008: Structural basis for the catalytic mechanism of human phosphodiesterase 9. Proceedings of the National Academy of Sciences of the United States of America 105(36): 13309-13314
Bai, Y.; Li, M.; Hwang, T.-C. 2011: Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). Journal of General Physiology 138(5): 495-507
Zhang, N.; Jiang, Y.; Zou, J.; Yu, Q.; Zhao, W. 2009: Structural basis for the complete loss of GSK3beta catalytic activity due to R96 mutation investigated by molecular dynamics study. Proteins 75(3): 671-681
Willmott, P.R.; Pauli, S.A.; Herger, R.; Schlepütz, C.M.; Martoccia, D.; Patterson, B.D.; Delley, B.; Clarke, R.; Kumah, D.; Cionca, C.; Yacoby, Y. 2007: Structural basis for the conducting interface between LaAlO3 and SrTiO3. Physical Review Letters 99(15): 155502
Lee, M.-S.; Ha, J.-H.; Yoon, H.S.; Lee, C.-K.; Chi, S.-W. 2014: Structural basis for the conserved binding mechanism of MDM2-inhibiting peptides and anti-apoptotic Bcl-2 family proteins. Biochemical and Biophysical Research Communications 445(1): 120-125
Nishio, M.; Kamiya, Y.; Mizushima, T.; Wakatsuki, S.; Sasakawa, H.; Yamamoto, K.; Uchiyama, S.; Noda, M.; McKay, A.R.; Fukui, K.; Hauri, H.-P.; Kato, K. 2010: Structural basis for the cooperative interplay between the two causative gene products of combined factor V and factor VIIi deficiency. Proceedings of the National Academy of Sciences of the United States of America 107(9): 4034-4039
Kuglstatter, A.; Mueller, F.; Kusznir, E.; Gsell, B.; Stihle, M.; Thoma, R.; Benz, J.; Aspeslet, L.; Freitag, D.; Hennig, M. 2011: Structural basis for the cyclophilin a binding affinity and immunosuppressive potency of E-ISA247 (voclosporin). Acta Crystallographica. Section D Biological Crystallography 67(Part 2): 119-123
Tokuoka, K.; Kusakari, Y.; Krungkrai, S.R.; Matsumura, H.; Kai, Y.; Krungkrai, J.; Horii, T.; Inoue, T. 2008: Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by Plasmodium falciparum OMP decarboxylase. Journal of Biochemistry 143(1): 69-78
Wang, L.H.; Jiang, N.; Zhao, B.; Li, X.D.; Lu, T.H.; Ding, X.L.; Huang, X.H. 2010: Structural basis for the decrease in the outward potassium channel current induced by lanthanum. Journal of Biological Inorganic Chemistry: Jbic: a Publication of the Society of Biological Inorganic Chemistry 15(7): 989-993
Yu, K.R.; Kim, Y.J.; Jung, S.-K.; Ku, B.; Park, H.; Cho, S.Y.; Jung, H.; Chung, S.J.; Bae, K.H.; Lee, S.C.; Kim, B.Y.; Erikson, R.L.; Ryu, S.E.; Kim, S.J. 2013: Structural basis for the dephosphorylating activity of PTPRQ towards phosphatidylinositide substrates. Acta Crystallographica. Section D Biological Crystallography 69(Part 8): 1522-1529
Di Micco, S.; Chini, M.G.; Terracciano, S.; Bruno, I.; Riccio, R.; Bifulco, G. 2013: Structural basis for the design and synthesis of selective HDAC inhibitors. Bioorganic and Medicinal Chemistry 21(13): 3795-3807
Giaginis, C.; Theocharis, S.; Tsantili-Kakoulidou, A. 2009: Structural basis for the design of PPAR-gamma ligands: a survey on quantitative structure- activity relationships. Mini reviews in medicinal chemistry 9(9): 1075-1083
Iyaguchi, D.; Kawano, S.; Takada, K.; Toyota, E. 2010: Structural basis for the design of novel Schiff base metal chelate inhibitors of trypsin. Bioorganic and Medicinal Chemistry 18(6): 2076-2080
Fox, D.; Burgin, A.B.; Gurney, M.E. 2014: Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cellular Signalling 26(3): 657-663
Li, W.-F.; Yu, J.; Ma, X.-X.; Teng, Y.-B.; Luo, M.; Tang, Y.-J.; Zhou, C.-Z. 2010: Structural basis for the different activities of yeast Grx1 and Grx2. Biochimica et Biophysica Acta 1804(7): 1542-1547
Saito, T.; Yano, M.; Kawai, Y.; Asada, A.; Wada, M.; Doi, H.; Hisanaga, S.-I. 2013: Structural basis for the different stability and activity between the Cdk5 complexes with p35 and p39 activators. Journal of Biological Chemistry 288(45): 32433-32439
Radin, J.N.; Grass, S.A.; Meng, G.; Cotter, S.E.; Waksman, G.; St Geme, J.W. 2009: Structural basis for the differential binding affinities of the HsfBD1 and HsfBD2 domains in the Haemophilus influenzae Hsf adhesin. Journal of Bacteriology 191(16): 5068-5075
Findeisen, F.; Minor, D.L. 2010: Structural basis for the differential effects of CaBP1 and calmodulin on Ca(V)1.2 calcium-dependent inactivation. Structure 18(12): 1617-1631
Endo, T.; Yamano, K.; Kawano, S. 2010: Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Antioxidants and Redox Signaling 13(9): 1359-1373
Daughtry, K.D.; Huang, H.; Malashkevich, V.; Patskovsky, Y.; Liu, W.; Ramagopal, U.; Sauder, J.M.; Burley, S.K.; Almo, S.C.; Dunaway-Mariano, D.; Allen, K.N. 2013: Structural basis for the divergence of substrate specificity and biological function within HAD phosphatases in lipopolysaccharide and sialic acid biosynthesis. Biochemistry 52(32): 5372-5386
Ni, F.; Kondrashkina, E.; Wang, Q. 2013: Structural basis for the divergent evolution of influenza B virus hemagglutinin. Virology 446(1-2): 112-122
Hastie, K.M.; King, L.B.; Zandonatti, M.A.; Saphire, E.O. 2012: Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease. Plos one 7(8): E44211
Tsuda, K.; Someya, T.; Kuwasako, K.; Takahashi, M.; He, F.; Unzai, S.; Inoue, M.; Harada, T.; Watanabe, S.; Terada, T.; Kobayashi, N.; Shirouzu, M.; Kigawa, T.; Tanaka, A.; Sugano, S.; Güntert, P.; Yokoyama, S.; Muto, Y. 2011: Structural basis for the dual RNA-recognition modes of human Tra2-β RRM. Nucleic Acids Research 39(4): 1538-1553
Liu, S.; Ghalei, H.; Lührmann, R.; Wahl, M.C. 2011: Structural basis for the dual U4 and U4atac snRNA-binding specificity of spliceosomal protein hPrp31. Rna 17(9): 1655-1663
Luo, J.; Wu, S.-J.; Lacy, E.R.; Orlovsky, Y.; Baker, A.; Teplyakov, A.; Obmolova, G.; Heavner, G.A.; Richter, H.-T.; Benson, J. 2010: Structural basis for the dual recognition of IL-12 and IL-23 by ustekinumab. Journal of Molecular Biology 402(5): 797-812
Whittingham, J.L.; Carrero-Lerida, J.; Brannigan, J.A.; Ruiz-Perez, L.M.; Silva, A.P.G.; Fogg, M.J.; Wilkinson, A.J.; Gilbert, I.H.; Wilson, K.S.; González-Pacanowska, D. 2010: Structural basis for the efficient phosphorylation of AZT-MP (3'-azido-3'-deoxythymidine monophosphate) and dGMP by Plasmodium falciparum type I thymidylate kinase. Biochemical Journal 428(3): 499-509
Sugishima, M.; Sato, H.; Higashimoto, Y.; Harada, J.; Wada, K.; Fukuyama, K.; Noguchi, M. 2014: Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase. Proceedings of the National Academy of Sciences of the United States of America 111(7): 2524-2529
Buer, B.C.; Meagher, J.L.; Stuckey, J.A.; Marsh, E.N.G. 2012: Structural basis for the enhanced stability of highly fluorinated proteins. Proceedings of the National Academy of Sciences of the United States of America 109(13): 4810-4815
Vasantha, T.; Attri, P.; Venkatesu, P.; Devi, R.S.R. 2012: Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids. Journal of Physical Chemistry. B 116(39): 11968-11978
Schiefner, A.é; Sinz, Q.; Neumaier, I.; Schwab, W.; Skerra, A. 2013: Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone. Journal of Biological Chemistry 288(23): 16815-16826
Helmetag, V.; Samel, S.A.; Thomas, M.G.; Marahiel, M.A.; Essen, L.-O. 2009: Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis. Febs Journal 276(13): 3669-3682
Meziane-Cherif, D.; Stogios, P.J.; Evdokimova, E.; Savchenko, A.; Courvalin, P. 2014: Structural basis for the evolution of vancomycin resistance D,D-peptidases. Proceedings of the National Academy of Sciences of the United States of America 111(16): 5872-5877
Duca, M.; Trindle, C.O.; Hecht, S.M. 2011: Structural basis for the exceptional stability of bisaminoacylated nucleotides and transfer RNAs. Journal of the American Chemical Society 133(29): 11368-11377
Wang, Q.; Crevenna, A.H.; Kunze, I.; Mizuno, N. 2014: Structural basis for the extended CAP-Gly domains of p150(glued) binding to microtubules and the implication for tubulin dynamics. Proceedings of the National Academy of Sciences of the United States of America 111(31): 11347-11352
Eiler, D.; Wang, J.; Steitz, T.A. 2014: Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences of the United States of America 111(36): 13028-13033
