Section 56

EurekaMag PDF full texts Chapter 55,962


Mortell, K.H.; Schrimpf, M.R.; Bunnelle, W.H.; Anderson, D.J.; Gronlien, J.H.; Hagene, K.T.; Gopalakrishnan, M. 2010: Structure-activity relationships of N-substituted ligands for the alpha7 nicotinic acetylcholine receptor. Bioorganic and Medicinal Chemistry Letters 20(1): 104-107
Richardson, T.I.; Frank, S.A.; Wang, M.; Clarke, C.A.; Jones, S.A.; Ying, B-Ping.; Kohlman, D.T.; Wallace, O.B.; Shepherd, T.A.; Dally, R.D.; Palkowitz, A.D.; Geiser, A.G.; Bryant, H.U.; Henck, J.W.; Cohen, I.R.; Rudmann, D.G.; McCann, D.J.; Coutant, D.E.; Oldham, S.W.; Hummel, C.W.; Fong, K.C.; Hinklin, R.; Lewis, G.; Tian, H.; Dodge, J.A. 2007: Structure-activity relationships of SERMs optimized for uterine antagonism and ovarian safety. Bioorganic and Medicinal Chemistry Letters 17(13): 3544-3549
Yraola, F.; Zorzano, A.; Albericio, F.; Royo, M. 2009: Structure-activity relationships of SSAO/VAP-1 arylalkylamine-based substrates. Chemmedchem 4(4): 495-503
Jayapal, P.; Mayer, G.ün.; Heckel, A.; Wennmohs, F. 2009: Structure-activity relationships of a caged thrombin binding DNA aptamer: insight gained from molecular dynamics simulation studies. Journal of Structural Biology 166(3): 241-250
Kortagere, S.; Xu, J.P.; Mankowski, M.K.; Ptak, R.G.; Cocklin, S. 2014: Structure-activity relationships of a novel capsid targeted inhibitor of HIV-1 replication. Journal of Chemical Information and Modeling 54(11): 3080-3090
Roy, S.; Morayo Akande, A.; Large, R.J.; Webb, T.I.; Camarasu, C.; Sergeant, G.P.; McHale, N.G.; Thornbury, K.D.; Hollywood, M.A. 2012: Structure-activity relationships of a novel group of large-conductance Ca(2+)-activated K(+) (BK) channel modulators: the GoSlo-SR family. Chemmedchem 7(10): 1763-1769
Mezo, A.R.; McDonnell, K.A.; Castro, A.; Fraley, C. 2008: Structure-activity relationships of a peptide inhibitor of the human FcRn:human IgG interaction. Bioorganic and Medicinal Chemistry 16(12): 6394-6405
Rego, J.Luc.Do.; Leprince, Jérôme.; Luu-The, V.; Pelletier, G.; Tonon, M-Christine.; Vaudry, H. 2007: Structure-activity relationships of a series of analogs of the endozepine octadecaneuropeptide (ODN(11)(-)(18)) on neurosteroid biosynthesis by hypothalamic explants. Journal of Medicinal Chemistry 50(13): 3070-3076
Le Marec, O.; Neveu, C.; Lefranc, B.; Dubessy, C.; Boutin, J.A.; Do-Régo, J.-C.; Costentin, J.; Tonon, M.-C.; Tena-Sempere, M.; Vaudry, H.; Leprince, J.ér.ôm. 2011: Structure-activity relationships of a series of analogues of the RFamide-related peptide 26RFa. Journal of Medicinal Chemistry 54(13): 4806-4814
Bach, A.; Stuhr-Hansen, N.; Thorsen, T.S.; Bork, N.; Moreira, I.S.; Frydenvang, K.; Padrah, S.; Christensen, S.B.øg.; Madsen, K.L.; Weinstein, H.; Gether, U.; Strømgaard, K. 2010: Structure-activity relationships of a small-molecule inhibitor of the PDZ domain of PICK1. Organic and Biomolecular Chemistry 8(19): 4281-4288
Tumiatti, V.; Milelli, A.; Minarini, A.; Rosini, M.; Bolognesi, M.L.; Micco, M.; Andrisano, V.; Bartolini, M.; Mancini, F.; Recanatini, M.; Cavalli, A.; Melchiorre, C. 2008: Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 4. Further investigation on the inner spacer. Journal of Medicinal Chemistry 51(22): 7308-7312
Borrmann, T.; Abdelrahman, A.; Volpini, R.; Lambertucci, C.; Alksnis, E.; Gorzalka, S.; Knospe, M.; Schiedel, A.C.; Cristalli, G.; Müller, C.E. 2009: Structure-activity relationships of adenine and deazaadenine derivatives as ligands for adenine receptors, a new purinergic receptor family. Journal of Medicinal Chemistry 52(19): 5974-5989
Stanica, R.M.; Benaki, D.; Rodis, F.I.; Mikros, E.; Tsoukatos, D.; Tselepis, A.; Tsikaris, V. 2008: Structure-activity relationships of alpha IIb 313-320 derived peptide inhibitors of human platelet aggregation. Journal of Peptide Science: An Official Publication of the European Peptide Society 14(11): 1195-1202
Wu, Y.-C.; Lin, J.-S.; Hwang, C.-C. 2007: Structure-activity relationships of alphaS1-casomorphin using AM1 calculations and molecular dynamics simulations. Journal of Physical Chemistry. B 111(25): 7377-7383
Soliman, W.; Wang, L.; Bhattacharjee, S.; Kaur, K. 2011: Structure-activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins. Journal of Medicinal Chemistry 54(7): 2399-2408
Zhao, C.L.; Chen, Z.J.; Bai, X.S.; Ding, C.; Long, T.J.; Wei, F.G.; Miao, K.R. 2014: Structure-activity relationships of anthocyanidin glycosylation. Molecular Diversity 18(3): 687-700
Baqi, Y.; Weyler, S.; Iqbal, J.; Zimmermann, H.; Müller, C.E. 2009: Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signalling 5(1): 91-106
Fukuda, I.; Kaneko, A.; Nishiumi, S.; Kawase, M.; Nishikiori, R.; Fujitake, N.; Ashida, H. 2009: Structure-activity relationships of anthraquinones on the suppression of DNA-binding activity of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Bioscience and Bioengineering 107(3): 296-300
Stratton, T.R.; Howarter, J.A.; Allison, B.C.; Applegate, B.M.; Youngblood, J.P. 2010: Structure-activity relationships of antibacterial and biocompatible copolymers. Biomacromolecules 11(5): 1286-1290
Warshakoon, H.J.; Burns, M.R.; David, S.A. 2009: Structure-activity relationships of antimicrobial and lipoteichoic acid-sequestering properties in polyamine sulfonamides. Antimicrobial Agents and ChemoTherapy 53(1): 57-62
Kim, P.; Zhang, L.; Manjunatha, U.H.; Singh, R.; Patel, S.; Jiricek, J.; Keller, T.H.; Boshoff, H.I.; Barry, C.E.; Dowd, C.S. 2009: Structure-activity relationships of antitubercular nitroimidazoles. 1. Structural features associated with aerobic and anaerobic activities of 4- and 5-nitroimidazoles. Journal of Medicinal Chemistry 52(5): 1317-1328
Kim, P.; Kang, S.; Boshoff, H.I.; Jiricek, J.; Collins, M.; Singh, R.; Manjunatha, U.H.; Niyomrattanakit, P.; Zhang, L.; Goodwin, M.; Dick, T.; Keller, T.H.; Dowd, C.S.; Barry, C.E. 2009: Structure-activity relationships of antitubercular nitroimidazoles. 2. Determinants of aerobic activity and quantitative structure-activity relationships. Journal of Medicinal Chemistry 52(5): 1329-1344
Cherian, J.; Choi, I.; Nayyar, A.; Manjunatha, U.H.; Mukherjee, T.; Lee, Y.S.; Boshoff, H.I.; Singh, R.; Ha, Y.H.; Goodwin, M.; Lakshminarayana, S.B.; Niyomrattanakit, P.; Jiricek, J.; Ravindran, S.; Dick, T.; Keller, T.H.; Dartois, V.; Barry, C.E. 2011: Structure-activity relationships of antitubercular nitroimidazoles. 3. Exploration of the linker and lipophilic tail of ((s)-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6-amino PA-824). Journal of Medicinal Chemistry 54(16): 5639-5659
Lee, I-Young.; Gruber, T.D.; Samuels, A.; Yun, M.; Nam, B.; Kang, M.; Crowley, K.; Winterroth, B.; Boshoff, H.I.; Barry, C.E. 2013: Structure-activity relationships of antitubercular salicylanilides consistent with disruption of the proton gradient via proton shuttling. Bioorganic and Medicinal Chemistry 21(1): 114-126
Pérez-Hernández, N.; Ponce-Monter, H.; Ortiz, M.I.; Cariño-Cortés, R.; Joseph-Nathan, P. 2009: Structure-activity relationships of aromadendranes in uterus-relaxant activity. Zeitschrift für Naturforschung. C Journal of Biosciences 64(11-12): 840-846
Urakawa, H.; Yamada, K.; Komagoe, K.; Ando, S.; Oku, H.; Katsu, T.; Matsuo, I. 2010: Structure-activity relationships of bacterial outer-membrane permeabilizers based on polymyxin B heptapeptides. Bioorganic and Medicinal Chemistry Letters 20(5): 1771-1775
Pandey, R.N.; Wang, T.S.; Tadjuidje, E.; McDonald, M.G.; Rettie, A.E.; Hegde, R.S. 2013: Structure-activity relationships of benzbromarone metabolites and derivatives as EYA inhibitory anti-angiogenic agents. Plos one 8(12): E84582
Ramsbeck, D.; Buchholz, M.; Koch, B.; Böhme, L.; Hoffmann, T.; Demuth, H.-U.; Heiser, U. 2013: Structure-activity relationships of benzimidazole-based glutaminyl cyclase inhibitors featuring a heteroaryl scaffold. Journal of Medicinal Chemistry 56(17): 6613-6625
Flaherty, P.T.; Chopra, I.; Jain, P.; Monlish, D.; Cavanaugh, J. 2010: Structure-activity relationships of benzimidazole-based selective inhibitors of the mitogen activated kinase-5 signaling pathway. Bioorganic and Medicinal Chemistry 18(22): 8054-8060
Kashima, Y.; Yamaki, H.; Suzuki, T.; Miyazawa, M. 2013: Structure-activity relationships of bergenin derivatives effect on α-glucosidase inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry 28(6): 1162-1170
Agnes, R.S.; Ying, J.; Kövér, K.E.; Lee, Y.S.; Davis, P.; Ma, S.-w.; Badghisi, H.; Porreca, F.; Lai, J.; Hruby, V.J. 2008: Structure-activity relationships of bifunctional cyclic disulfide peptides based on overlapping pharmacophores at opioid and cholecystokinin receptors. Peptides 29(8): 1413-1423
Yoshino, H.; Sato, H.; Tachibana, K.; Shiraishi, T.; Nakamura, M.; Ohta, M.; Ishikura, N.; Nagamuta, M.; Onuma, E.; Nakagawa, T.; Arai, S.; Ahn, K.-H.; Jung, K.-Y.; Kawata, H. 2010: Structure-activity relationships of bioisosteric replacement of the carboxylic acid in novel androgen receptor pure antagonists. Bioorganic and Medicinal Chemistry 18(9): 3159-3168