Qian, X.; Gebert, M.; Höpker, J.; Yan, M.; Li, J.; Wiedemann, N.; van der Laan, M.; Pfanner, N.; Sha, B. 2011: Structural basis for the function of Tim50 in the mitochondrial presequence translocase. Journal of Molecular Biology 411(3): 513-519
Guo, Q.; Yuan, Y.; Xu, Y.; Feng, B.; Liu, L.; Chen, K.; Sun, M.; Yang, Z.; Lei, J.; Gao, N. 2011: Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America 108(32): 13100-13105
Zheng, C.; Fasken, M.B.; Marshall, N.J.; Brockmann, C.; Rubinson, M.E.; Wente, S.R.; Corbett, A.H.; Stewart, M. 2010: Structural basis for the function of the Saccharomyces cerevisiae Gfd1 protein in mRNA nuclear export. Journal of Biological Chemistry 285(27): 20704-20715
Lo, J.; Di Nardo, G.; Griswold, J.; Egbuta, C.; Jiang, W.; Gilardi, G.; Ghosh, D. 2013: Structural basis for the functional roles of critical residues in human cytochrome p450 aromatase. Biochemistry 52(34): 5821-5829
Vander Kooi, C.W.; Taylor, A.O.; Pace, R.M.; Meekins, D.A.; Guo, H.-F.; Kim, Y.; Gentry, M.S. 2010: Structural basis for the glucan phosphatase activity of Starch Excess4. Proceedings of the National Academy of Sciences of the United States of America 107(35): 15379-15384
Zavialov, A.V.; Yu, X.; Spillmann, D.; Lauvau, G.ég.; Zavialov, A.V. 2010: Structural basis for the growth factor activity of human adenosine deaminase ADA2. Journal of Biological Chemistry 285(16): 12367-12377
Numoto, N.; Nakagawa, T.; Kita, A.; Sasayama, Y.; Fukumori, Y.; Miki, K. 2008: Structural basis for the heterotropic and homotropic interactions of invertebrate giant hemoglobin. Biochemistry 47(43): 11231-11238
Vandecaetsbeek, I.; Trekels, M.; De Maeyer, M.; Ceulemans, H.; Lescrinier, E.; Raeymaekers, L.; Wuytack, F.; Vangheluwe, P. 2009: Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump. Proceedings of the National Academy of Sciences of the United States of America 106(44): 18533-18538
Chen, Y.-W.; Jhan, C.-R.; Neidle, S.; Hou, M.-H. 2014: Structural basis for the identification of an i-motif tetraplex core with a parallel-duplex junction as a structural motif in CCG triplet repeats. Angewandte Chemie 53(40): 10682-10686
Lin, S.-Y.; Liu, C.-L.; Chang, Y.-M.; Zhao, J.; Perlman, S.; Hou, M.-H. 2014: Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target. Journal of Medicinal Chemistry 57(6): 2247-2257
Mei, G.; Dong, J.; Li, Z.; Liu, S.; Liu, Y.; Sun, M.; Liu, G.; Su, Z.; Liu, J. 2014: Structural basis for the immunomodulatory function of cysteine protease inhibitor from human roundworm Ascaris lumbricoides. Plos one 9(4): E96069
Ren, J.; Chamberlain, P.P.; Stamp, A.; Short, S.A.; Weaver, K.L.; Romines, K.R.; Hazen, R.; Freeman, A.; Ferris, R.G.; Andrews, C.W.; Boone, L.; Chan, J.H.; Stammers, D.K. 2008: Structural basis for the improved drug resistance profile of new generation benzophenone non-nucleoside HIV-1 reverse transcriptase inhibitors. Journal of Medicinal Chemistry 51(16): 5000-5008
Peng, Y.-H.; Coumar, M.S.; Leou, J.-S.; Wu, J.-S.; Shiao, H.-Y.; Lin, C.-H.; Lin, W.-H.; Lien, T.W.; Chen, X.; Hsu, J.T.-A.; Chao, Y.-S.; Huang, C.-F.; Lyu, P.-C.; Hsieh, H.-P.; Wu, S.-Y. 2010: Structural basis for the improved potency of peroxisome proliferator-activated receptor (PPAR) agonists. Chemmedchem 5(10): 1707-1716
Koag, M.-C.; Lai, L.; Lee, S. 2014: Structural basis for the inefficient nucleotide incorporation opposite cisplatin-DNA lesion by human DNA polymerase β. Journal of Biological Chemistry 289(45): 31341-31348
Nguyen Bich, N.; Moeyaert, B.; Van Hecke, K.; Dedecker, P.; Mizuno, H.; Hofkens, J.; Van Meervelt, L. 2012: Structural basis for the influence of a single mutation K145N on the oligomerization and photoswitching rate of Dronpa. Acta Crystallographica. Section D Biological Crystallography 68(Part 12): 1653-1659
Sun, Q.; Collins, R.; Huang, S.; Holmberg-Schiavone, L.; Anand, G.S.; Tan, C.-H.; van-den-Berg, S.; Deng, L.-W.; Moore, P.K.; Karlberg, T.; Sivaraman, J. 2009: Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S. Journal of Biological Chemistry 284(5): 3076-3085
Tsai, L.-C.; Hsiao, C.-H.; Liu, W.-Y.; Yin, L.-M.; Shyur, L.-F. 2011: Structural basis for the inhibition of 1,3-1,4-β-D-glucanase by noncompetitive calcium ion and competitive Tris inhibitors. Biochemical and Biophysical Research Communications 407(3): 593-598
Zhang, L.; Zhang, H.; Zheng, X.; Zhao, Y.; Chen, S.; Chen, Y.; Zhang, R.; Li, Q.; Hu, X. 2014: Structural basis for the inhibition of AKR1B10 by caffeic acid phenethyl ester (CAPE). Chemmedchem 9(4): 706-709
Lülf, S.; Matz, J.; Rouyez, M.-C.; Järviluoma, A.; Saksela, K.; Benichou, S.; Geyer, M. 2014: Structural basis for the inhibition of HIV-1 Nef by a high-affinity binding single-domain antibody. Retrovirology 11: 24
Leu, J.I.-J.; Zhang, P.; Murphy, M.E.; Marmorstein, R.; George, D.L. 2014: Structural basis for the inhibition of HSP70 and DnaK chaperones by small-molecule targeting of a C-terminal allosteric pocket. Acs Chemical Biology 9(11): 2508-2516
Kim, H.S.; Kim, J.; Im, H.N.; Yoon, J.Y.; An, D.R.; Yoon, H.J.; Kim, J.Y.; Min, H.K.; Kim, S.-J.; Lee, J.Y.; Han, B.W.; Suh, S.W. 2013: Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. Acta Crystallographica. Section D Biological Crystallography 69(Part 3): 420-431
Nilsson, M.T.; Krajewski, W.W.; Yellagunda, S.; Prabhumurthy, S.; Chamarahally, G.N.; Siddamadappa, C.; Srinivasa, B.R.; Yahiaoui, S.; Larhed, M.; Karlén, A.; Jones, T.A.; Mowbray, S.L. 2009: Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors. Journal of Molecular Biology 393(2): 504-513
Su, H.-P.; Yan, Y.; Prasad, G.S.; Smith, R.F.; Daniels, C.L.; Abeywickrema, P.D.; Reid, J.C.; Loughran, H.M.; Kornienko, M.; Sharma, S.; Grobler, J.A.; Xu, B.; Sardana, V.; Allison, T.J.; Williams, P.D.; Darke, P.L.; Hazuda, D.J.; Munshi, S. 2010: Structural basis for the inhibition of RNase H activity of HIV-1 reverse transcriptase by RNase H active site-directed inhibitors. Journal of Virology 84(15): 7625-7633
Marek, M.; Kannan, S.; Hauser, A.-T.; Moraes Mourão, M.; Caby, S.ép.; Cura, V.; Stolfa, D.A.; Schmidtkunz, K.; Lancelot, J.; Andrade, L.; Renaud, J.-P.; Oliveira, G.; Sippl, W.; Jung, M.; Cavarelli, J.; Pierce, R.J.; Romier, C. 2013: Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. Plos Pathogens 9(9): E1003645
Grishin, A.M.; Condos, T.E.C.; Barber, K.R.; Campbell-Valois, Fçois-Xavier.; Parsot, C.; Shaw, G.S.; Cygler, M. 2014: Structural basis for the inhibition of host protein ubiquitination by Shigella effector kinase OspG. Structure 22(6): 878-888
Wu, D.; Li, Y.; Song, G.; Cheng, C.; Zhang, R.; Joachimiak, A.; Shaw, N.; Liu, Z.-J. 2009: Structural basis for the inhibition of human 5,10-methenyltetrahydrofolate synthetase by N10-substituted folate analogues. Cancer Research 69(18): 7294-7301
Lingaraju, G.M.; Davis, C.A.; Setser, J.W.; Samson, L.D.; Drennan, C.L. 2011: Structural basis for the inhibition of human alkyladenine DNA glycosylase (AAG) by 3,N4-ethenocytosine-containing DNA. Journal of Biological Chemistry 286(15): 13205-13213
Um, S.-H.; Kim, J.-S.; Kim, K.; Kim, N.; Cho, H.-S.; Ha, N.-C. 2013: Structural basis for the inhibition of human lysozyme by PliC from Brucella abortus. Biochemistry 52(51): 9385-9393
Aoyagi-Scharber, M.; Gardberg, A.S.; Yip, B.K.; Wang, B.; Shen, Y.; Fitzpatrick, P.A. 2014: Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone. Acta Crystallographica. Section F Structural Biology Communications 70(Part 9): 1143-1149
Lebreton, A.; Job, V.; Ragon, M.; Le Monnier, A.; Dessen, A.éa.; Cossart, P.; Bierne, H.él.èn. 2014: Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA. Mbio 5(1): E00775
McGowan, S.; Porter, C.J.; Lowther, J.; Stack, C.M.; Golding, S.J.; Skinner-Adams, T.S.; Trenholme, K.R.; Teuscher, F.; Donnelly, S.M.; Grembecka, J.; Mucha, A.; Kafarski, P.; Degori, R.; Buckle, A.M.; Gardiner, D.L.; Whisstock, J.C.; Dalton, J.P. 2009: Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proceedings of the National Academy of Sciences of the United States of America 106(8): 2537-2542
Miyano, N.; Kinoshita, T.; Nakai, R.; Kirii, Y.; Yokota, K.; Tada, T. 2009: Structural basis for the inhibitor recognition of human Lyn kinase domain. Bioorganic and Medicinal Chemistry Letters 19(23): 6557-6560
Ipekchian, N.M. 2011: Structural basis for the inhibitory function of the parietal cortex efferent systems. Morfologiia 140(6): 10-18
Mader, P.; Brynda, J.ří; Gitto, R.; Agnello, S.; Pachl, P.; Supuran, C.T.; Chimirri, A.; Řezáčová, P.ín. 2011: Structural basis for the interaction between carbonic anhydrase and 1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamides. Journal of Medicinal Chemistry 54(7): 2522-2526
Long, A.; Zhao, H.; Huang, X. 2012: Structural basis for the interaction between casein kinase 1 delta and a potent and selective inhibitor. Journal of Medicinal Chemistry 55(2): 956-960
García-Mayoral, M.ía.F.; Martínez-Moreno, M.ón.; Albar, J.P.; Rodríguez-Crespo, I.; Bruix, M. 2010: Structural basis for the interaction between dynein light chain 1 and the glutamate channel homolog GRINL1A. Febs Journal 277(10): 2340-2350
Karlberg, T.; Markova, N.; Johansson, I.; Hammarström, M.; Schütz, P.; Weigelt, J.; Schüler, H. 2010: Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. Journal of Medicinal Chemistry 53(14): 5352-5355
Wegener, K.L.; Basran, J.; Bagshaw, C.R.; Campbell, I.D.; Roberts, G.C.K.; Critchley, D.R.; Barsukov, I.L. 2008: Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain. Journal of Molecular Biology 382(1): 112-126
Huang, Q.; Szebenyi, D.M.E. 2010: Structural basis for the interaction between the growth factor-binding protein GRB10 and the E3 ubiquitin ligase NEDD4. Journal of Biological Chemistry 285(53): 42130-42139
Hao, W.; Collier, S.M.; Moffett, P.; Chai, J. 2013: Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). Journal of Biological Chemistry 288(50): 35868-35876
Ellisdon, A.M.; Jani, D.; Köhler, A.; Hurt, E.; Stewart, M. 2010: Structural basis for the interaction between yeast Spt-Ada-Gcn5 acetyltransferase (SAGA) complex components Sgf11 and Sus1. Journal of Biological Chemistry 285(6): 3850-3856
Zhou, B.; Arnett, D.R.; Yu, X.; Brewster, A.; Sowd, G.A.; Xie, C.L.; Vila, S.; Gai, D.; Fanning, E.; Chen, X.S. 2012: Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase α-primase. Journal of Biological Chemistry 287(32): 26854-26866
Spitaleri, A.; Mari, S.; Curnis, F.; Traversari, C.; Longhi, R.; Bordignon, C.; Corti, A.; Rizzardi, G.-P.; Musco, G. 2008: Structural basis for the interaction of isoDGR with the RGD-binding site of alphavbeta3 integrin. Journal of Biological Chemistry 283(28): 19757-19768
Brown, T.; Charlier, P.; Herman, R.ël.; Schofield, C.J.; Sauvage, E. 2010: Structural basis for the interaction of lactivicins with serine beta-lactamases. Journal of Medicinal Chemistry 53(15): 5890-5894
Edrington, T.C.; Kintz, E.; Goldberg, J.B.; Tamm, L.K. 2011: Structural basis for the interaction of lipopolysaccharide with outer membrane protein H (OprH) from Pseudomonas aeruginosa. Journal of Biological Chemistry 286(45): 39211-39223
Qamra, R.; Hubbard, S.R. 2013: Structural basis for the interaction of the adaptor protein grb14 with activated ras. Plos one 8(8): E72473
Kobayashi, H.; Utsunomiya, H.; Yamanaka, H.; Sei, Y.; Katunuma, N.; Okamoto, K.; Tsuge, H. 2009: Structural basis for the kexin-like serine protease from Aeromonas sobria as sepsis-causing factor. Journal of Biological Chemistry 284(40): 27655-27663
Yin, Q.; Lamothe, B.; Darnay, B.G.; Wu, H. 2009: Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry 48(44): 10558-10567
Faucher, F.éd.ér.; Wallace, S.S.; Doublié, S. 2009: Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase. Dna Repair 8(11): 1283-1289
Hao, S.; Hamel, D.; Zhou, H.; Dahlquist, F.W. 2009: Structural basis for the localization of the chemotaxis phosphatase CheZ by CheAS. Journal of Bacteriology 191(18): 5842-5844
Chiba, S.; Itoh, Y.; Sekine, S.-i.; Yokoyama, S. 2010: Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine. Molecular Cell 39(3): 410-420
Lim, K.; Pullalarevu, S.; Surabian, K.Talin.; Howard, A.; Suzuki, T.; Moult, J.; Herzberg, O. 2010: Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member. Biochemistry 49(9): 2031-2041
Hattori, M.; Nureki, O. 2008: Structural basis for the mechanism of Mg2 homeostasis by MgtE transporter. Tanpakushitsu Kakusan Koso. Protein Nucleic Acid Enzyme 53(3): 242-248
Xia, D.; Esser, L.; Yu, L.; Yu, C-An. 2007: Structural basis for the mechanism of electron bifurcation at the quinol oxidation site of the cytochrome bc1 complex. Photosynthesis Research 92(1): 17-34
Berrisford, J.M.; Sazanov, L.A. 2009: Structural basis for the mechanism of respiratory complex i. Journal of Biological Chemistry 284(43): 29773-29783
Husain, N.; Obranic, S.; Koscinski, L.; Seetharaman, J.; Babic, F.; Bujnicki, J.M.; Maravic-Vlahovicek, G.; Sivaraman, J. 2011: Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit. Nucleic Acids Research 39(5): 1903-1918
Husain, N.; Tkaczuk, K.L.; Tulsidas, S.R.; Kaminska, K.H.; Cubrilo, S.; Maravić-Vlahovicek, G.; Bujnicki, J.M.; Sivaraman, J. 2010: Structural basis for the methylation of G1405 in 16S rRNA by aminoglycoside resistance methyltransferase Sgm from an antibiotic producer: a diversity of active sites in m7G methyltransferases. Nucleic Acids Research 38(12): 4120-4132
Kuhlmann, S.I.; Valkov, E.; Stewart, M. 2014: Structural basis for the molecular recognition of polyadenosine RNA by Nab2 Zn fingers. Nucleic Acids Research 42(1): 672-680
Ohnishi, H.; Tochio, H.; Kato, Z.; Orii, K.E.; Li, A.; Kimura, T.; Hiroaki, H.; Kondo, N.; Shirakawa, M. 2009: Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proceedings of the National Academy of Sciences of the United States of America 106(25): 10260-10265
Cong, S.; Ma, X.-T.; Li, Y.-X.; Wang, J.-F. 2013: Structural basis for the mutation-induced dysfunction of human CYP2J2: a computational study. Journal of Chemical Information and Modeling 53(6): 1350-1357
Saponaro, A.; Pauleta, S.R.; Cantini, F.; Matzapetakis, M.; Hammann, C.; Donadoni, C.; Hu, L.; Thiel, G.; Banci, L.; Santoro, B.; Moroni, A. 2014: Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function. Proceedings of the National Academy of Sciences of the United States of America 111(40): 14577-14582
Kim, D.Y.; Kwon, E.; Choi, J.; Hwang, H.-Y.; Kim, K.K. 2010: Structural basis for the negative regulation of bacterial stress response by RseB. Protein Science: a Publication of the Protein Society 19(6): 1258-1263
Tang, X.; Yang, C.; Gu, Y.; Song, C.; Zhang, X.; Wang, Y.; Zhang, J.; Hew, C.L.; Li, S.; Xia, N.; Sivaraman, J. 2011: Structural basis for the neutralization and genotype specificity of hepatitis e virus. Proceedings of the National Academy of Sciences of the United States of America 108(25): 10266-10271
Xia, T.; Liang, S.; Wang, H.; Hu, S.; Sun, Y.; Yu, X.; Han, J.; Li, J.; Guo, S.; Dai, J.; Lou, Z.; Guo, Y. 2014: Structural basis for the neutralization and specificity of Staphylococcal enterotoxin B against its MHC Class Ii binding site. Mabs 6(1): 119-129
Landrieu, I.; Hanoulle, X.; Bonachera, F.; Hamel, A.; Sibille, N.; Yin, Y.; Wieruszeski, J.-M.; Horvath, D.; Wei, Q.; Vuagniaux, G.ég.; Lippens, G. 2010: Structural basis for the non-immunosuppressive character of the cyclosporin a analogue Debio 025. Biochemistry 49(22): 4679-4686
Kim, O.V.; Litvinov, R.I.; Weisel, J.W.; Alber, M.S. 2014: Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials 35(25): 6739-6749
Byrnes, L.J.; Sondermann, H. 2011: Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proceedings of the National Academy of Sciences of the United States of America 108(6): 2216-2221
Puranik, S.; Acajjaoui, S.; Conn, S.; Costa, L.; Conn, V.; Vial, A.; Marcellin, R.; Melzer, R.; Brown, E.; Hart, D.; Theißen, G.ün.; Silva, C.S.; Parcy, F.ço.; Dumas, R.; Nanao, M.; Zubieta, C. 2014: Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Plant Cell 26(9): 3603-3615
Bjelić, S.ša.; Wieser, M.; Frey, D.; Stirnimann, C.U.; Chance, M.R.; Jaussi, R.; Steinmetz, M.O.; Kammerer, R.A. 2013: Structural basis for the oligomerization-state switch from a dimer to a trimer of an engineered cortexillin-1 coiled-coil variant. Plos one 8(5): E63370
Morita, H.; Wanibuchi, K.; Nii, H.; Kato, R.; Sugio, S.; Abe, I. 2010: Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa. Proceedings of the National Academy of Sciences of the United States of America 107(46): 19778-19783