Feliciani, F.; Pinnen, F.; Stefanucci, A.; Costante, R.; Cacciatore, I.; Lucente, G.; Mollica, A. 2013: Structure-activity relationships of biphalin analogs and their biological evaluation on opioid receptors. Mini Reviews in Medicinal Chemistry 13(1): 11-33
Maruyama, K.; Nakamura, M.; Tomoshige, S.; Sugita, K.; Makishima, M.; Hashimoto, Y.; Ishikawa, M. 2013: Structure-activity relationships of bisphenol A analogs at estrogen receptors (ERs): discovery of an ERα-selective antagonist. Bioorganic and Medicinal Chemistry Letters 23(14): 4031-4036
Kim, Y.A.; Rawal, R.K.; Yoo, J.; Sharon, A.; Jha, A.K.; Chu, C.K.; Rais, R.H.; Al Safarjalani, O.N.; Naguib, F.N.M.; El Kouni, M.H. 2010: Structure-activity relationships of carbocyclic 6-benzylthioinosine analogues as subversive substrates of Toxoplasma gondii adenosine kinase. Bioorganic and Medicinal Chemistry 18(10): 3403-3412
Takeuchi, T.; Oishi, S.; Watanabe, T.; Ohno, H.; Sawada, J.-i.; Matsuno, K.; Asai, A.; Asada, N.; Kitaura, K.; Fujii, N. 2011: Structure-activity relationships of carboline and carbazole derivatives as a novel class of ATP-competitive kinesin spindle protein inhibitors. Journal of Medicinal Chemistry 54(13): 4839-4846
Zhang, K.; Fang, H.; Wang, Z.; Li, Z.; Taylor, J-Stephen.A.; Wooley, K.L. 2010: Structure-activity relationships of cationic shell-crosslinked knedel-like nanoparticles: shell composition and transfection efficiency/cytotoxicity. Biomaterials 31(7): 1805-1813
Lee, E.; Jeong, K.-W.; Lee, J.; Shin, A.; Kim, J.-K.; Lee, J.; Lee, D.G.; Kim, Y. 2013: Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. Bmb Reports 46(5): 282-287
Vijaya Bhaskar Reddy, M.; Tsai, W.-J.; Qian, K.; Lee, K.-H.; Wu, T.-S. 2011: Structure-activity relationships of chalcone analogs as potential inhibitors of ADP- and collagen-induced platelet aggregation. Bioorganic and Medicinal Chemistry 19(24): 7711-7719
Hudson, S.; Kiankarimi, M.; Eccles, W.; Dwight, W.; Mostofi, Y.S.; Genicot, M.J.; Fleck, B.A.; Gogas, K.; Aparicio, A.; Wang, H.; Wen, J.; Wade, W.S. 2008: Structure-activity relationships of chiral selective norepinephrine reuptake inhibitors (sNRI) with increased oxidative stability. Bioorganic and Medicinal Chemistry Letters 18(16): 4491-4494
Winter, E.; Lecerf-Schmidt, F.; Gozzi, G.; Peres, B.; Lightbody, M.; Gauthier, C.; Ozvegy-Laczka, C.; Szakacs, G.; Sarkadi, B.; Creczynski-Pasa, T.ân.B.; Boumendjel, A.èn.; Di Pietro, A. 2013: Structure-activity relationships of chromone derivatives toward the mechanism of interaction with and inhibition of breast cancer resistance protein ABCG2. Journal of Medicinal Chemistry 56(24): 9849-9860
Mao, J.; Eoh, H.; He, R.; Wang, Y.; Wan, B.; Franzblau, S.G.; Crick, D.C.; Kozikowski, A.P. 2008: Structure-activity relationships of compounds targeting mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase. Bioorganic and Medicinal Chemistry Letters 18(19): 5320-5323
Isberg, V.; Paine, J.; Leth-Petersen, S.; Kristensen, J.L.; Gloriam, D.E. 2013: Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors. Plos one 8(11): E78515
Knapp, J.M.; Wood, A.B.; Phuan, P.-W.; Lodewyk, M.W.; Tantillo, D.J.; Verkman, A.S.; Kurth, M.J. 2012: Structure-activity relationships of cyanoquinolines with corrector-potentiator activity in ΔF508 cystic fibrosis transmembrane conductance regulator protein. Journal of Medicinal Chemistry 55(3): 1242-1251
Mayorov, A.V.; Cai, M.; Palmer, E.S.; Dedek, M.M.; Cain, J.P.; Van Scoy, A.R.; Tan, B.; Vagner, J.; Trivedi, D.; Hruby, V.J. 2008: Structure-activity relationships of cyclic lactam analogues of alpha-melanocyte-stimulating hormone (alpha-MSH) targeting the human melanocortin-3 receptor. Journal of Medicinal Chemistry 51(2): 187-195
Kim, I.-H.; Park, Y.-K.; Hammock, B.D.; Nishi, K. 2011: Structure-activity relationships of cycloalkylamide derivatives as inhibitors of the soluble epoxide hydrolase. Journal of Medicinal Chemistry 54(6): 1752-1761
Bodnaryk, R.; Yoshihara, T. 1995: Structure-activity relationships of cyclopentane analogs of jasmonic acid for induced responses of canola seedlings,Brassica napus L. Journal of Chemical Ecology 21(11): 1735-1743
Liu, H.; Xu, L.; Hui, H.; Vivian, R.; Callebaut, C.; Murray, B.P.; Hong, A.; Lee, M.S.; Tsai, L.K.; Chau, J.K.; Stray, K.M.; Cannizzaro, C.; Choi, Y.-C.; Rhodes, G.R.; Desai, M.C. 2014: Structure-activity relationships of diamine inhibitors of cytochrome P450 (CYP) 3A as novel pharmacoenhancers, part I: core region. Bioorganic and Medicinal Chemistry Letters 24(3): 989-994
Xu, L.; Liu, H.; Hong, A.; Vivian, R.; Murray, B.P.; Callebaut, C.; Choi, Y-Chul.; Lee, M.S.; Chau, J.; Tsai, L.K.; Stray, K.M.; Strickley, R.G.; Wang, J.; Tong, L.; Swaminathan, S.; Rhodes, G.R.; Desai, M.C. 2014: Structure-activity relationships of diamine inhibitors of cytochrome P450 (CYP) 3A as novel pharmacoenhancers. Part II: P2/P3 region and discovery of cobicistat (GS-9350). Bioorganic and Medicinal Chemistry Letters 24(3): 995-999
Shaver, S.R.; Rideout, J.L.; Pendergast, W.; Douglass, J.G.; Brown, E.G.; Boyer, J.é L.; Patel, R.I.; Redick, C.C.; Jones, A.C.; Picher, M.; Yerxa, B.R. 2005: Structure-activity relationships of dinucleotides: Potent and selective agonists of P2Y receptors. Purinergic Signalling 1(2): 183-191
Hao, G.-F.; Tan, Y.; Yu, N.-X.; Yang, G.-F. 2011: Structure-activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: insights from computational simulations. Journal of Computer-Aided Molecular Design 25(3): 213-222
Pajouhesh, H.; Feng, Z.-P.; Ding, Y.; Zhang, L.; Pajouhesh, H.; Morrison, J.-L.; Belardetti, F.; Tringham, E.; Simonson, E.; Vanderah, T.W.; Porreca, F.; Zamponi, G.W.; Mitscher, L.A.; Snutch, T.P. 2010: Structure-activity relationships of diphenylpiperazine N-type calcium channel inhibitors. Bioorganic and Medicinal Chemistry Letters 20(4): 1378-1383
Locke, J.B.; Finn, J.; Hilgers, M.; Morales, G.; Rahawi, S.; G C, K.; Picazo, J.J.é; Im, W.; Shaw, K.J.; Stein, J.L. 2010: Structure-activity relationships of diverse oxazolidinones for linezolid-resistant Staphylococcus aureus strains possessing the cfr methyltransferase gene or ribosomal mutations. Antimicrobial Agents and ChemoTherapy 54(12): 5337-5343
Numazawa, M.; Komatsu, S.; Tominaga, T.; Yamashita, K. 2008: Structure-activity relationships of estrogen derivatives as aromatase inhibitors. Effects of heterocyclic substituents. Chemical and Pharmaceutical Bulletin 56(9): 1304-1309
Barbosa, J.D.F.; Silva, V.B.; Alves, P.ér.B.; Gumina, G.; Santos, R.L.C.; Sousa, D.ão.P.; Cavalcanti, S.óc.C.H. 2012: Structure-activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Management Science 68(11): 1478-1483
Kumar, P.; Kumar, A.; Song, Z.-H. 2014: Structure-activity relationships of fatty acid amide ligands in activating and desensitizing G protein-coupled receptor 119. European Journal of Pharmacology 723: 465-472
Pick, A.; Müller, H.; Mayer, R.; Haenisch, B.; Pajeva, I.K.; Weigt, M.; Bönisch, H.; Müller, C.E.; Wiese, M. 2011: Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorganic and Medicinal Chemistry 19(6): 2090-2102
Baumann, C.A.; Mu, L.; Johannsen, S.; Honer, M.; Schubiger, P.A.; Ametamey, S.M. 2010: Structure-activity relationships of fluorinated (E)-3-((6-methylpyridin-2-yl)ethynyl)cyclohex-2-enone-O-methyloxime (ABP688) derivatives and the discovery of a high affinity analogue as a potential candidate for imaging metabotropic glutamate recepors subtype 5 (mGluR5) with positron emission tomography (PET). Journal of Medicinal Chemistry 53(10): 4009-4017
Fatmawati, S.; Shimizu, K.; Kondo, R. 2011: Structure-activity relationships of ganoderma acids from Ganoderma lucidum as aldose reductase inhibitors. Bioorganic and Medicinal Chemistry Letters 21(24): 7295-7297
Xu, Y.; Ogunsina, M.; Samadder, P.; Arthur, G.; Schweizer, F. 2013: Structure-activity relationships of glucosamine-derived glycerolipids: the role of the anomeric linkage, the cationic charge and the glycero moiety on the antitumor activity. Chemmedchem 8(3): 511-520
Im, I.; Lee, E.S.; Choi, S.J.; Lee, J.-Y.; Kim, Y.-C. 2009: Structure-activity relationships of heteroaromatic esters as human rhinovirus 3C protease inhibitors. Bioorganic and Medicinal Chemistry Letters 19(13): 3632-3636
Primik, M.F.; Göschl, S.; Jakupec, M.A.; Roller, A.; Keppler, B.K.; Arion, V.B. 2010: Structure-activity relationships of highly cytotoxic copper(II) complexes with modified indolo[3,2-c]quinoline ligands. Inorganic Chemistry 49(23): 11084-11095
Tan, Y.-M.; Huang, W.-Y.; Yu, N.-F. 2009: Structure-activity relationships of histone deacetylase inhibitors. Yao Xue Xue Bao 44(10): 1072-1083
Lee, W.H.; Lukacik, P.; Guo, K.; Ugochukwu, E.; Kavanagh, K.L.; Marsden, B.; Oppermann, U. 2009: Structure-activity relationships of human AKR-type oxidoreductases involved in bile acid synthesis: AKR1D1 and AKR1C4. Molecular and Cellular Endocrinology 301(1-2): 199-204