Zander, U.; Faust, A.; Klink, B.ör.U.; de Sanctis, D.; Panjikar, S.; Quentmeier, A.; Bardischewsky, F.; Friedrich, C.G.; Scheidig, A.J. 2011: Structural basis for the oxidation of protein-bound sulfur by the sulfur cycle molybdohemo-enzyme sulfane dehydrogenase SoxCD. Journal of Biological Chemistry 286(10): 8349-8360
Carpentier, P.; Violot, S.; Blanchoin, L.; Bourgeois, D. 2009: Structural basis for the phototoxicity of the fluorescent protein KillerRed. Febs Letters 583(17): 2839-2842
Colley, K.J. 2010: Structural basis for the polysialylation of the neural cell adhesion molecule. Advances in Experimental Medicine and Biology 663: 111-126
Long, A.M.; Zhao, H.; Huang, X. 2012: Structural basis for the potent and selective inhibition of casein kinase 1 epsilon. Journal of Medicinal Chemistry 55(22): 10307-10311
Donkor, I.O.; Assefa, H.; Liu, J. 2008: Structural basis for the potent calpain inhibitory activity of peptidyl alpha-ketoacids. Journal of Medicinal Chemistry 51(14): 4346-4350
Di Micco, S.; Mazué, F.éd.ér.; Daquino, C.; Spatafora, C.; Delmas, D.; Latruffe, N.; Tringali, C.; Riccio, R.; Bifulco, G. 2011: Structural basis for the potential antitumour activity of DNA-interacting benzo[kl]xanthene lignans. Organic and Biomolecular Chemistry 9(3): 701-710
Li, Y.; Depontieu, F.R.; Sidney, J.; Salay, T.M.; Engelhard, V.H.; Hunt, D.F.; Sette, A.; Topalian, S.L.; Mariuzza, R.A. 2010: Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells. Journal of Molecular Biology 399(4): 596-603
Xu, H.; He, X.; Zheng, H.; Huang, L.J.; Hou, F.; Yu, Z.; de la Cruz, M.J.; Borkowski, B.; Zhang, X.; Chen, Z.J.; Jiang, Q.-X. 2014: Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife 3: E01489
Whitehouse, C.J.C.; Yang, W.; Yorke, J.A.; Rowlatt, B.C.; Strong, A.J.F.; Blanford, C.F.; Bell, S.G.; Bartlam, M.; Wong, L.-L.; Rao, Z. 2010: Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3). Chembiochem: a European Journal of Chemical Biology 11(18): 2549-2556
Biljan, I.; Giachin, G.; Ilc, G.; Zhukov, I.; Plavec, J.; Legname, G. 2012: Structural basis for the protective effect of the human prion protein carrying the dominant-negative E219K polymorphism. Biochemical Journal 446(2): 243-251
D'ambrosio, K.; Lopez, M.; Dathan, N.A.; Ouahrani-Bettache, S.; Köhler, S.; Ascione, G.; Monti, S.M.; Winum, J.-Y.; De Simone, G. 2014: Structural basis for the rational design of new anti-Brucella agents: the crystal structure of the C366S mutant of L-histidinol dehydrogenase from Brucella suis. Biochimie 97: 114-120
Shomura, Y.; Higuchi, Y. 2012: Structural basis for the reaction mechanism of S-carbamoylation of HypE by HypF in the maturation of [NiFe]-hydrogenases. Journal of Biological Chemistry 287(34): 28409-28419
Kim, H.; Choi, J.; Kim, T.; Lokanath, N.K.; Ha, S.C.; Suh, S.W.; Hwang, H.-Y.; Kim, K.K. 2010: Structural basis for the reaction mechanism of UDP-glucose pyrophosphorylase. Molecules and Cells 29(4): 397-405
Lu, D.; Silhan, J.; MacDonald, J.T.; Carpenter, E.P.; Jensen, K.; Tang, C.M.; Baldwin, G.S.; Freemont, P.S. 2012: Structural basis for the recognition and cleavage of abasic DNA in Neisseria meningitidis. Proceedings of the National Academy of Sciences of the United States of America 109(42): 16852-16857
Schulz, E.C.; Schwarzer, D.; Frank, M.; Stummeyer, K.; Mühlenhoff, M.; Dickmanns, A.; Gerardy-Schahn, R.; Ficner, R. 2010: Structural basis for the recognition and cleavage of polysialic acid by the bacteriophage K1F tailspike protein EndoNF. Journal of Molecular Biology 397(1): 341-351
Vangone, A.; Abdel-Azeim, S.; Caputo, I.; Sblattero, D.; Di Niro, R.; Cavallo, L.; Oliva, R. 2014: Structural basis for the recognition in an idiotype-anti-idiotype antibody complex related to celiac disease. Plos one 9(7): E102839
Yu, E.D.; Girardi, E.; Wang, J.; Mac, T.-T.; Yu, K.O.A.; Van Calenbergh, S.; Porcelli, S.A.; Zajonc, D.M. 2012: Structural basis for the recognition of C20:2-αGalCer by the invariant natural killer T cell receptor-like antibody L363. Journal of Biological Chemistry 287(2): 1269-1278
Mei, K.; Jin, Z.; Ren, F.; Wang, Y.; Chang, Z.; Wang, X. 2014: Structural basis for the recognition of RNA polymerase Ii C-terminal domain by CREPT and p15RS. Science China. Life Sciences 57(1): 97-106
Tunnicliffe, R.B.; Hautbergue, G.M.; Kalra, P.; Jackson, B.R.; Whitehouse, A.; Wilson, S.A.; Golovanov, A.P. 2011: Structural basis for the recognition of cellular mRNA export factor REF by herpes viral proteins HSV-1 ICP27 and HVS ORF57. Plos Pathogens 7(1): E1001244
Kropachev, K.; Ding, S.; Terzidis, M.A.; Masi, A.; Liu, Z.; Cai, Y.; Kolbanovskiy, M.; Chatgilialoglu, C.; Broyde, S.; Geacintov, N.E.; Shafirovich, V. 2014: Structural basis for the recognition of diastereomeric 5',8-cyclo-2'-deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Research 42(8): 5020-5032
Murzina, N.V.; Pei, X.-Y.; Zhang, W.; Sparkes, M.; Vicente-Garcia, J.; Pratap, J.V.; McLaughlin, S.H.; Ben-Shahar, T.R.; Verreault, A.; Luisi, B.F.; Laue, E.D. 2008: Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16(7): 1077-1085
Spindler, N.; Diestel, U.; Stump, J.D.; Wiegers, A.-K.; Winkler, T.H.; Sticht, H.; Mach, M.; Muller, Y.A. 2014: Structural basis for the recognition of human cytomegalovirus glycoprotein B by a neutralizing human antibody. Plos Pathogens 10(10): E1004377
Kim, H.Sook.; Kim, J.; Im, H.Na.; An, D.Ri.; Lee, M.; Hesek, D.; Mobashery, S.; Kim, J.Young.; Cho, K.; Yoon, H.Jin.; Han, B.Woo.; Lee, B.Il.; Suh, S.Won. 2014: Structural basis for the recognition of muramyltripeptide by Helicobacter pylori Csd4, a D,L-carboxypeptidase controlling the helical cell shape. Acta Crystallographica. Section D Biological Crystallography 70(Pt 11): 2800-2812
Schiebel, J.; Kapilashrami, K.; Fekete, A.; Bommineni, G.R.; Schaefer, C.M.; Mueller, M.J.; Tonge, P.J.; Kisker, C. 2013: Structural basis for the recognition of mycolic acid precursors by KasA, a condensing enzyme and drug target from Mycobacterium tuberculosis. Journal of Biological Chemistry 288(47): 34190-34204
Koshiba, S.; Li, H.; Motoda, Y.; Tomizawa, T.; Kasai, T.; Tochio, N.; Yabuki, T.; Harada, T.; Watanabe, S.; Tanaka, A.; Shirouzu, M.; Kigawa, T.; Yamamoto, T.; Yokoyama, S. 2010: Structural basis for the recognition of nucleophosmin-anaplastic lymphoma kinase oncoprotein by the phosphotyrosine binding domain of Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target-2. Journal of Structural and Functional Genomics 11(2): 125-141
Gao, D.; Ashraf, M.Z.; Kar, N.S.; Lin, D.; Sayre, L.M.; Podrez, E.A. 2010: Structural basis for the recognition of oxidized phospholipids in oxidized low density lipoproteins by class B scavenger receptors CD36 and SR-Bi. Journal of Biological Chemistry 285(7): 4447-4454
Jenkins, R.J.; Heslip, K.A.; Meagher, J.L.; Stuckey, J.A.; Dotson, G.D. 2014: Structural basis for the recognition of peptide RJPXD33 by acyltransferases in lipid a biosynthesis. Journal of Biological Chemistry 289(22): 15527-15535
Mardones, G.A.; Burgos, P.V.; Lin, Y.; Kloer, D.P.; Magadán, J.G.; Hurley, J.H.; Bonifacino, J.S. 2013: Structural basis for the recognition of tyrosine-based sorting signals by the μ3A subunit of the AP-3 adaptor complex. Journal of Biological Chemistry 288(13): 9563-9571
Ishibashi, K.; Kezuka, Y.; Kobayashi, C.; Kato, M.; Inoue, T.; Nonaka, T.; Ishikawa, M.; Matsumura, H.; Katoh, E. 2014: Structural basis for the recognition-evasion arms race between Tomato mosaic virus and the resistance gene Tm-1. Proceedings of the National Academy of Sciences of the United States of America 111(33): E3486-E3495
Lucas, M.ía.; Gaspar, A.H.; Pallara, C.; Rojas, A.L.; Fernández-Recio, J.; Machner, M.P.; Hierro, A. 2014: Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5. Proceedings of the National Academy of Sciences of the United States of America 111(34): E3514-E3523
Zeqiraj, E.; Tang, X.; Hunter, R.W.; García-Rocha, M.; Judd, A.; Deak, M.; von Wilamowitz-Moellendorff, A.; Kurinov, I.; Guinovart, J.J.; Tyers, M.; Sakamoto, K.; Sicheri, F. 2014: Structural basis for the recruitment of glycogen synthase by glycogenin. Proceedings of the National Academy of Sciences of the United States of America 111(28): E2831-E2840
Shukla, J.; Gupta, R.; Thakur, K.G.; Gokhale, R.; Gopal, B. 2014: Structural basis for the redox sensitivity of the Mycobacterium tuberculosis SigK-RskA σ-anti-σ complex. Acta Crystallographica. Section D Biological Crystallography 70(Part 4): 1026-1036