Kojima, N.; Fushimi, T.; Tatsukawa, T.; Yoshimitsu, T.; Tanaka, T.; Yamori, T.; Dan, S.; Iwasaki, H.; Yamashita, M. 2013: Structure-activity relationships of hybrid annonaceous acetogenins: powerful growth inhibitory effects of their connecting groups between heterocycle and hydrophobic carbon chain bearing THF ring on human cancer cell lines. European Journal of Medicinal Chemistry 63: 833-839
Piovan, L.; Alves, M.ár.F.M.; Juliano, L.; Brömme, D.; Cunha, R.L.O.R.; Andrade, L.H. 2011: Structure-activity relationships of hypervalent organochalcogenanes as inhibitors of cysteine cathepsins V and S. Bioorganic and Medicinal Chemistry 19(6): 2009-2014
Ty, N.; Dupeyre, G.ég.; Chabot, G.G.; Seguin, J.; Quentin, L.; Chiaroni, A.èl.; Tillequin, F.ço.; Scherman, D.; Michel, S.; Cachet, X. 2010: Structure-activity relationships of indole compounds derived from combretastatin A4: synthesis and biological screening of 5-phenylpyrrolo[3,4-a]carbazole-1,3-diones as potential antivascular agents. European Journal of Medicinal Chemistry 45(9): 3726-3739
Fatmawati, S.; Kondo, R.; Shimizu, K. 2013: Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry Letters 23(21): 5900-5903
Santos, S.R.L.; Melo, M.A.; Cardoso, A.Valença.; Santos, R.L.C.; de Sousa, Dão.P.; Cavalcanti, Sócrates.C.H. 2011: Structure-activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere 84(1): 150-153
Zhu, Z.J.; Krasnykh, O.; Pan, D.; Petukhova, V.; Yu, G.; Liu, Y.; Liu, H.; Hong, S.; Wang, Y.; Wan, B.; Liang, W.; Franzblau, S.G. 2008: Structure-activity relationships of macrolides against Mycobacterium tuberculosis. Tuberculosis 88(Suppl 1): S49-S63
Bolognesi, M.L.; Bartolini, M.; Rosini, M.; Andrisano, V.; Melchiorre, C. 2009: Structure-activity relationships of memoquin: Influence of the chain chirality in the multi-target mechanism of action. Bioorganic and Medicinal Chemistry Letters 19(15): 4312-4315
Sawle, P.; Moulton, B.E.; Jarzykowska, M.; Green, C.J.; Foresti, R.; Fairlamb, I.J.S.; Motterlini, R. 2008: Structure-activity relationships of methoxychalcones as inducers of heme oxygenase-1. Chemical Research in Toxicology 21(7): 1484-1494
Wang, Y.C.; Wu, Y.C.; Chen, J.W.; Huang, L.S.F.; Tsai, F.R.; Hwang, C.C. 2008: Structure-activity relationships of modified C-terminal endomorphin-2 analogues by molecular dynamics simulations. Journal of Molecular Graphics and Modelling 27(4): 489-496
Cauchon, N.; Ali, H.; Hasséssian, H.M.; van Lier, J.E. 2010: Structure-activity relationships of mono-substituted trisulfonated porphyrazines for the photodynamic therapy (PDT) of cancer. Photochemical and Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 9(3): 331-341
Antonow, D.; Kaliszczak, M.; Kang, G.-D.; Coffils, M.; Tiberghien, A.C.; Cooper, N.; Barata, T.; Heidelberger, S.; James, C.H.; Zloh, M.; Jenkins, T.C.; Reszka, A.P.; Neidle, S.; Guichard, S.M.; Jodrell, D.I.; Hartley, J.A.; Howard, P.W.; Thurston, D.E. 2010: Structure-activity relationships of monomeric C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine (PBD) antitumor agents. Journal of Medicinal Chemistry 53(7): 2927-2941
Bahl, D.; Athar, F.; Soares, M.B.P.; de Sá, M.S.; Moreira, D.R.M.ãe.; Srivastava, R.M.; Leite, A.C.L.; Azam, A. 2010: Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities. Bioorganic and Medicinal Chemistry 18(18): 6857-6864
Pandey, S.K.; Tandon, S.; Ahmad, A.; Singh, A.K.; Tripathi, A.K. 2013: Structure-activity relationships of monoterpenes and acetyl derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Management Science 69(11): 1235-1238
Kindrachuk, J.; Napper, S. 2010: Structure-activity relationships of multifunctional host defence peptides. Mini Reviews in Medicinal Chemistry 10(7): 596-614
Antonopoulou, G.; Barbayianni, E.; Magrioti, V.; Cotton, N.; Stephens, D.; Constantinou-Kokotou, V.; Dennis, E.A.; Kokotos, G. 2008: Structure-activity relationships of natural and non-natural amino acid-based amide and 2-oxoamide inhibitors of human phospholipase A(2) enzymes. Bioorganic and Medicinal Chemistry 16(24): 10257-10269
Luo, Y.; Sun, K.; Li, L.; Gao, L.; Wang, G.; Qu, Y.; Xiang, L.; Chen, L.; Hu, Y.; Qi, J. 2011: Structure-activity relationships of neuritogenic gentiside derivatives. Chemmedchem 6(11): 1986-1989
Masłowska-Lipowicz, I.; Walczyński, K. 2014: Structure-activity relationships of new 1-substitutedmethyl-4-[5-(N-methyl-N-propylamino)pentyloxy]piperidines and selected 1-[(N-substituted-N-methyl)-3-propyloxy]-5-(N-methy-l-N-propyl)-pentanediamines as H3 -antagonists. Chemical Biology and Drug Design 83(1): 106-118
Yamaoka, N.; Kawano, Y.; Izuhara, Y.; Miyata, T.; Meguro, K. 2010: Structure-activity relationships of new 2-acylamino-3-thiophenecarboxylic acid dimers as plasminogen activator inhibitor-1 inhibitors. Chemical and Pharmaceutical Bulletin 58(5): 615-619
Kancheva, V.D.; Boranova, P.V.; Nechev, J.T.; Manolov, I.I. 2010: Structure-activity relationships of new 4-hydroxy bis-coumarins as radical scavengers and chain-breaking antioxidants. Biochimie 92(9): 1138-1146
Yamaoka, N.; Kodama, H.; Izuhara, Y.; Miyata, T.; Meguro, K. 2011: Structure-activity relationships of new N-acylanthranilic acid derivatives as plasminogen activator inhibitor-1 inhibitors. Chemical and Pharmaceutical Bulletin 59(2): 215-224
Hrast, M.; Turk, S.; Sosič, I.; Knez, D.; Randall, C.P.; Barreteau, H.él.èn.; Contreras-Martel, C.; Dessen, A.éa.; O'Neill, A.J.; Mengin-Lecreulx, D.; Blanot, D.; Gobec, S. 2013: Structure-activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF. European Journal of Medicinal Chemistry 66: 32-45
Pick, A.; Müller, H.; Wiese, M. 2008: Structure-activity relationships of new inhibitors of breast cancer resistance protein (ABCG2). Bioorganic and Medicinal Chemistry 16(17): 8224-8236
Lee, Y.S.; Rankin, D.; Hall, S.M.; Ramos-Colon, C.; Ortiz, J.J.; Kupp, R.; Porreca, F.; Lai, J.; Hruby, V.J. 2014: Structure-activity relationships of non-opioid [des-Arg(7)]-dynorphin a analogues for bradykinin receptors. Bioorganic and Medicinal Chemistry Letters 24(21): 4976-4979
Fensome, A.; Goldberg, J.; McComas, C.C.; Trybulski, E.J.; Woodworth, R.P.; Deecher, D.C.; Whiteside, G.T.; Zhang, P. 2010: Structure-activity relationships of norepinephrine reuptake inhibitors with benzothiadiazine dioxide or dihydrosulfostyril cores. Bioorganic and Medicinal Chemistry Letters 20(5): 1555-1558
Liang, J.-H.; Li, X.-L.; Wang, H.; An, K.; Wang, Y.-Y.; Xu, Y.-C.; Yao, G.-W. 2012: Structure-activity relationships of novel alkylides: 3-O-arylalkyl clarithromycin derivatives with improved antibacterial activities. European Journal of Medicinal Chemistry 49: 289-303
Saczewski, F.; Stencel, A.; Bieńczak, A.M.; Langowska, K.A.; Michaelis, M.; Werel, W.ła.ła.; Hałasa, R.ł; Reszka, P.; Bednarski, P.J. 2008: Structure-activity relationships of novel heteroaryl-acrylonitriles as cytotoxic and antibacterial agents. European Journal of Medicinal Chemistry 43(9): 1847-1857
Potůčková, E.šk.; Hrušková, K.ři.; Bureš, J.; Kovaříková, P.; Špirková, I.A.; Pravdíková, K.ři.; Kolbabová, L.; Hergeselová, T.; Hašková, P.ín.; Jansová, H.; Macháček, M.; Jirkovská, A.; Richardson, V.; Lane, D.J.R.; Kalinowski, D.S.; Richardson, D.R.; Vávrová, K.ři.; Šimůnek, T.áš 2014: Structure-activity relationships of novel salicylaldehyde isonicotinoyl hydrazone (SIH) analogs: iron chelation, anti-oxidant and cytotoxic properties. Plos one 9(11): E112059
Milelli, A.; Tumiatti, V.; Micco, M.; Rosini, M.; Zuccari, G.; Raffaghello, L.; Bianchi, G.; Pistoia, V.; Fernando Díaz, J.; Pera, B.; Trigili, C.; Barasoain, I.; Musetti, C.; Toniolo, M.; Sissi, C.; Alcaro, S.; Moraca, F.; Zini, M.; Stefanelli, C.; Minarini, A. 2012: Structure-activity relationships of novel substituted naphthalene diimides as anticancer agents. European Journal of Medicinal Chemistry 57: 417-428
Xie, Y.Feng.; Lake, K.; Ligsay, K.; Komandla, M.; Sircar, I.; Nagarajan, G.; Li, J.; Xu, K.; Parise, J.; Schneider, L.; Huang, D.; Liu, J.; Dines, K.; Sakurai, N.; Barbosa, M.; Jack, R. 2007: Structure-activity relationships of novel, highly potent, selective, and orally active CCR1 antagonists. Bioorganic and Medicinal Chemistry Letters 17(12): 3367-3372
Török, B.él.; Sood, A.; Bag, S.; Kulkarni, A.; Borkin, D.; Lawler, E.; Dasgupta, S.; Landge, S.; Abid, M.; Zhou, W.; Foster, M.; LeVine, H.; Török, M. 2012: Structure-activity relationships of organofluorine inhibitors of β-amyloid self-assembly. Chemmedchem 7(5): 910-919
Bello, A.M.; Konforte, D.; Poduch, E.; Furlonger, C.; Wei, L.; Liu, Y.; Lewis, M.; Pai, E.F.; Paige, C.J.; Kotra, L.P. 2009: Structure-activity relationships of orotidine-5'-monophosphate decarboxylase inhibitors as anticancer agents. Journal of Medicinal Chemistry 52(6): 1648-1658
Ohgane, K.; Karaki, F.; Noguchi-Yachide, T.; Dodo, K.; Hashimoto, Y. 2014: Structure-activity relationships of oxysterol-derived pharmacological chaperones for Niemann-Pick type C1 protein. Bioorganic and Medicinal Chemistry Letters 24(15): 3480-3485
Varkevisser, R.; Houtman, M.J.C.; Linder, T.; de Git, K.C.G.; Beekman, H.D.M.; Tidwell, R.R.; Ijzerman, A.P.; Stary-Weinzinger, A.; Vos, M.A.; van der Heyden, M.A.G. 2013: Structure-activity relationships of pentamidine-affected ion channel trafficking and dofetilide mediated rescue. British Journal of Pharmacology 169(6): 1322-1334
Singh, A.; Dirain, M.; Witek, R.; Rocca, J.R.; Edison, A.S.; Haskell-Luevano, C. 2013: Structure-activity relationships of peptides incorporating a bioactive reverse-turn heterocycle at the melanocortin receptors: identification of a 5800-fold mouse melanocortin-3 receptor (mMC3R) selective antagonist/partial agonist versus the mouse melanocortin-4 receptor (mMC4R). Journal of Medicinal Chemistry 56(7): 2747-2763
Kanthala, S.; Gauthier, T.; Satyanarayanajois, S. 2014: Structure-activity relationships of peptidomimetics that inhibit PPI of HER2-HER3. Biopolymers 101(6): 693-702
Villain-Guillot, P.; Gualtieri, M.; Bastide, L.; Roquet, F.ço.; Martinez, J.; Amblard, M.; Pugniere, M.; Leonetti, J.-P. 2007: Structure-activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms. Journal of Medicinal Chemistry 50(17): 4195-4204
Blaazer, A.R.; Smid, P.; Kruse, C.G. 2008: Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT(2A) receptors. Chemmedchem 3(9): 1299-1309
Yang, J.-H.; Hu, J.-P.; Rena, K.; Du, N.-S. 2009: Structure-activity relationships of phenylethanoid glycosides in plants of Cistanche salsa on antioxidative activity. Zhong Yao Cai 32(7): 1067-1069
Stec, M.M.; Andrews, K.L.; Booker, S.K.; Caenepeel, S.; Freeman, D.J.; Jiang, J.; Liao, H.; McCarter, J.; Mullady, E.L.; San Miguel, T.; Subramanian, R.; Tamayo, N.; Wang, L.; Yang, K.; Zalameda, L.P.; Zhang, N.; Hughes, P.E.; Norman, M.H. 2011: Structure-activity relationships of phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors: investigations of various 6,5-heterocycles to improve metabolic stability. Journal of Medicinal Chemistry 54(14): 5174-5184
Park, N.G.; Silphaduang, U.; Moon, H.S.; Seo, J.-K.; Corrales, J.; Noga, E.J. 2011: Structure-activity relationships of piscidin 4, a piscine antimicrobial peptide. Biochemistry 50(16): 3288-3299
Passic, S.R.; Ferguson, M.L.; Catalone, B.J.; Kish-Catalone, T.; Kholodovych, V.; Zhu, W.; Welsh, W.; Rando, R.; Howett, M.K.; Wigdahl, B.; Labib, M.; Krebs, F.C. 2010: Structure-activity relationships of polybiguanides with activity against human immunodeficiency virus type 1. Biomedicine and PharmacoTherapy 64(10): 723-732
Pazos, M.; Iglesias, J.; Maestre, R.; Medina, I. 2010: Structure-activity relationships of polyphenols to prevent lipid oxidation in pelagic fish muscle. Journal of Agricultural and Food Chemistry 58(20): 11067-11074
Barnickel, B.; Bayliffe, F.; Diestel, R.; Kempf, K.; Laschat, S.; Pachali, S.; Sasse, F.; Schlenk, A.; Schobert, R. 2010: Structure-activity relationships of precursors and analogs of natural 3-enoyl-tetramic acids. Chemistry and Biodiversity 7(12): 2830-2845
Szabo, M.; Klein Herenbrink, C.; Christopoulos, A.; Lane, J.Robert.; Capuano, B. 2014: Structure-activity relationships of privileged structures lead to the discovery of novel biased ligands at the dopamine D₂ receptor. Journal of Medicinal Chemistry 57(11): 4924-4939
Suzuki, Y.; Cluzeau, J.ér.ôm.; Hara, T.; Hirasawa, A.; Tsujimoto, G.; Oishi, S.; Ohno, H.; Fujii, N. 2008: Structure-activity relationships of pyrazine-based CK2 inhibitors: synthesis and evaluation of 2,6-disubstituted pyrazines and 4,6-disubstituted pyrimidines. Archiv der Pharmazie 341(9): 554-561
Purohit, M.K.; Chakka, S.K.; Scovell, I.; Neschadim, A.; Bello, A.M.; Salum, N.ê; Katsman, Y.; Bareau, M.C.; Branch, D.R.; Kotra, L.P. 2014: Structure-activity relationships of pyrazole derivatives as potential therapeutics for immune thrombocytopenias. Bioorganic and Medicinal Chemistry 22(9): 2739-2752
Sun, X.; Qiu, J.; Strong, S.A.; Green, L.S.; Wasley, J.W.F.; Colagiovanni, D.B.; Mutka, S.C.; Blonder, J.P.; Stout, A.M.; Richards, J.P.; Chun, L.; Rosenthal, G.J. 2011: Structure-activity relationships of pyrrole based S-nitrosoglutathione reductase inhibitors: pyrrole regioisomers and propionic acid replacement. Bioorganic and Medicinal Chemistry Letters 21(12): 3671-3675
Lessigiarska, I.; Pajeva, I.; Prodanova, P.; Georgieva, M.; Bijev, A. 2012: Structure-activity relationships of pyrrole hydrazones as new anti-tuberculosis agents. Medicinal Chemistry 8(3): 462-473
Thompson, A.J.; Verheij, M.H.P.; van Muijlwijk-Koezen, J.E.; Lummis, S.C.R.; Leurs, R.; de Esch, I.J.P. 2013: Structure-activity relationships of quinoxaline-based 5-HT3A and 5-HT3AB receptor-selective ligands. Chemmedchem 8(6): 946-955
Lappano, R.; Rosano, C.; Madeo, A.; Albanito, L.; Plastina, P.; Gabriele, B.; Forti, L.; Stivala, L.A.; Iacopetta, D.; Dolce, V.; Andò, S.; Pezzi, V.; Maggiolini, M. 2009: Structure-activity relationships of resveratrol and derivatives in breast cancer cells. Molecular Nutrition and Food Research 53(7): 845-858
Peng, J.; Risinger, A.L.; Da, C.; Fest, G.A.; Kellogg, G.E.; Mooberry, S.L. 2013: Structure-activity relationships of retro-dihydrochalcones isolated from Tacca sp. Journal of Natural Products 76(12): 2189-2194
Stappen, I.; Höfinghoff, J.; Buchbauer, G.; Wolschann, P. 2010: Structure-activity relationships of sandalwood odorants: synthesis of a new campholene derivative. Natural Product Communications 5(9): 1343-1348
Stappen, I.; Höfinghoff, J.; Friedl, S.; Pammer, C.; Wolschann, P.; Buchbauer, G. 2008: Structure-activity relationships of sandalwood odorants: total synthesis and fragrance properties of cyclopropano-beta-santalol. European Journal of Medicinal Chemistry 43(7): 1525-1529
Ding, N.; Chen, Q.; Zhang, W.; Ren, S.; Guo, Y.; Li, Y. 2012: Structure-activity relationships of saponin derivatives: a series of entry inhibitors for highly pathogenic H5N1 influenza virus. European Journal of Medicinal Chemistry 53: 316-326
Böttger, S.; Westhof, E.; Siems, K.; Melzig, M.F. 2013: Structure-activity relationships of saponins enhancing the cytotoxicity of ribosome-inactivating proteins type i (RIP-I). Toxicon: Official Journal of the International Society on Toxinology 73: 144-150
Fröhlich, T.; Edinger, D.; Kläger, R.; Troiber, C.; Salcher, E.; Badgujar, N.; Martin, I.; Schaffert, D.; Cengizeroglu, A.; Hadwiger, P.; Vornlocher, H.-P.; Wagner, E. 2012: Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. Journal of Controlled Release: Official Journal of the Controlled Release Society 160(3): 532-541
Howarth, G.A.; Hoyle, W.; Wakefield, B.J. 1969: Structure-activity relationships of some 5-nitro-2-furaldehyde oximes and hydrazones. Talanta 16(7): 967-973
Mohsen, A.M.Y.; Heller, E.; Holzgrabe, U.; Jensen, A.A.; Zlotos, D.P. 2014: Structure-activity relationships of strychnine analogs at glycine receptors. Chemistry and Biodiversity 11(8): 1256-1262
Young, B.M.; Hyatt, J.L.; Bouck, D.C.; Chen, T.; Hanumesh, P.; Price, J.; Boyd, V.A.; Potter, P.M.; Webb, T.R. 2010: Structure-activity relationships of substituted 1-pyridyl-2-phenyl-1,2-ethanediones: potent, selective carboxylesterase inhibitors. Journal of Medicinal Chemistry 53(24): 8709-8715
Kim, I.-H.; Lee, I.-H.; Nishiwaki, H.; Hammock, B.D.; Nishi, K. 2014: Structure-activity relationships of substituted oxyoxalamides as inhibitors of the human soluble epoxide hydrolase. Bioorganic and Medicinal Chemistry 22(3): 1163-1175
Kaffy, J.; Brinet, D.; Soulier, J.-L.; Khemtémourian, L.; Lequin, O.; Taverna, M.; Crousse, B.ît.; Ongeri, S. 2014: Structure-activity relationships of sugar-based peptidomimetics as modulators of amyloid β-peptide early oligomerization and fibrillization. European Journal of Medicinal Chemistry 86: 752-758
Vodnala, S.K.; Lundbäck, T.; Yeheskieli, E.; Sjöberg, B.; Gustavsson, A.-L.; Svensson, R.; Olivera, G.C.; Eze, A.A.; de Koning, H.P.; Hammarström, L.G.J.; Rottenberg, M.E. 2013: Structure-activity relationships of synthetic cordycepin analogues as experimental therapeutics for African trypanosomiasis. Journal of Medicinal Chemistry 56(24): 9861-9873
McRobb, L.; Handelsman, D.J.; Kazlauskas, R.; Wilkinson, S.; McLeod, M.D.; Heather, A.K. 2008: Structure-activity relationships of synthetic progestins in a yeast-based in vitro androgen bioassay. Journal of Steroid Biochemistry and Molecular Biology 110(1-2): 39-47
Sun, Y-Min.; Xiao, Z-Tao.; Zhang, H-Yu. 2014: Structure-activity relationships of tanshinones in activating Nrf2. A DFT study and implications for multifunctional antioxidant discovery. Natural Product Communications 9(4): 453-454
Kurzwernhart, A.; Kandioller, W.; Bächler, S.; Bartel, C.; Martic, S.; Buczkowska, M.; Mühlgassner, G.; Jakupec, M.A.; Kraatz, H.-B.; Bednarski, P.J.; Arion, V.B.; Marko, D.; Keppler, B.K.; Hartinger, C.G. 2012: Structure-activity relationships of targeted RuII(η6-p-cymene) anticancer complexes with flavonol-derived ligands. Journal of Medicinal Chemistry 55(23): 10512-10522
Pajeva, I.K.; Wiese, M. 2009: Structure-activity relationships of tariquidar analogs as multidrug resistance modulators. Aaps Journal 11(3): 435-444