Liu, Z.; Vogel, H.J. 2012: Structural basis for the regulation of L-type voltage-gated calcium channels: interactions between the N-terminal cytoplasmic domain and Ca(2+)-calmodulin. Frontiers in Molecular Neuroscience 5: 38
Llácer, J.é L.; Espinosa, J.; Castells, M.A.; Contreras, A.ón.; Forchhammer, K.; Rubio, V. 2010: Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PIi. Proceedings of the National Academy of Sciences of the United States of America 107(35): 15397-15402
Cao, L.-S.; Wang, J.; Chen, Y.; Deng, H.; Wang, Z.-X.; Wu, J.-W. 2013: Structural basis for the regulation of maternal embryonic leucine zipper kinase. Plos one 8(7): E70031
Steichen, J.M.; Kuchinskas, M.; Keshwani, M.M.; Yang, J.; Adams, J.A.; Taylor, S.S. 2012: Structural basis for the regulation of protein kinase a by activation loop phosphorylation. Journal of Biological Chemistry 287(18): 14672-14680
Kumar, G.S.; Zettl, H.; Page, R.; Peti, W. 2013: Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution. Journal of Biological Chemistry 288(39): 28347-28356
Deng, Z.; Lehmann, K.C.; Li, X.; Feng, C.; Wang, G.; Zhang, Q.; Qi, X.; Yu, L.; Zhang, X.; Feng, W.; Wu, W.; Gong, P.; Tao, Y.; Posthuma, C.C.; Snijder, E.J.; Gorbalenya, A.E.; Chen, Z. 2014: Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase. Nucleic Acids Research 42(5): 3464-3477
James, T.W.; Frias-Staheli, N.; Bacik, J.-P.; Levingston Macleod, J.M.; Khajehpour, M.; García-Sastre, A.; Mark, B.L. 2011: Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. Proceedings of the National Academy of Sciences of the United States of America 108(6): 2222-2227
Purohit, R.; Sethumadhavan, R. 2009: Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdisciplinary Sciences Computational Life Sciences 1(4): 320-328
Michielssens, S.; Moors, S.L.C.; Froeyen, M.; Herdewijn, P.; Ceulemans, A. 2011: Structural basis for the role of LYS220 as proton donor for nucleotidyl transfer in HIV-1 reverse transcriptase. Biophysical Chemistry 157(1-3): 1-6
Das, K.; Bandwar, R.P.; White, K.L.; Feng, J.Y.; Sarafianos, S.G.; Tuske, S.; Tu, X.; Clark, A.D.; Boyer, P.L.; Hou, X.; Gaffney, B.L.; Jones, R.A.; Miller, M.D.; Hughes, S.H.; Arnold, E. 2009: Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. Journal of Biological Chemistry 284(50): 35092-35100
Kovaleva, E.G.; Lipscomb, J.D. 2012: Structural basis for the role of tyrosine 257 of homoprotocatechuate 2,3-dioxygenase in substrate and oxygen activation. Biochemistry 51(44): 8755-8763
Jobichen, C.; Chakraborty, S.; Li, M.; Zheng, J.; Joseph, L.; Mok, Y.-K.; Leung, K.Y.; Sivaraman, J. 2010: Structural basis for the secretion of EvpC: a key type Vi secretion system protein from Edwardsiella tarda. Plos one 5(9): E12910
Thomas, J.L.; Bucholtz, K.M.; Sun, J.; Mack, V.L.; Kacsoh, B. 2009: Structural basis for the selective inhibition of human 3beta-hydroxysteroid dehydrogenase 1 in human breast tumor MCF-7 cells. Molecular and Cellular Endocrinology 301(1-2): 174-182
Choi, S.; Yamashita, E.; Yasuhara, N.; Song, J.; Son, S.-Y.; Won, Y.H.; Hong, H.R.; Shin, Y.S.; Sekimoto, T.; Park, I.Y.; Yoneda, Y.; Lee, S.J. 2014: Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin β. Acta Crystallographica. Section D Biological Crystallography 70(Part 4): 1050-1060
Ramachandran, S.; Temple, B.R.; Chaney, S.G.; Dokholyan, N.V. 2009: Structural basis for the sequence-dependent effects of platinum-DNA adducts. Nucleic Acids Research 37(8): 2434-2448
Tsuda, K.; Kuwasako, K.; Takahashi, M.; Someya, T.; Inoue, M.; Terada, T.; Kobayashi, N.; Shirouzu, M.; Kigawa, T.; Tanaka, A.; Sugano, S.; Güntert, P.; Muto, Y.; Yokoyama, S. 2009: Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3. Nucleic Acids Research 37(15): 5151-5166
Arolas, J.L.; Broder, C.; Jefferson, T.; Guevara, T.; Sterchi, E.E.; Bode, W.; Stöcker, W.; Becker-Pauly, C.; Gomis-Rüth, F.X. 2012: Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America 109(40): 16131-16136
Flügel, V.; Vrabel, M.; Schneider, S. 2014: Structural basis for the site-specific incorporation of lysine derivatives into proteins. Plos one 9(4): E96198
Circolone, F.; Granzin, J.; Jentzsch, K.; Drepper, T.; Jaeger, K-Erich.; Willbold, D.; Krauss, U.; Batra-Safferling, R. 2012: Structural basis for the slow dark recovery of a full-length LOV protein from Pseudomonas putida. Journal of Molecular Biology 417(4): 362-374
An, Y.J.; Ahn, B.-E.; Han, A.-R.; Kim, H.-M.; Chung, K.M.; Shin, J.-H.; Cho, Y.-B.; Roe, J.-H.; Cha, S.-S. 2009: Structural basis for the specialization of Nur, a nickel-specific für homolog, in metal sensing and DNA recognition. Nucleic Acids Research 37(10): 3442-3451
Nishimura, A.; Kitano, K.; Takasaki, J.; Taniguchi, M.; Mizuno, N.; Tago, K.; Hakoshima, T.; Itoh, H. 2010: Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proceedings of the National Academy of Sciences of the United States of America 107(31): 13666-13671
Wei, H.; Wang, D.; Qian, Y.; Liu, X.; Fan, S.; Yin, H.-S.; Wang, X. 2014: Structural basis for the specific recognition of IL-18 by its alpha receptor. Febs Letters 588(21): 3838-3843
Bao, R.; Nair, M.K.M.; Tang, W.-k.; Esser, L.; Sadhukhan, A.; Holland, R.L.; Xia, D.; Schifferli, D.M. 2013: Structural basis for the specific recognition of dual receptors by the homopolymeric pH 6 antigen (Psa) fimbriae of Yersinia pestis. Proceedings of the National Academy of Sciences of the United States of America 110(3): 1065-1070
Kusano, S.; Kukimoto-Niino, M.; Satta, Y.; Ohsawa, N.; Uchikubo-Kamo, T.; Wakiyama, M.; Ikeda, M.; Terada, T.; Yamamoto, K.; Nishimura, Y.; Shirouzu, M.; Sasazuki, T.; Yokoyama, S. 2014: Structural basis for the specific recognition of the major antigenic peptide from the Japanese cedar pollen allergen Cry j 1 by HLA-DP5. Journal of Molecular Biology 426(17): 3016-3027
Fang, P.; Li, X.; Wang, J.; Niu, L.; Teng, M. 2010: Structural basis for the specificity of the GAE domain of yGGA2 for its accessory proteins Ent3 and Ent5. Biochemistry 49(36): 7949-7955
Garrido, F.; Taylor, J.C.; Alfonso, C.; Markham, G.D.; Pajares, M.ía.A. 2012: Structural basis for the stability of a thermophilic methionine adenosyltransferase against guanidinium chloride. Amino Acids 42(1): 361-373
Alcorlo, Mín.; Tortajada, Aín.; Rodríguez de Córdoba, S.; Llorca, O. 2013: Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin. Proceedings of the National Academy of Sciences of the United States of America 110(33): 13504-13509
Ito, K.; Murakami, R.; Mochizuki, M.; Qi, H.; Shimizu, Y.; Miura, K.-i.; Ueda, T.; Uchiumi, T. 2012: Structural basis for the substrate recognition and catalysis of peptidyl-tRNA hydrolase. Nucleic Acids Research 40(20): 10521-10531
Shao, C.; Wang, C.; Zang, J. 2014: Structural basis for the substrate selectivity of PvuRts1I, a 5-hydroxymethylcytosine DNA restriction endonuclease. Acta Crystallographica. Section D Biological Crystallography 70(Part 9): 2477-2486
Kolomytseva, M.; Ferraroni, M.; Chernykh, A.; Golovleva, L.; Scozzafava, A. 2014: Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP. Biochimica et Biophysica Acta 1844(9): 1541-1549
Kim, D.; San, B.H.; Moh, S.H.; Park, H.; Kim, D.Y.; Lee, S.; Kim, K.K. 2010: Structural basis for the substrate specificity of PepA from Streptococcus pneumoniae, a dodecameric tetrahedral protease. Biochemical and Biophysical Research Communications 391(1): 431-436
Jiang, Y.-L.; Yu, W.-L.; Zhang, J.-W.; Frolet, C.; Di Guilmi, A.-M.; Zhou, C.-Z.; Vernet, T.; Chen, Y. 2011: Structural basis for the substrate specificity of a novel β-N-acetylhexosaminidase StrH protein from Streptococcus pneumoniae R6. Journal of Biological Chemistry 286(50): 43004-43012
Robins, L.I.; Williams, A.H.; Raetz, C.R.H. 2009: Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA. Biochemistry 48(26): 6191-6201
Mok, Y.-F.; Lin, F.-H.; Graham, L.A.; Celik, Y.; Braslavsky, I.; Davies, P.L. 2010: Structural basis for the superior activity of the large isoform of snow flea antifreeze protein. Biochemistry 49(11): 2593-2603
Obeid, S.; Baccaro, A.; Welte, W.; Diederichs, K.; Marx, A. 2010: Structural basis for the synthesis of nucleobase modified DNA by Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 107(50): 21327-21331