Mahaney, P.E.; Kim, C.Y.; Coghlan, R.D.; Cohn, S.T.; Heffernan, G.D.; Huselton, C.A.; Terefenko, E.A.; Vu, A.T.; Zhang, P.; Burroughs, K.D.; Cosmi, S.A.; Bray, J.A.; Johnston, G.H.; Deecher, D.C.; Trybulski, E.J. 2009: Structure-activity relationships of the 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ol series of monoamine reuptake inhibitors. Bioorganic and Medicinal Chemistry Letters 19(19): 5807-5810
Hay, D.L.; Harris, P.W.R.; Kowalczyk, R.; Brimble, M.A.; Rathbone, D.L.; Barwell, J.; Conner, A.C.; Poyner, D.R. 2014: Structure-activity relationships of the N-terminus of calcitonin gene-related peptide: key roles of alanine-5 and threonine-6 in receptor activation. British Journal of Pharmacology 171(2): 415-426
Paulsen, V.S.; Blencke, H.-M.; Benincasa, M.; Haug, T.; Eksteen, J.J.; Styrvold, O.B.; Scocchi, M.; Stensvåg, K. 2013: Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region. Plos one 8(1): E53326
Abraham, T.; Prenner, E.J.; Lewis, R.N.A.H.; Mant, C.T.; Keller, S.; Hodges, R.S.; McElhaney, R.N. 2014: Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes. Biochimica et Biophysica Acta 1838(5): 1420-1429
Dawidowski, M.; Wilczek, M.; Kubica, K.; Skolmowski, M.ł; Turło, J. 2013: Structure-activity relationships of the aromatic site in novel anticonvulsant pyrrolo[1,2-a]pyrazine derivatives. Bioorganic and Medicinal Chemistry Letters 23(22): 6106-6110
Mahaney, P.E.; Gavrin, L.K.; Trybulski, E.J.; Stack, G.P.; Vu, T.An.; Cohn, S.T.; Ye, F.; Belardi, J.K.; Santilli, A.A.; Sabatucci, J.P.; Leiter, J.; Johnston, G.H.; Bray, J.A.; Burroughs, K.D.; Cosmi, S.A.; Leventhal, L.; Koury, E.J.; Zhang, Y.; Mugford, C.A.; Ho, D.M.; Rosenzweig-Lipson, S.J.; Platt, B.; Smith, V.A.; Deecher, D.C. 2008: Structure-activity relationships of the cycloalkanol ethylamine scaffold: discovery of selective norepinephrine reuptake inhibitors. Journal of Medicinal Chemistry 51(13): 4038-4049
Wong, Y.C.; Zhang, L.; Lin, G.; Zuo, Z. 2009: Structure-activity relationships of the glucuronidation of flavonoids by human glucuronosyltransferases. Expert Opinion on Drug Metabolism and Toxicology 5(11): 1399-1419
Lee, J.; Lee, D.; Choi, H.; Kim, H.H.; Kim, H.; Hwang, J.S.; Lee, D.G.; Kim, J.I. 2014: Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle. Bmb Reports 47(11): 625-630
Sailer, E.R.; Hoernlein, R.F.; Ammon, H.P.; Safayhi, H. 1996: Structure-activity relationships of the nonredox-type non-competitive leukotriene biosynthesis inhibitor acetyl-11-keto-β-boswellic acid. Phytomedicine: International Journal of PhytoTherapy and Phytopharmacology 3(1): 73-74
Kuemin, M.; van der Donk, W.A. 2010: Structure-activity relationships of the phosphonate antibiotic dehydrophos. Chemical Communications 46(41): 7694-7696
Yoshimori, A.; Oyama, T.; Takahashi, S.; Abe, H.; Kamiya, T.; Abe, T.; Tanuma, S.-i. 2014: Structure-activity relationships of the thujaplicins for inhibition of human tyrosinase. Bioorganic and Medicinal Chemistry 22(21): 6193-6200
Inoue, H.; Tokita, K.; Fukuzawa, S.; Tachibana, K. 2014: Structure-activity relationships of the truncated norzoanthamines exhibiting collagen protection toward anti-osteoporotic activity. Bioorganic and Medicinal Chemistry 22(13): 3455-3464
Appendino, G.; Ech-Chahad, A.; Minassi, A.; De Petrocellis, L.; Di Marzo, V. 2010: Structure-activity relationships of the ultrapotent vanilloid resiniferatoxin (RTX): the side chain benzylic methylene. Bioorganic and Medicinal Chemistry Letters 20(1): 97-99
Wolf, A.; Schoof, S.; Baumann, S.; Arndt, H.-D.; Kirschner, K.N. 2014: Structure-activity relationships of thiostrepton derivatives: implications for rational drug design. Journal of Computer-Aided Molecular Design 28(12): 1205-1215
Van Veldhoven, J.P.D.; Blad, C.C.; Artsen, C.M.; Klopman, C.; Wolfram, D.R.; Abdelkadir, M.J.; Lane, J.R.; Brussee, J.; Ijzerman, A.P. 2011: Structure-activity relationships of trans-substituted-propenoic acid derivatives on the nicotinic acid receptor HCA2 (GPR109A). Bioorganic and Medicinal Chemistry Letters 21(9): 2736-2739
Pajouhesh, H.; Feng, Z.-P.; Zhang, L.; Pajouhesh, H.; Jiang, X.; Hendricson, A.; Dong, H.; Tringham, E.; Ding, Y.; Vanderah, T.W.; Porreca, F.; Belardetti, F.; Zamponi, G.W.; Mitscher, L.A.; Snutch, T.P. 2012: Structure-activity relationships of trimethoxybenzyl piperazine N-type calcium channel inhibitors. Bioorganic and Medicinal Chemistry Letters 22(12): 4153-4158
Hou, X.; Majik, M.S.; Kim, K.; Pyee, Y.; Lee, Y.; Alexander, V.; Chung, H.-J.; Lee, H.W.; Chandra, G.; Lee, J.H.; Park, S.-G.; Choi, W.J.; Kim, H.O.; Phan, K.; Gao, Z.-G.; Jacobson, K.A.; Choi, S.; Lee, S.K.; Jeong, L.S. 2012: Structure-activity relationships of truncated C2- or C8-substituted adenosine derivatives as dual acting A₂A and A₃ adenosine receptor ligands. Journal of Medicinal Chemistry 55(1): 342-356
Jeong, L.S.; Pal, S.; Choe, S.A.; Choi, W.J.; Jacobson, K.A.; Gao, Z.-G.; Klutz, A.M.; Hou, X.; Kim, H.O.; Lee, H.W.; Lee, S.K.; Tosh, D.K.; Moon, H.R. 2008: Structure-activity relationships of truncated D- and l-4'-thioadenosine derivatives as species-independent A3 adenosine receptor antagonists. Journal of Medicinal Chemistry 51(20): 6609-6613
Mendgen, T.; Scholz, T.; Klein, C.D. 2010: Structure-activity relationships of tulipalines, tuliposides, and related compounds as inhibitors of MurA. Bioorganic and Medicinal Chemistry Letters 20(19): 5757-5762
Zandawala, M.; Poulos, C.; Orchard, I. 2015: Structure-activity relationships of two Rhodnius prolixus calcitonin-like diuretic hormone analogs. Peptides 68: 211-213
Joullié, M.M.; Berritt, S.; Hamel, E. 2011: Structure-activity relationships of ustiloxin analogues. Tetrahedron Letters 52(17): 2136-2139
Czikora, Á; Lizanecz, E.; Bakó, P.; Rutkai, I.; Ruzsnavszky, F.; Magyar, J.; Pórszász, R.; Kark, T.; Facskó, A.; Papp, Z.; Édes, I.; Tóth, A. 2012: Structure-activity relationships of vanilloid receptor agonists for arteriolar TRPV1. British Journal of Pharmacology 165(6): 1801-1812
Choi, S.H.; Ahn, J.-B.; Kozukue, N.; Kim, H.-J.; Nishitani, Y.; Zhang, L.; Mizuno, M.; Levin, C.E.; Friedman, M. 2012: Structure-activity relationships of α-, β(1)-, γ-, and δ-tomatine and tomatidine against human breast (MDA-MB-231), gastric (KATO-III), and prostate (PC3) cancer cells. Journal of Agricultural and Food Chemistry 60(15): 3891-3899
Sistla, S. 2013: Structure-activity relationships of αs-casein peptides with multifunctional biological activities. Molecular and Cellular Biochemistry 384(1-2): 29-38
Meurillon, M.ïa.; Marton, Z.; Hospital, A.; Jordheim, L.P.; Béjaud, J.ér.ôm.; Lionne, C.; Dumontet, C.; Périgaud, C.; Chaloin, L.; Peyrottes, S. 2014: Structure-activity relationships of β-hydroxyphosphonate nucleoside analogues as cytosolic 5'-nucleotidase Ii potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies. European Journal of Medicinal Chemistry 77: 18-37
Cometto-Muñiz, J.E.; Abraham, M.H. 2010: Structure-activity relationships on the odor detectability of homologous carboxylic acids by humans. Experimental Brain Research 207(1-2): 75-84
Martelli, C.; Coronnello, M.; Dei, S.; Manetti, D.; Orlandi, F.; Scapecchi, S.; Novella Romanelli, M.; Salerno, M.; Mini, E.; Teodori, E. 2010: Structure-activity relationships studies in a series of N,N-bis(alkanol)amine aryl esters as P-glycoprotein (Pgp) dependent multidrug resistance (MDR) inhibitors. Journal of Medicinal Chemistry 53(4): 1755-1762
Hussain, S.; Parveen, S.; Hao, X.; Zhang, S.; Wang, W.; Qin, X.; Yang, Y.; Chen, X.; Zhu, S.; Zhu, C.; Ma, B. 2014: Structure-activity relationships studies of quinoxalinone derivatives as aldose reductase inhibitors. European Journal of Medicinal Chemistry 80: 383-392
Guo, R.-H.; Zhang, Q.; Ma, Y.-B.; Luo, J.; Geng, C.-A.; Wang, L.-J.; Zhang, X.-M.; Zhou, J.; Jiang, Z.-Y.; Chen, J.-J. 2011: Structure-activity relationships study of 6-chloro-4-(2-chlorophenyl)-3-(2-hydroxyethyl) quinolin-2(1H)-one derivatives as novel non-nucleoside anti-hepatitis B virus agents. European Journal of Medicinal Chemistry 46(1): 307-319
Kotoku, N.; Hiramatsu, A.; Tsujita, H.; Hirakawa, Y.; Sanagawa, M.; Aoki, S.; Kobayashi, M. 2008: Structure-activity relationships study of bastadin 6, an anti-angiogenic brominated-tyrosine derived metabolite from marine sponge. Archiv der Pharmazie 341(9): 568-577
Velagapudi, S.P.; Seedhouse, S.J.; Disney, M.D. 2010: Structure-activity relationships through sequencing (StARTS) defines optimal and suboptimal RNA motif targets for small molecules. Angewandte Chemie 49(22): 3816-3818
Jabeen, I.; Pleban, K.; Rinner, U.; Chiba, P.; Ecker, G.F. 2012: Structure-activity relationships, ligand efficiency, and lipophilic efficiency profiles of benzophenone-type inhibitors of the multidrug transporter P-glycoprotein. Journal of Medicinal Chemistry 55(7): 3261-3273
Bhat, R.; Adam, A.T.; Lee, J.J.; Deloison, G.; Rouillé, Y.; Séron, K.; Rotella, D.P. 2014: Structure-activity studies of (-)-epigallocatechin gallate derivatives as HCV entry inhibitors. Bioorganic and Medicinal Chemistry Letters 24(17): 4162-4165