Nueangaudom, A.; Lugsanangarm, K.; Pianwanit, S.; Kokpol, S.; Nunthaboot, N.; Tanaka, F. 2012: Structural basis for the temperature-induced transition of D-amino acid oxidase from pig kidney revealed by molecular dynamic simulation and photo-induced electron transfer. Physical Chemistry Chemical Physics: Pccp 14(8): 2567-2578
Sawai, H.; Yamanaka, M.; Sugimoto, H.; Shiro, Y.; Aono, S. 2012: Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis. Journal of Biological Chemistry 287(36): 30755-30768
Bond, A.D.; Cornett, C.; Larsen, F.H.; Qu, H.; Raijada, D.; Rantanen, J. 2014: Structural basis for the transformation pathways of the sodium naproxen anhydrate-hydrate system. Iucrj 1(Part 5): 328-337
Kobashigawa, Y.; Tanaka, S.; Inagaki, F. 2008: Structural basis for the transforming activity of human cancer-related signaling adaptor protein Crk. Tanpakushitsu Kakusan Koso. Protein Nucleic Acid Enzyme 53(2): 148-156
Raman, S.S.; Gopalakrishnan, R.; Wade, R.C.; Subramanian, V. 2011: Structural basis for the varying propensities of different amino acids to adopt the collagen conformation. Journal of Physical Chemistry. B 115(11): 2593-2607
Aragón, E.; Goerner, N.; Xi, Q.; Gomes, T.; Gao, S.; Massagué, J.; Macias, M.J. 2012: Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-β Pathways. Structure 20(10): 1726-1736
Pérez-Victoria, F.J.; Abascal-Palacios, G.; Tascón, I.; Kajava, A.; Magadán, J.G.; Pioro, E.P.; Bonifacino, J.S.; Hierro, A. 2010: Structural basis for the wobbler mouse neurodegenerative disorder caused by mutation in the Vps54 subunit of the GARP complex. Proceedings of the National Academy of Sciences of the United States of America 107(29): 12860-12865
Roy, K.K.; Saxena, A.K. 2011: Structural basis for the β-adrenergic receptor subtype selectivity of the representative agonists and antagonists. Journal of Chemical Information and Modeling 51(6): 1405-1422
Cha, S.-S.; An, Y.J.; Jeong, C.-S.; Kim, M.-K.; Jeon, J.H.; Lee, C.-M.; Lee, H.S.; Kang, S.G.; Lee, J.-H. 2013: Structural basis for the β-lactamase activity of EstU1, a family VIIi carboxylesterase. Proteins 81(11): 2045-2051
Hawwa, R.; Aikens, J.; Turner, R.J.; Santarsiero, B.D.; Mesecar, A.D. 2009: Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus. Archives of Biochemistry and Biophysics 488(2): 109-120
Mast, N.; Annalora, A.J.; Lodowski, D.T.; Palczewski, K.; Stout, C.D.; Pikuleva, I.A. 2011: Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1. Journal of Biological Chemistry 286(7): 5607-5613
Gan, G.; Yi, H.; Chen, M.; Sun, L.; Li, W.; Wu, Y.; Ding, J. 2008: Structural basis for toxin resistance of beta4-associated calcium-activated potassium (BK) channels. Journal of Biological Chemistry 283(35): 24177-24184
Kamiya, Y.; Kato, K. 2008: Structural basis for trafficking and quality control of glycoproteins by intracellular lectins. Tanpakushitsu Kakusan Koso. Protein Nucleic Acid Enzyme 53(12 Suppl): 1662-1669
Naganuma, T.; Nomura, N.; Yao, M.; Mochizuki, M.; Uchiumi, T.; Tanaka, I. 2010: Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes. Journal of Biological Chemistry 285(7): 4747-4756
Kobayashi, K.; Saito, K.; Ishitani, R.; Ito, K.; Nureki, O. 2012: Structural basis for translation termination by archaeal RF1 and GTP-bound EF1α complex. Nucleic Acids Research 40(18): 9319-9328
Bhushan, S.; Meyer, H.; Starosta, A.L.; Becker, T.; Mielke, T.; Berninghausen, O.; Sattler, M.; Wilson, D.N.; Beckmann, R. 2010: Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Molecular Cell 40(1): 138-146
Lyumkis, D.; Oliveira dos Passos, D.; Tahara, E.B.; Webb, K.; Bennett, E.J.; Vinterbo, S.; Potter, C.S.; Carragher, B.; Joazeiro, C.A.P. 2014: Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proceedings of the National Academy of Sciences of the United States of America 111(45): 15981-15986
Liang, S.; Dai, J.; Hou, S.; Su, L.; Zhang, D.; Guo, H.; Hu, S.; Wang, H.; Rao, Z.; Guo, Y.; Lou, Z. 2013: Structural basis for treating tumor necrosis factor α (TNFα)-associated diseases with the therapeutic antibody infliximab. Journal of Biological Chemistry 288(19): 13799-13807
Zhou, X.; Keller, R.; Volkmer, R.; Krauss, N.; Scheerer, P.; Hunke, S. 2011: Structural basis for two-component system inhibition and pilus sensing by the auxiliary CpxP protein. Journal of Biological Chemistry 286(11): 9805-9814
Srikannathasan, V.; English, G.; Bui, N.Khai.; Trunk, K.; O'Rourke, P.E.F.; Rao, V.A.; Vollmer, W.; Coulthurst, S.J.; Hunter, W.N. 2013: Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallographica. Section D Biological Crystallography 69(Pt 12): 2468-2482
Li, M.; Le Trong, I.; Carl, M.A.; Larson, E.T.; Chou, S.; De Leon, J.A.; Dove, S.L.; Stenkamp, R.E.; Mougous, J.D. 2012: Structural basis for type Vi secretion effector recognition by a cognate immunity protein. Plos Pathogens 8(4): E1002613
Fu, Q.-S.; Zhou, C.-J.; Gao, H.-C.; Jiang, Y.-J.; Zhou, Z.-R.; Hong, J.; Yao, W.-M.; Song, A.-X.; Lin, D.-H.; Hu, H.-Y. 2009: Structural basis for ubiquitin recognition by a novel domain from human phospholipase A2-activating protein. Journal of Biological Chemistry 284(28): 19043-19052
Yagawa, K.; Yamano, K.; Oguro, T.; Maeda, M.; Sato, T.; Momose, T.; Kawano, S.; Endo, T. 2010: Structural basis for unfolding pathway-dependent stability of proteins: vectorial unfolding versus global unfolding. Protein Science: a Publication of the Protein Society 19(4): 693-702
Xu, H.; Xie, L.; Jiang, X.; Hakkarainen, M.; Chen, J.-B.; Zhong, G.-J.; Li, Z.-M. 2014: Structural basis for unique hierarchical cylindrites induced by ultrahigh shear gradient in single natural fiber reinforced poly(lactic acid) green composites. Biomacromolecules 15(5): 1676-1686
Furger, E.; Frei, D.C.; Schibli, R.; Fischer, E.; Prota, A.E. 2013: Structural basis for universal corrinoid recognition by the cobalamin transport protein haptocorrin. Journal of Biological Chemistry 288(35): 25466-25476
Kolev, K. 2008: Structural basis for variable lytic susceptibility of fibrin bridging structure with function in fibrinolysis. Cardiovascular and Hematological Agents in Medicinal Chemistry 6(3): 159-160
Tanaka, H.; Nogi, T.; Yasui, N.; Iwasaki, K.; Takagi, J. 2011: Structural basis for variant-specific neuroligin-binding by α-neurexin. Plos one 6(4): E19411
Shimizu, T. 2013: Structural basis for β-galactosidase associated with lysosomal disease. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 133(5): 509-517
Obsil, T.; Obsilova, V. 2011: Structural basis of 14-3-3 protein functions. Seminars in Cell and Developmental Biology 22(7): 663-672
Fong, D.H.; Berghuis, A.M. 2009: Structural basis of APH(3')-IIIa-mediated resistance to N1-substituted aminoglycoside antibiotics. Antimicrobial Agents and ChemoTherapy 53(7): 3049-3055
Metlagel, Z.; Otomo, C.; Takaesu, G.; Otomo, T. 2013: Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proceedings of the National Academy of Sciences of the United States of America 110(47): 18844-18849
Umitsu, M.; Nishimasu, H.; Noma, A.; Suzuki, T.; Ishitani, R.; Nureki, O. 2009: Structural basis of AdoMet-dependent aminocarboxypropyl transfer reaction catalyzed by tRNA-wybutosine synthesizing enzyme, TYW2. Proceedings of the National Academy of Sciences of the United States of America 106(37): 15616-15621
Verma, S.; Kumar, S.; Gupta, V.Prakash.; Gourinath, S.; Bhatnagar, S.; Bhatnagar, R. 2015: Structural basis of Bacillus anthracis MoxXT disruption and the modulation of MoxT ribonuclease activity by rationally designed peptides. Journal of Biomolecular Structure and Dynamics 33(3): 606-624
Denis, C.M.; Chitayat, S.; Plevin, M.J.; Wang, F.; Thompson, P.; Liu, S.; Spencer, H.L.; Ikura, M.; LeBrun, D.P.; Smith, S.P. 2012: Structural basis of CBP/p300 recruitment in leukemia induction by E2A-PBX1. Blood 120(19): 3968-3977
Ferguson, A.D.; Sheth, P.R.; Basso, A.D.; Paliwal, S.; Gray, K.; Fischmann, T.O.; Le, H.V. 2011: Structural basis of CX-4945 binding to human protein kinase CK2. Febs Letters 585(1): 104-110
Veldkamp, C.T.; Seibert, C.; Peterson, F.C.; De la Cruz, N.B.; Haugner, J.C.; Basnet, H.; Sakmar, T.P.; Volkman, B.F. 2008: Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Science Signaling 1(37): Ra4
Adams, J.J.; Gregg, K.; Bayer, E.A.; Boraston, A.B.; Smith, S.P. 2008: Structural basis of Clostridium perfringens toxin complex formation. Proceedings of the National Academy of Sciences of the United States of America 105(34): 12194-12199
Rocha, B.A.M.; Teixeira, C.S.; Silva-Filho, J.é C.; Nóbrega, R.B.; Alencar, D.B.; Nascimento, K.S.; Freire, V.N.; Gottfried, C.J.S.; Nagano, C.S.; Sampaio, A.H.; Saker-Sampaio, S.; Cavada, B.S.; Delatorre, P.ín. 2015: Structural basis of ConM binding with resveratrol, an anti-inflammatory and antioxidant polyphenol. International Journal of Biological Macromolecules 72: 1136-1142
Mori, T.; Gotoh, S.; Shirakawa, M.; Hakoshima, T. 2014: Structural basis of DDB1-and-Cullin 4-associated Factor 1 (DCAF1) recognition by merlin/NF2 and its implication in tumorigenesis by CD44-mediated inhibition of merlin suppression of DCAF1 function. Genes to Cells: Devoted to Molecular and Cellular Mechanisms 19(8): 603-619
De Ioannes, P.; Malu, S.; Cortes, P.; Aggarwal, A.K. 2012: Structural basis of DNA ligase IV-Artemis interaction in nonhomologous end-joining. Cell Reports 2(6): 1505-1512
Campbell, N.H.; Parkinson, G.N.; Reszka, A.P.; Neidle, S. 2008: Structural basis of DNA quadruplex recognition by an acridine drug. Journal of the American Chemical Society 130(21): 6722-6724
Lim, K.W.; Phan, A.T.ân. 2013: Structural basis of DNA quadruplex-duplex junction formation. Angewandte Chemie 52(33): 8566-8569
Doucleff, M.; Pelton, J.G.; Lee, P.S.; Nixon, B.Tracy.; Wemmer, D.E. 2007: Structural basis of DNA recognition by the alternative sigma-factor, sigma54. Journal of Molecular Biology 369(4): 1070-1078
Ko, S.; Kang, G.B.; Song, S.M.; Lee, J.-G.; Shin, D.Y.; Yun, J.-H.; Sheng, Y.; Cheong, C.; Jeon, Y.H.; Jung, Y.-K.; Arrowsmith, C.H.; Avvakumov, G.V.; Dhe-Paganon, S.; Yoo, Y.J.; Eom, S.H.; Lee, W. 2010: Structural basis of E2-25K/UBB+1 interaction leading to proteasome inhibition and neurotoxicity. Journal of Biological Chemistry 285(46): 36070-36080
Coquelle, F.éd.ér.M.; Vitre, B.; Arnal, I. 2009: Structural basis of EB1 effects on microtubule dynamics. Biochemical Society Transactions 37(Part 5): 997-1001
Lu, D.; Keck, J.L. 2008: Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease i. Proceedings of the National Academy of Sciences of the United States of America 105(27): 9169-9174
Babayeva, N.D.; Wilder, P.J.; Shiina, M.; Mino, K.; Desler, M.; Ogata, K.; Rizzino, A.; Tahirov, T.H. 2010: Structural basis of Ets1 cooperative binding to palindromic sequences on stromelysin-1 promoter DNA. Cell Cycle 9(15): 3054-3062
Babayeva, N.D.; Baranovskaya, O.I.; Tahirov, T.H. 2012: Structural basis of Ets1 cooperative binding to widely separated sites on promoter DNA. Plos one 7(3): E33698
Edeling, M.A.; Diamond, M.S.; Fremont, D.H. 2014: Structural basis of Flavivirus NS1 assembly and antibody recognition. Proceedings of the National Academy of Sciences of the United States of America 111(11): 4285-4290
Mnpotra, J.S.; Qiao, Z.; Cai, J.; Lynch, D.L.; Grossfield, A.; Leioatts, N.; Hurst, D.P.; Pitman, M.C.; Song, Z.-H.; Reggio, P.H. 2014: Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex. Journal of Biological Chemistry 289(29): 20259-20272
Stamos, J.L.; Chu, M.L.-H.; Enos, M.D.; Shah, N.; Weis, W.I. 2014: Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. Elife 3: E01998
Krey, T.; Meola, A.; Keck, Z.-Y.; Damier-Piolle, L.; Foung, S.K.H.; Rey, F.A. 2013: Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape. Plos Pathogens 9(5): E1003364
Jia, X.; Weber, E.; Tokarev, A.; Lewinski, M.; Rizk, M.; Suarez, M.; Guatelli, J.; Xiong, Y. 2014: Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1. Elife 3: E02362
Stroud, J.C.; Oltman, A.; Han, A.; Bates, D.L.; Chen, L. 2009: Structural basis of HIV-1 activation by NF-kappaB--a higher-order complex of p50:RelA bound to the HIV-1 LTR. Journal of Molecular Biology 393(1): 98-112
Gustchina, E.; Li, M.; Louis, J.M.; Anderson, D.E.; Lloyd, J.; Frisch, C.; Bewley, C.A.; Gustchina, A.; Wlodawer, A.; Clore, G.M. 2010: Structural basis of HIV-1 neutralization by affinity matured Fabs directed against the internal trimeric coiled-coil of gp41. Plos Pathogens 6(11): E1001182
Hinz, A.; Miguet, N.; Natrajan, G.; Usami, Y.; Yamanaka, H.; Renesto, P.; Hartlieb, B.; McCarthy, A.A.; Simorre, J.-P.; Göttlinger, H.; Weissenhorn, W. 2010: Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain. Cell Host and Microbe 7(4): 314-323
Xiao, J.; Chen, X.-W.; Davies, B.A.; Saltiel, A.R.; Katzmann, D.J.; Xu, Z. 2009: Structural basis of Ist1 function and Ist1-Did2 interaction in the multivesicular body pathway and cytokinesis. Molecular Biology of the Cell 20(15): 3514-3524
Battula, P.; Dubnovitsky, A.P.; Papageorgiou, A.C. 2013: Structural basis of L-phosphoserine binding to Bacillus alcalophilus phosphoserine aminotransferase. Acta Crystallographica. Section D Biological Crystallography 69(Part 5): 804-811
McMillin, S.M.; Heusel, M.; Liu, T.; Costanzi, S.; Wess, J.ür. 2011: Structural basis of M3 muscarinic receptor dimer/oligomer formation. Journal of Biological Chemistry 286(32): 28584-28598
Niemann, H.H. 2013: Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. Biochimica et Biophysica Acta 1834(10): 2195-2204
Wolkowicz, U.M.; Morris, E.R.; Robson, M.; Trubitsyna, M.; Richardson, J.M. 2014: Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir. Acs Chemical Biology 9(3): 743-751
Mony, L.; Krzaczkowski, L.; Leonetti, M.; Le Goff, A.; Alarcon, K.; Neyton, J.; Bertrand, H.-O.; Acher, F.; Paoletti, P. 2009: Structural basis of NR2B-selective antagonist recognition by N-methyl-D-aspartate receptors. Molecular Pharmacology 75(1): 60-74
Aramini, J.M.; Tubbs, J.L.; Kanugula, S.; Rossi, P.; Ertekin, A.; Maglaqui, M.; Hamilton, K.; Ciccosanti, C.T.; Jiang, M.; Xiao, R.; Soong, T.-T.; Rost, B.; Acton, T.B.; Everett, J.K.; Pegg, A.E.; Tainer, J.A.; Montelione, G.T. 2010: Structural basis of O6-alkylguanine recognition by a bacterial alkyltransferase-like DNA repair protein. Journal of Biological Chemistry 285(18): 13736-13741
Seebohm, G.; Wrobel, E.; Pusch, M.; Dicks, M.; Terhag, J.; Matschke, V.; Rothenberg, I.; Ursu, O.N.; Hertel, F.; Pott, L.; Lang, F.; Schulze-Bahr, E.; Hollmann, M.; Stoll, R.; Strutz-Seebohm, N. 2014: Structural basis of PI(4,5)P2-dependent regulation of GluA1 by phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP5K2A). Pflugers Archiv: European Journal of Physiology 466(10): 1885-1897
Aitio, O.; Hellman, M.; Kesti, T.; Kleino, I.; Samuilova, O.; Pääkkönen, K.; Tossavainen, H.; Saksela, K.; Permi, P. 2008: Structural basis of PxxDY motif recognition in SH3 binding. Journal of Molecular Biology 382(1): 167-178
Nikolaev, Y.; Pervushin, K. 2012: Structural basis of RNA binding by leucine zipper GCN4. Protein Science: a Publication of the Protein Society 21(5): 667-676
Wybenga-Groot, L.E.; Ho, C.S.; Sweeney, F.éd.ér.D.; Ceccarelli, D.F.; McGlade, C.J.; Durocher, D.; Sicheri, F. 2014: Structural basis of Rad53 kinase activation by dimerization and activation segment exchange. Cellular Signalling 26(9): 1825-1836
Gallego del Sol, F.; Marina, A. 2013: Structural basis of Rap phosphatase inhibition by Phr peptides. Plos Biology 11(3): E1001511
Wojtaszek, J.; Lee, C.-J.; D'Souza, S.; Minesinger, B.; Kim, H.; D'Andrea, A.D.; Walker, G.C.; Zhou, P. 2012: Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ. Journal of Biological Chemistry 287(40): 33836-33846
Wang, H.; Hota, P.K.; Tong, Y.; Li, B.; Shen, L.; Nedyalkova, L.; Borthakur, S.; Kim, S.; Tempel, W.; Buck, M.; Park, H.-W. 2011: Structural basis of Rnd1 binding to plexin Rho GTPase binding domains (RBDs). Journal of Biological Chemistry 286(29): 26093-26106
Ren, W.; Chen, H.; Sun, Q.; Tang, X.; Lim, S.C.; Huang, J.; Song, H. 2014: Structural basis of SOSS1 complex assembly and recognition of ssDNA. Cell Reports 6(6): 982-991
Cherry, A.L.; Finta, C.; Karlström, M.; Jin, Q.; Schwend, T.; Astorga-Wells, J.; Zubarev, R.A.; Del Campo, M.; Criswell, A.R.; de Sanctis, D.; Jovine, L.; Toftgård, R. 2013: Structural basis of SUFU-GLi interaction in human Hedgehog signalling regulation. Acta Crystallographica. Section D Biological Crystallography 69(Part 12): 2563-2579