Lukmantara, A.Y.; Kalinowski, D.S.; Kumar, N.; Richardson, D.R. 2013: Structure-activity studies of 4-phenyl-substituted 2'-benzoylpyridine thiosemicarbazones with potent and selective anti-tumour activity. Organic and Biomolecular Chemistry 11(37): 6414-6425
Breining, S.R.; Melvin, M.; Bhatti, B.S.; Byrd, G.D.; Kiser, M.N.; Hepler, C.D.; Hooker, D.N.; Zhang, J.; Reynolds, L.A.; Benson, L.R.; Fedorov, N.B.; Sidach, S.S.; Mitchener, J.P.; Lucero, L.M.; Lukas, R.J.; Whiteaker, P.; Yohannes, D. 2012: Structure-activity studies of 7-heteroaryl-3-azabicyclo[3.3.1]non-6-enes: a novel class of highly potent nicotinic receptor ligands. Journal of Medicinal Chemistry 55(22): 9929-9945
Pearce, G.; Munske, G.; Yamaguchi, Y.; Ryan, C.A. 2010: Structure-activity studies of GmSubPep, a soybean peptide defense signal derived from an extracellular protease. Peptides 31(12): 2159-2164
Pearce, G.; Yamaguchi, Y.; Munske, G.; Ryan, C.A. 2010: Structure-activity studies of RALF, Rapid Alkalinization Factor, reveal an essential--YISY--motif. Peptides 31(11): 1973-1977
Findeisen, M.; Rathmann, D.; Beck-Sickinger, A.G. 2011: Structure-activity studies of RFamide peptides reveal subtype-selective activation of neuropeptide FF1 and FF2 receptors. Chemmedchem 6(6): 1081-1093
Nichols, R.; Bass, C.; Demers, L.; Larsen, B.; Li, E.; Blewett, N.; Converso-Baran, K.; Russell, M.W.; Westfall, M.V. 2012: Structure-activity studies of RFamide-related peptide-1 identify a functional receptor antagonist and novel cardiac myocyte signaling pathway involved in contractile performance. Journal of Medicinal Chemistry 55(17): 7736-7745
Maciagiewicz, I.; Zhou, S.; Bergmeier, S.C.; Hines, J.V. 2011: Structure-activity studies of RNA-binding oxazolidinone derivatives. Bioorganic and Medicinal Chemistry Letters 21(15): 4524-4527
Palin, R.; Abernethy, L.; Ansari, N.; Cameron, K.; Clarkson, T.; Dempster, M.; Dunn, D.; Easson, A.-M.; Edwards, D.; Maclean, J.; Everett, K.; Feilden, H.; Ho, K.-K.; Kultgen, S.; Littlewood, P.; McArthur, D.; McGregor, D.; McLuskey, H.; Neagu, I.; Neale, S.; Nisbet, L.-A.; Ohlmeyer, M.; Pham, Q.; Ratcliffe, P.; Rong, Y.; Roughton, A.; Sammons, M.; Swanson, R.; Tracey, H.; Walker, G. 2011: Structure-activity studies of a novel series of isoxazole-3-carboxamide derivatives as TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters 21(3): 892-898
Scanio, M.J.C.; Shi, L.; Bunnelle, W.H.; Anderson, D.J.; Helfrich, R.J.; Malysz, J.; Thorin-Hagene, K.K.; Van Handel, C.E.; Marsh, K.C.; Lee, C.-H.; Gopalakrishnan, M. 2011: Structure-activity studies of diazabicyclo[3.3.0]octane-substituted pyrazines and pyridines as potent α4β2 nicotinic acetylcholine receptor ligands. Journal of Medicinal Chemistry 54(21): 7678-7692
Zhou, M.; Eun, Y-Jin.; Guzei, I.A.; Weibel, D.B. 2013: Structure-activity studies of divin: an inhibitor of bacterial cell division. Acs Medicinal Chemistry Letters 4(9): 880-885
Socha, A.M.; Laplante, K.L.; Russell, D.J.; Rowley, D.C. 2009: Structure-activity studies of echinomycin antibiotics against drug-resistant and biofilm-forming Staphylococcus aureus and Enterococcus faecalis. Bioorganic and Medicinal Chemistry Letters 19(5): 1504-1507
Pappa, E.V.; Zompra, A.A.; Diamantopoulou, Z.; Spyranti, Z.; Pairas, G.; Lamari, F.N.; Katsoris, P.; Spyroulias, G.A.; Cordopatis, P. 2012: Structure-activity studies of lGnRH-IIi through rational amino acid substitution and NMR conformational studies. Biopolymers 98(6): 525-534
Krivogorsky, B.; Pernat, J.A.; Douglas, K.A.; Czerniecki, N.J.; Grundt, P. 2012: Structure-activity studies of some berberine analogs as inhibitors of Toxoplasma gondii. Bioorganic and Medicinal Chemistry Letters 22(8): 2980-2982
Ragazzon, P.A.; Iley, J.; Missailidis, S. 2009: Structure-activity studies of the binding of the flavonoid scaffold to DNA. Anticancer Research 29(6): 2285-2293
Singh, A.J.; Razzak, M.; Teesdale-Spittle, P.; Gaitanos, T.N.; Wilmes, A.; Paterson, I.; Goodman, J.M.; Miller, J.H.; Northcote, P.T. 2011: Structure-activity studies of the pelorusides: new congeners and semi-synthetic analogues. Organic and Biomolecular Chemistry 9(12): 4456-4466
Asaki, T.; Aoki, T.; Hamamoto, T.; Sugiyama, Y.; Ohmachi, S.; Kuwabara, K.; Murakami, K.; Todo, M. 2008: Structure-activity studies on 1,3-dioxane-2-carboxylic acid derivatives, a novel class of subtype-selective peroxisome proliferator-activated receptor alpha (PPARalpha) agonists. Bioorganic and Medicinal Chemistry 16(2): 981-994
Altenbach, R.J.; Adair, R.M.; Bettencourt, B.M.; Black, L.A.; Fix-Stenzel, S.R.; Gopalakrishnan, S.M.; Hsieh, G.C.; Liu, H.; Marsh, K.C.; McPherson, M.J.; Milicic, I.; Miller, T.R.; Vortherms, T.A.; Warrior, U.; Wetter, J.M.; Wishart, N.; Witte, D.G.; Honore, P.; Esbenshade, T.A.; Hancock, A.A.; Brioni, J.D.; Cowart, M.D. 2008: Structure-activity studies on a series of a 2-aminopyrimidine-containing histamine H4 receptor ligands. Journal of Medicinal Chemistry 51(20): 6571-6580
McNulty, J.; Nair, J.J.; Little, J.R.L.; Brennan, J.D.; Bastida, J. 2010: Structure-activity studies on acetylcholinesterase inhibition in the lycorine series of Amaryllidaceae alkaloids. Bioorganic and Medicinal Chemistry Letters 20(17): 5290-5294
Byers, J.A.; Högberg, H.E.; Unelius, C.R.; Birgersson, G.; Löfqvist, J. 1989: Structure-activity studies on aggregation pheromone components of Pityogenes chalcographus (Coleoptera: Scolytidae) : all stereoisomers of chalcogran and methyl 2,4-decadienoate. Journal of Chemical Ecology 15(2): 685-695
Kochansky, J.; Feldmesser, J. 1989: Structure-activity studies on nematicidal activity of dialkyl carbamates and thiocarbamates. Journal of Nematology 21(2): 158-163
Vaara, M.; Vaara, T. 2010: Structure-activity studies on novel polymyxin derivatives that carry only three positive charges. Peptides 31(12): 2318-2321
McNulty, J.; Nair, J.J.; Singh, M.; Crankshaw, D.J.; Holloway, A.C. 2009: Structure-activity studies on seco-pancratistatin analogs: potent inhibitors of human cytochrome P450 3A4. Bioorganic and Medicinal Chemistry Letters 19(19): 5607-5612
Trapp, J.; Meier, R.; Hongwiset, D.; Kassack, M.U.; Sippl, W.; Jung, M. 2007: Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). Chemmedchem 2(10): 1419-1431
Kaschula, C.H.; Hunter, R.; Stellenboom, N.; Caira, M.R.; Winks, S.; Ogunleye, T.; Richards, P.; Cotton, J.; Zilbeyaz, K.; Wang, Y.; Siyo, V.; Ngarande, E.; Parker, M.I. 2012: Structure-activity studies on the anti-proliferation activity of ajoene analogues in WHCO1 oesophageal cancer cells. European Journal of Medicinal Chemistry 50: 236-254
Umemoto, S.; Im, S.; Zhang, J.; Hagihara, M.; Murata, A.; Harada, Y.; Fukuzumi, T.; Wazaki, T.; Sasaoka, S.-i.; Nakatani, K. 2012: Structure-activity studies on the fluorescent indicator in a displacement assay for the screening of small molecules binding to RNA. Chemistry 18(32): 9999-10008
McNulty, J.; Nair, J.J.; Bastida, J.; Pandey, S.; Griffin, C. 2009: Structure-activity studies on the lycorine pharmacophore: a potent inducer of apoptosis in human leukemia cells. Phytochemistry 70(7): 913-919
Trapella, C.; Fischetti, C.; Pela', M.; Lazzari, I.; Guerrini, R.; Calo', G.; Rizzi, A.; Camarda, V.; Lambert, D.G.; McDonald, J.; Regoli, D.; Salvadori, S. 2009: Structure-activity studies on the nociceptin/orphanin FQ receptor antagonist 1-benzyl-N-{3-[spiroisobenzofuran-1(3H),4'-piperidin-1-yl]propyl} pyrrolidine-2-carboxamide. Bioorganic and Medicinal Chemistry 17(14): 5080-5095
Kikumori, M.; Yanagita, R.C.; Tokuda, H.; Suzuki, N.; Nagai, H.; Suenaga, K.; Irie, K. 2012: Structure-activity studies on the spiroketal moiety of a simplified analogue of debromoaplysiatoxin with antiproliferative activity. Journal of Medicinal Chemistry 55(11): 5614-5626
Banerjee, S.; Azmi, A.S.; Padhye, S.; Singh, M.W.; Baruah, J.B.; Philip, P.A.; Sarkar, F.H.; Mohammad, R.M. 2010: Structure-activity studies on therapeutic potential of Thymoquinone analogs in pancreatic cancer. Pharmaceutical Research 27(6): 1146-1158
Camarda, V.; Trapella, C.; Calo', G.; Guerrini, R.; Rizzi, A.; Ruzza, C.; Fiorini, S.; Marzola, E.; Reinscheid, R.K.; Regoli, D.; Salvadori, S. 2008: Structure-activity study at positions 3 and 4 of human neuropeptide S. Bioorganic and Medicinal Chemistry 16(19): 8841-8845
Marchais-Oberwinkler, S.; Frotscher, M.; Ziegler, E.; Werth, R.; Kruchten, P.; Messinger, J.; Thole, H.; Hartmann, R.W. 2009: Structure-activity study in the class of 6-(3'-hydroxyphenyl)naphthalenes leading to an optimization of a pharmacophore model for 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) inhibitors. Molecular and Cellular Endocrinology 301(1-2): 205-211
Bugge, S.; Kaspersen, S.J.; Larsen, S.; Nonstad, U.; Bjørkøy, G.; Sundby, E.; Hoff, B.år.H. 2014: Structure-activity study leading to identification of a highly active thienopyrimidine based EGFR inhibitor. European Journal of Medicinal Chemistry 75: 354-374
Monincová, L.; Veverka, V.ác.; Slaninová, J.ři.; Buděšínský, M.š; Fučík, V.ír.; Bednárová, L.; Straka, J.; Ceřovský, V.ác. 2014: Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes (Hymenoptera: Melittidae). Journal of Peptide Science: An Official Publication of the European Peptide Society 20(6): 375-384
Vanek, V.ác.; Budesínský, M.; Kabeleová, P.; Sanda, M.; Kozísek, M.; Hanclová, I.; Mládková, J.; Brynda, J.í; Rosenberg, I.; Koutmos, M.; Garrow, T.A.; Jirácek, J.í 2009: Structure-activity study of new inhibitors of human betaine-homocysteine S-methyltransferase. Journal of Medicinal Chemistry 52(12): 3652-3665
Bakunova, S.M.; Bakunov, S.A.; Patrick, D.A.; Kumar, E.V.K.S.; Ohemeng, K.A.; Bridges, A.S.; Wenzler, T.; Barszcz, T.; Jones, S.K.; Werbovetz, K.A.; Brun, R.; Tidwell, R.R. 2009: Structure-activity study of pentamidine analogues as antiprotozoal agents. Journal of Medicinal Chemistry 52(7): 2016-2035
Ghadimi, S.; Valmoozi, A.Asghar.Ebrahimi.; Pourayoubi, M.; Samani, K.Asad. 2008: Structure-activity study of phosphoramido acid esters as acetylcholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 23(4): 556-561
Peng, L.; Duan, L.; Liu, X.; Shen, M.; Li, Y.; Yan, J.; Li, H.; Ding, K. 2011: Structure-activity study on a series of α-glutamic acid scaffold based compounds as new ADAMTS inhibitors. Bioorganic and Medicinal Chemistry Letters 21(15): 4457-4461
Pal, K.; Pore, S.; Sinha, S.; Janardhanan, R.; Mukhopadhyay, D.; Banerjee, R. 2011: Structure-activity study to develop cationic lipid-conjugated haloperidol derivatives as a new class of anticancer therapeutics. Journal of Medicinal Chemistry 54(7): 2378-2390
Upham, B.L.; Park, J-Suk.; Babica, P.; Sovadinova, I.; Rummel, A.M.; Trosko, J.E.; Hirose, A.; Hasegawa, R.; Kanno, J.; Sai, K. 2009: Structure-activity-dependent regulation of cell communication by perfluorinated fatty acids using in vivo and in vitro model systems. Environmental Health Perspectives 117(4): 545-551
Younis, Y.; Douelle, F.; González Cabrera, D.; Le Manach, C.; Nchinda, A.T.; Paquet, T.; Street, L.J.; White, K.L.; Zabiulla, K.Mohammed.; Joseph, J.T.; Bashyam, S.; Waterson, D.; Witty, M.J.; Wittlin, S.; Charman, S.A.; Chibale, K. 2013: Structure-activity-relationship studies around the 2-amino group and pyridine core of antimalarial 3,5-diarylaminopyridines lead to a novel series of pyrazine analogues with oral in vivo activity. Journal of Medicinal Chemistry 56(21): 8860-8871
Sugimoto, K.; Tamura, K.; Tohda, C.; Toyooka, N.; Nemoto, H.; Matsuya, Y. 2013: Structure-activity-relationship studies on dihydrofuran-fused perhydrophenanthrenes as an anti-Alzheimer's disease agent. Bioorganic and Medicinal Chemistry 21(15): 4459-4471
Xiao, J.; Cao, H.; Wang, Y.; Yamamoto, K.; Wei, X. 2010: Structure-affinity relationship of flavones on binding to serum albumins: effect of hydroxyl groups on ring a. Molecular Nutrition and Food Research 54(Suppl 2): S253-S260
Miyazaki, I.; Okumura, H.; Simizu, S.; Takahashi, Y.; Kanoh, N.; Muraoka, Y.; Nonomura, Y.; Osada, H. 2009: Structure-affinity relationship study of bleomycins and Shble protein by use of a chemical array. Chembiochem: a European Journal of Chemical Biology 10(5): 845-852
Brizzi, A.; Aiello, F.; Marini, P.; Cascio, M.G.; Corelli, F.; Brizzi, V.; De Petrocellis, L.; Ligresti, A.; Luongo, L.; Lamponi, S.; Maione, S.; Pertwee, R.G.; Di Marzo, V. 2014: Structure-affinity relationships and pharmacological characterization of new alkyl-resorcinol cannabinoid receptor ligands: Identification of a dual cannabinoid receptor/TRPA1 channel agonist. Bioorganic and Medicinal Chemistry 22(17): 4770-4783
Mandal, P.K.; Ren, Z.; Chen, X.; Xiong, C.; McMurray, J.S. 2009: Structure-affinity relationships of glutamine mimics incorporated into phosphopeptides targeted to the SH2 domain of signal transducer and activator of transcription 3. Journal of Medicinal Chemistry 52(19): 6126-6141
Holl, R.; Geiger, C.; Nambo, M.; Itami, K.; Schepmann, D.; Wünsch, B. 2009: Structure-affinity-relationship study of bicyclic sigma receptor ligands. Central Nervous System Agents in Medicinal Chemistry 9(3): 220-229
Franchini, S.; Battisti, U.M.; Baraldi, A.; Prandi, A.; Fossa, P.; Cichero, E.; Tait, A.; Sorbi, C.; Marucci, G.; Cilia, A.; Pirona, L.; Brasili, L. 2014: Structure-affinity/activity relationships of 1,4-dioxa-spiro[4.5]decane based ligands at α<alpha>1 and 5-HT1A receptors. European Journal of Medicinal Chemistry 87: 248-266
Schimer, J.ří; Cígler, P.; Veselý, J.; Grantz Šašková, K.ár.; Lepšík, M.; Brynda, J.ří; Rezáčová, P.ín.; Kožíšek, M.; Císařová, I.; Oberwinkler, H.; Kraeusslich, H.-G.; Konvalinka, J. 2012: Structure-aided design of novel inhibitors of HIV protease based on a benzodiazepine scaffold. Journal of Medicinal Chemistry 55(22): 10130-10135
Guturu, H.; Doxey, A.C.; Wenger, A.M.; Bejerano, G. 2013: Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences 368(1632): 20130029
Wang, J.-L.; Shen, X.-L.; Chen, Q.-H.; Qi, G.; Wang, W.; Wang, F.-P. 2009: Structure-analgesic activity relationship studies on the C(18)- and C(19)-diterpenoid alkaloids. Chemical and Pharmaceutical Bulletin 57(8): 801-807
Cai, W.; Zalis, M.E.; Näppi, J.; Harris, G.J.; Yoshida, H. 2008: Structure-analysis method for electronic cleansing in cathartic and noncathartic CT colonography. Medical Physics 35(7): 3259-3277
Zheng, F.; Zhan, C-Guo. 2008: Structure-and-mechanism-based design and discovery of therapeutics for cocaine overdose and addiction. Organic and Biomolecular Chemistry 6(5): 836-843
Yao, Y.; Li, Z-Sheng. 2014: Structure-and-mechanism-based design and discovery of type II Mycobacterium tuberculosis dehydroquinate dehydratase inhibitors. Current Topics in Medicinal Chemistry 14(1): 51-63
Sawada, H.; Onoda, K.; Morita, D.; Ishitsubo, E.; Matsuno, K.; Tokiwa, H.; Kuroda, T.; Miyachi, H. 2013: Structure-anti-MRSA activity relationship of macrocyclic bis(bibenzyl) derivatives. Bioorganic and Medicinal Chemistry Letters 23(24): 6563-6568
Vázquez, R.; Riveiro, M.ía.E.; Vermeulen, M.ón.; Alonso, E.; Mondillo, C.; Facorro, G.; Piehl, L.; Gómez, N.; Moglioni, A.; Fernández, N.; Baldi, A.; Shayo, C.; Davio, C. 2012: Structure-anti-leukemic activity relationship study of ortho-dihydroxycoumarins in U-937 cells: key role of the δ-lactone ring in determining differentiation-inducing potency and selective pro-apoptotic action. Bioorganic and Medicinal Chemistry 20(18): 5537-5549
Tago, R.; Yamauchi, S.; Maruyama, M.; Akiyama, K.; Sugahara, T.; Kishida, T.; Koba, Y. 2008: Structure-antibacterial activity relationship for 9-O,9'-O-demethyl (+)-virgatusin. Bioscience Biotechnology and Biochemistry 72(4): 1032-1037
Gaston, F.; Babas, T.; Lakhdar-Ghazal, F.; Bahraoui, E. 2010: Structure-antigenicity of the V3 region of SIVmac envelope glycoprotein. Journal of Peptide Science: An Official Publication of the European Peptide Society 16(1): 48-57
Fousteris, M.A.; Koutsourea, A.I.; Arsenou, E.S.; Papageorgiou, A.; Mourelatos, D.; Nikolaropoulos, S.S. 2007: Structure-antileukemic activity relationship study of B- and D-ring modified and nonmodified steroidal esters of 4-methyl-3-N,N-bis(2-chloroethyl)amino benzoic acid: a comparative study. Anti-Cancer Drugs 18(9): 997-1004
Lee, J.; Lee, D.G. 2008: Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Experimental and Molecular Medicine 40(4): 370-376
Tosco, P.; Marini, E.; Rolando, B.; Lazzarato, L.; Cena, C.; Bertinaria, M.; Fruttero, R.; Reist, M.; Carrupt, P.-A.; Gasco, A. 2008: Structure-antioxidant activity relationships in a series of NO-donor phenols. Chemmedchem 3(9): 1443-1448
Craciunescu, D.; Ghirvu, C.; Doadrio López, A. 1983: Structure-antitumor activity relationship for new analogs of thecis-dichloro(l,2-diamino cyclohexane) platinum(II) complex. Biological Trace Element Research 5(6): 517-528
Sakami, S.; Maeda, M.; Kawai, K.; Aoki, T.; Kawamura, K.; Fujii, H.; Hasebe, K.; Nakajima, M.; Endo, T.; Ueno, S.; Ito, T.; Kamei, J.; Nagase, H. 2008: Structure-antitussive activity relationships of naltrindole derivatives. Identification of novel and potent antitussive agents. Journal of Medicinal Chemistry 51(15): 4404-4411
Wang, Y.; Connors, R.; Fan, P.; Wang, X.; Wang, Z.; Liu, J.; Kayser, F.; Medina, J.C.; Johnstone, S.; Xu, H.; Thibault, S.; Walker, N.; Conn, M.; Zhang, Y.; Liu, Q.; Grillo, M.P.; Motani, A.; Coward, P.; Wang, Z. 2014: Structure-assisted discovery of the first non-retinoid ligands for Retinol-Binding Protein 4. Bioorganic and Medicinal Chemistry Letters 24(13): 2885-2891
Ul-Haq, Z.; Khan, W.; Zia, S.R.; Iqbal, S. 2012: Structure-based 3D-QSAR models and dynamics analysis of novel N-benzyl pyridinone as p38α MAP kinase inhibitors for anticytokine activity. Journal of Molecular Graphics and Modelling 36: 48-61
Kaur, K.; Talele, T.T. 2009: Structure-based CoMFA and CoMSIA study of indolinone inhibitors of PDK1. Journal of Computer-Aided Molecular Design 23(1): 25-36
Yasuo, K.; Yamaotsu, N.; Gouda, H.; Tsujishita, H.; Hirono, S. 2009: Structure-based CoMFA as a predictive model - CYP2C9 inhibitors as a test case. Journal of Chemical Information and Modeling 49(4): 853-864
Alibés, A.; Serrano, L.; Nadra, A.D. 2010: Structure-based DNA-binding prediction and design. Methods in Molecular Biology 649: 77-88