Smith, C.L.; Ghosh, J.; Elam, J.S.; Pinkner, J.S.; Hultgren, S.J.; Caparon, M.G.; Ellenberger, T. 2011: Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin. Structure 19(2): 192-202
Stirnimann, C.U.; Ptchelkine, D.; Grimm, C.; Müller, C.W. 2010: Structural basis of TBX5-DNA recognition: the T-box domain in its DNA-bound and -unbound form. Journal of Molecular Biology 400(1): 71-81
Huynh, M.-H.; Liu, B.; Henry, M.; Liew, L.; Matthews, S.J.; Carruthers, V.B. 2015: Structural basis of Toxoplasma gondii MIC2-associated protein interaction with MIC2. Journal of Biological Chemistry 290(3): 1432-1441
Tumbale, P.; Jamaluddin, H.; Thiyagarajan, N.; Brew, K.; Acharya, K.R. 2008: Structural basis of UDP-galactose binding by alpha-1,3-galactosyltransferase (alpha3GT): role of negative charge on aspartic acid 316 in structure and activity. Biochemistry 47(33): 8711-8718
Yang, Q.; Gilmartin, G.M.; Doublié, S. 2010: Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing. Proceedings of the National Academy of Sciences of the United States of America 107(22): 10062-10067
Scrima, A.; Konícková, R.; Czyzewski, B.K.; Kawasaki, Y.; Jeffrey, P.D.; Groisman, R.; Nakatani, Y.; Iwai, S.; Pavletich, N.P.; Thomä, N.H. 2008: Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 135(7): 1213-1223
Graham, S.C.; Wartosch, L.; Gray, S.R.; Scourfield, E.J.; Deane, J.E.; Luzio, J.P.; Owen, D.J. 2013: Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. Proceedings of the National Academy of Sciences of the United States of America 110(33): 13345-13350
Adam, V.; Carpentier, P.; Violot, S.; Lelimousin, M.ël.; Darnault, C.; Nienhaus, G.U.; Bourgeois, D. 2009: Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein. Journal of the American Chemical Society 131(50): 18063-18065
Chen, L.; Chan, S.W.; Zhang, X.; Walsh, M.; Lim, C.J.; Hong, W.; Song, H. 2010: Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes and Development 24(3): 290-300
Watanabe, S.; Sasaki, D.; Tominaga, T.; Miki, K. 2012: Structural basis of [NiFe] hydrogenase maturation by Hyp proteins. Biological Chemistry 393(10): 1089-1100
Chen, Q.; Chen, X.; Wang, Q.; Zhang, F.; Lou, Z.; Zhang, Q.; Zhou, D.-X. 2013: Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. Plos Genetics 9(1): E1003239
Xie, T.; Hou, Y.; Li, D.; Yue, Y.; Qian, S.; Chao, Y. 2014: Structural basis of a mutant Y195i α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to β-/γ-cyclodextrin. Journal of Biotechnology 182-183: 92-96
Seo, K.H.; Zhuang, N.; Park, Y.S.; Park, K.H.; Lee, K.H. 2014: Structural basis of a novel activity of bacterial 6-pyruvoyltetrahydropterin synthase homologues distinct from mammalian 6-pyruvoyltetrahydropterin synthase activity. Acta Crystallographica. Section D Biological Crystallography 70(Part 5): 1212-1223
Luo, S.-C.; Lou, Y.-C.; Rajasekaran, M.; Chang, Y.-W.; Hsiao, C.-D.; Chen, C. 2013: Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. Journal of Biological Chemistry 288(35): 25551-25561
Han, S.; Yi, H.; Yin, S.-J.; Chen, Z.-Y.; Liu, H.; Cao, Z.-J.; Wu, Y.-L.; Li, W.-X. 2008: Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. Journal of Biological Chemistry 283(27): 19058-19065
Herrou, J.; Rotskoff, G.; Luo, Y.; Roux, B.ît.; Crosson, S. 2012: Structural basis of a protein partner switch that regulates the general stress response of α-proteobacteria. Proceedings of the National Academy of Sciences of the United States of America 109(21): E1415-E1423
Podgornaia, A.I.; Casino, P.; Marina, A.; Laub, M.T. 2013: Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling. Structure 21(9): 1636-1647
Marszalkowski, M.; Willkomm, D.K.; Hartmann, R.K. 2008: Structural basis of a ribozyme's thermostability: P1-L9 interdomain interaction in RNase P RNA. Rna 14(1): 127-133
Tsuge, H.; Nagahama, M.; Oda, M.; Iwamoto, S.; Utsunomiya, H.; Marquez, V.E.; Katunuma, N.; Nishizawa, M.; Sakurai, J. 2008: Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin. Proceedings of the National Academy of Sciences of the United States of America 105(21): 7399-7404
Singh, N.; Pydi, S.P.; Upadhyaya, J.; Chelikani, P. 2011: Structural basis of activation of bitter taste receptor T2R1 and comparison with Class a G-protein-coupled receptors (GPCRs). Journal of Biological Chemistry 286(41): 36032-36041
Bartos, M.; Corradi, J.ía.; Bouzat, C. 2009: Structural basis of activation of cys-loop receptors: the extracellular-transmembrane interface as a coupling region. Molecular Neurobiology 40(3): 236-252
Zhang, H.; Liu, J.-H.; Yang, W.; Springer, T.; Shimaoka, M.; Wang, J.-H. 2009: Structural basis of activation-dependent binding of ligand-mimetic antibody AL-57 to integrin LFA-1. Proceedings of the National Academy of Sciences of the United States of America 106(43): 18345-18350
Churchill, M.E.A.; Chen, L. 2011: Structural basis of acyl-homoserine lactone-dependent signaling. Chemical Reviews 111(1): 68-85
Koharudin, L.M.I.; Wu, Y.; DeLucia, M.; Mehrens, J.; Gronenborn, A.M.; Ahn, J. 2014: Structural basis of allosteric activation of sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates. Journal of Biological Chemistry 289(47): 32617-32627
Wu, H.-J.; Ho, C.-W.; Ko, T.-P.; Popat, S.D.; Lin, C.-H.; Wang, A.H.-J. 2010: Structural basis of alpha-fucosidase inhibition by iminocyclitols with K(i) values in the micro- to picomolar range. Angewandte Chemie 49(2): 337-340
Kurokawa, H.; Motohashi, H.; Sueno, S.; Kimura, M.; Takagawa, H.; Kanno, Y.; Yamamoto, M.; Tanaka, T. 2009: Structural basis of alternative DNA recognition by Maf transcription factors. Molecular and Cellular Biology 29(23): 6232-6244
Hagiwara, M.; Maegawa, K-Ichi.; Suzuki, M.; Ushioda, R.; Araki, K.; Matsumoto, Y.; Hoseki, J.; Nagata, K.; Inaba, K. 2011: Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Molecular cell 41(4): 432-444
Fanning, S.W.; Walter, R.; Horn, J.R. 2014: Structural basis of an engineered dual-specific antibody: conformational diversity leads to a hypervariable loop metal-binding site. Protein Engineering Design and Selection: Peds 27(10): 391-397
Sundberg, E.J. 2009: Structural basis of antibody-antigen interactions. Methods in Molecular Biology 524: 23-36
Lodhi, M.A.; Shams, S.; Choudhary, M.I.; Lodhi, A.; Ul-Haq, Z.; Jalil, S.; Nawaz, S.A.; Khan, K.M.; Iqbal, S.; Rahman, A.-u. 2014: Structural basis of binding and rationale for the potent urease inhibitory activity of biscoumarins. Biomed Research International 2014: 935039
Kozlov, G.; Safaee, N.; Rosenauer, A.; Gehring, K. 2010: Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. Journal of Biological Chemistry 285(18): 13599-13606
Ryan, A.J.; Ghuman, J.; Zunszain, P.A.; Chung, C.-w.; Curry, S. 2011: Structural basis of binding of fluorescent, site-specific dansylated amino acids to human serum albumin. Journal of Structural Biology 174(1): 84-91
Hino, T.; Matsumoto, Y.; Nagano, S.; Sugimoto, H.; Fukumori, Y.; Murata, T.; Iwata, S.; Shiro, Y. 2010: Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330(6011): 1666-1670
Maalcke, W.J.; Dietl, A.; Marritt, S.J.; Butt, J.N.; Jetten, M.S.M.; Keltjens, J.T.; Barends, T.R.M.; Kartal, B. 2014: Structural basis of biological NO generation by octaheme oxidoreductases. Journal of Biological Chemistry 289(3): 1228-1242
Chikwana, V.M.; Stec, B.; Lee, B.W.K.; de Crécy-Lagard, V.ér.; Iwata-Reuyl, D.; Swairjo, M.A. 2012: Structural basis of biological nitrile reduction. Journal of Biological Chemistry 287(36): 30560-30570
Ye, Q.; Feng, Y.; Yin, Y.; Faucher, F.éd.ér.; Currie, M.A.; Rahman, M.N.; Jin, J.; Li, S.; Wei, Q.; Jia, Z. 2013: Structural basis of calcineurin activation by calmodulin. Cellular Signalling 25(12): 2661-2667
Kozlov, G.; Pocanschi, C.L.; Rosenauer, A.; Bastos-Aristizabal, S.; Gorelik, A.; Williams, D.B.; Gehring, K. 2010: Structural basis of carbohydrate recognition by calreticulin. Journal of Biological Chemistry 285(49): 38612-38620
Wei, Z.; Liu, X.; Yu, C.; Zhang, M. 2013: Structural basis of cargo recognitions for class V myosins. Proceedings of the National Academy of Sciences of the United States of America 110(28): 11314-11319
Zoll, S.; Pätzold, B.; Schlag, M.; Götz, F.; Kalbacher, H.; Stehle, T. 2010: Structural basis of cell wall cleavage by a staphylococcal autolysin. Plos Pathogens 6(3): E1000807