Sheng, J.; Gan, J.; Huang, Z. 2013: Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Medicinal Research Reviews 33(5): 1119-1173
Dukka, B.K. 2013: Structure-based Methods for Computational Protein Functional Site Prediction. Computational and Structural Biotechnology Journal 8: E201308005
Liu, L.A.; Bader, J.S. 2009: Structure-based ab initio prediction of transcription factor-binding sites. Methods in Molecular Biology 541: 23-41
Smith, A.F.; Secomb, T.W.; Pries, A.R.; Smith, N.P.; Shipley, R.J. 2015: Structure-based algorithms for microvessel classification. Microcirculation 22(2): 99-108
Qiu, J.A.; Wilson, H.L.; Rajagopalan, K.V. 2012: Structure-based alteration of substrate specificity and catalytic activity of sulfite oxidase from sulfite oxidation to nitrate reduction. Biochemistry 51(6): 1134-1147
Watanabe, Y.; Kobayashi, T.; Yamamoto, H.; Hoshida, H.; Akada, R.; Inagaki, F.; Ohsumi, Y.; Noda, N.N. 2012: Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. Journal of Biological Chemistry 287(38): 31681-31690
Ferreira, P.; Sant'Anna, R.; Sant'Anna, O.; Varejão, N.; Lima, C.; Novis, S.; Barbosa, R.V.; Caldeira, C.M.; Rumjanek, F.D.; Ventura, S.; Cruz, M.W.; Foguel, D. 2013: Structure-based analysis of A19D, a variant of transthyretin involved in familial amyloid cardiomyopathy. Plos one 8(12): E82484
Cui, F.; Zhurkin, V.B. 2010: Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro. Journal of Biomolecular Structure and Dynamics 27(6): 821-841
Kucera, K.; Koblansky, A.A.; Saunders, L.P.; Frederick, K.B.; De La Cruz, E.M.; Ghosh, S.; Modis, Y. 2010: Structure-based analysis of Toxoplasma gondii profilin: a parasite-specific motif is required for recognition by Toll-like receptor 11. Journal of Molecular Biology 403(4): 616-629
Geula, S.; Naveed, H.; Liang, J.; Shoshan-Barmatz, V. 2012: Structure-based analysis of VDAC1 protein: defining oligomer contact sites. Journal of Biological Chemistry 287(3): 2179-2190
Geula, S.; Ben-Hail, D.; Shoshan-Barmatz, V. 2012: Structure-based analysis of VDAC1: N-terminus location, translocation, channel gating and association with anti-apoptotic proteins. Biochemical Journal 444(3): 475-485
Minutolo, C.; Nadra, A.D.; Fernández, C.; Taboas, M.; Buzzalino, N.í; Casali, B.ár.; Belli, S.; Charreau, E.H.; Alba, L.; Dain, L. 2011: Structure-based analysis of five novel disease-causing mutations in 21-hydroxylase-deficient patients. Plos one 6(1): E15899
Meinke, G.; Phelan, P.J.; Fradet-Turcotte, A.él.; Bohm, A.; Archambault, J.; Bullock, P.A. 2011: Structure-based analysis of the interaction between the simian virus 40 T-antigen origin binding domain and single-stranded DNA. Journal of Virology 85(2): 818-827
Chwastyk, M.; Jaskolski, M.; Cieplak, M. 2014: Structure-based analysis of thermodynamic and mechanical properties of cavity-containing proteins--case study of plant pathogenesis-related proteins of class 10. Febs Journal 281(1): 416-429
Andrews, S.P.; Brown, G.A.; Christopher, J.A. 2014: Structure-based and fragment-based GPCR drug discovery. Chemmedchem 9(2): 256-275
Sgobba, M.; Rastelli, G. 2009: Structure-based and in silico design of Hsp90 inhibitors. Chemmedchem 4(9): 1399-1409
Huang, H-Jin.; Lee, K-Jen.; Yu, H.W.; Chen, C-Yu.; Hsu, C-Ho.; Chen, H-Yi.; Tsai, F-Jen.; Chen, C.Yu-Chian. 2010: Structure-based and ligand-based drug design for HER 2 receptor. Journal of Biomolecular Structure and Dynamics 28(1): 23-37
Lim, S.V.; Rahman, M.B.A.; Tejo, B.A. 2011: Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus. Bmc Bioinformatics 12(Suppl 13): S24
Du, Q.-S.; Gao, J.; Wei, Y.-T.; Du, L.-Q.; Wang, S.-Q.; Huang, R.-B. 2012: Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design. Journal of Chemical Information and Modeling 52(4): 996-1004
Paderes, G.D.; Dress, K.; Huang, B.; Elleraas, J.; Rejto, P.A.; Pauly, T. 2011: Structure-based and property-compliant library design of 11β-HSD1 adamantyl amide inhibitors. Methods in Molecular Biology 685: 191-215
Hawwa, R.; Larsen, S.D.; Ratia, K.; Mesecar, A.D. 2009: Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans. Journal of Molecular Biology 393(1): 36-57
Chen, X-Mei.; Lu, T.; Lu, S.; Li, H-Fang.; Yuan, H-Liang.; Ran, T.; Liu, H-Chun.; Chen, Y-Dong. 2010: Structure-based and shape-complemented pharmacophore modeling for the discovery of novel checkpoint kinase 1 inhibitors. Journal of Molecular Modeling 16(7): 1195-1204
van Staalduinen, L.M.; Park, C-Su.; Yeom, S-Jin.; Adams-Cioaba, M.A.; Oh, D-Kun.; Jia, Z. 2010: Structure-based annotation of a novel sugar isomerase from the pathogenic E. coli O157:H7. Journal of Molecular Biology 401(5): 866-881
Hilgenfeld, R. 2010: Structure-based antivirals for emerging and neglected RNA viruses: an emerging field for medicinal chemistry in academia. Future Medicinal Chemistry 2(7): 1061-1067
Salum, L.ív.B.; Polikarpov, I.; Andricopulo, A.D. 2008: Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity. Journal of Chemical Information and Modeling 48(11): 2243-2253
Gao, X.; Cui, W.; Ding, N.; Liu, Z.; Tian, Y.; Zhou, Z. 2013: Structure-based approach to alter the substrate specificity of Bacillus subtilis aminopeptidase. Prion 7(4): 328-334
Ono, K.; Takeuchi, K.; Ueda, H.; Morita, Y.; Tanimura, R.; Shimada, I.; Takahashi, H. 2014: Structure-based approach to improve a small-molecule inhibitor by the use of a competitive peptide ligand. Angewandte Chemie 53(10): 2597-2601
Attolino, E.; Calderone, V.; Dragoni, E.; Fragai, M.; Richichi, B.; Luchinat, C.; Nativi, C. 2010: Structure-based approach to nanomolar, water soluble matrix metalloproteinases inhibitors (MMPIs). European Journal of Medicinal Chemistry 45(12): 5919-5925
Delgado-Soler, L.; Del Mar Orzaez, M.; Rubio-Martinez, J. 2013: Structure-based approach to the design of BakBH3 mimetic peptides with increased helical propensity. Journal of Molecular Modeling 19(10): 4305-4318
Zhang, F.; Zarrine-Afsar, A.; Al-Abdul-Wahid, M.S.; Prosser, R.S.; Davidson, A.R.; Woolley, G.A. 2009: Structure-based approach to the photocontrol of protein folding. Journal of the American Chemical Society 131(6): 2283-2289
Salam, N.K.; Adzhigirey, M.; Sherman, W.; Pearlman, D.A. 2014: Structure-based approach to the prediction of disulfide bonds in proteins. Protein Engineering Design and Selection: Peds 27(10): 365-374
Nicola, G.; Abagyan, R. 2009: Structure-based approaches to antibiotic drug discovery. Current Protocols in Microbiology Chapter 17: Unit 17.2
Metri, R.; Jerath, G.; Kailas, G.; Gacche, N.; Pal, A.; Ramakrishnan, V. 2014: Structure-based barcoding of proteins. Protein Science: a Publication of the Protein Society 23(1): 117-120
Zhan, P.; Li, X.; Li, Z.; Chen, X.; Tian, Y.; Chen, W.; Liu, X.; Pannecouque, C.; De Clercq, E. 2012: Structure-based bioisosterism design, synthesis and biological evaluation of novel 1,2,4-triazin-6-ylthioacetamides as potent HIV-1 NNRTIs. Bioorganic and Medicinal Chemistry Letters 22(23): 7155-7162
Balogh, B.áz.; Hetényi, C.; Keseru, M.ós.G.ör.; Mátyus, P.ét. 2007: Structure-based calculation of binding affinities of alpha 2A-adrenoceptor agonists. Chemmedchem 2(6): 801-805
Adolphs, J.; Müh, F.; Madjet, M.E.-A.; am Busch, M.S.; Renger, T. 2010: Structure-based calculations of optical spectra of photosystem i suggest an asymmetric light-harvesting process. Journal of the American Chemical Society 132(10): 3331-3343
Nishitani, Y.; Yoshida, S.; Fujihashi, M.; Kitagawa, K.; Doi, T.; Atomi, H.; Imanaka, T.; Miki, K. 2010: Structure-based catalytic optimization of a type IIi Rubisco from a hyperthermophile. Journal of Biological Chemistry 285(50): 39339-39347
Do, H.; Kim, S.-J.; Kim, H.J.; Lee, J.H. 2014: Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1. Acta Crystallographica. Section D Biological Crystallography 70(Part 4): 1061-1073
Zhang, C.; Fan, K.; Zhang, W.; Zhu, R.; Zhang, L.; Wei, D. 2012: Structure-based characterization of canine-human chimeric uricases and its evolutionary implications. Biochimie 94(6): 1412-1420
Wiederstein, M.; Gruber, M.; Frank, K.; Melo, F.; Sippl, M.J. 2014: Structure-based characterization of multiprotein complexes. Structure 22(7): 1063-1070
Fu, C.; Wu, G.; Lv, F.; Tian, F. 2012: Structure-based characterization of the binding of peptide to the human endophilin-1 Src homology 3 domain using position-dependent noncovalent potential analysis. Journal of Molecular Modeling 18(5): 2153-2161
Pirard, B. 2009: Structure-based chemogenomics: analysis of protein family landscapes. Methods in Molecular Biology 575: 281-296
Hastings, J.; Magka, D.; Batchelor, C.; Duan, L.; Stevens, R.; Ennis, M.; Steinbeck, C. 2012: Structure-based classification and ontology in chemistry. Journal of Cheminformatics 4: 8
Sheng, G.; Zhao, H.; Wang, J.; Rao, Y.; Tian, W.; Swarts, D.C.; van der Oost, J.; Patel, D.J.; Wang, Y. 2014: Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proceedings of the National Academy of Sciences of the United States of America 111(2): 652-657
Tong, J.C.; Tan, T.W.; Ranganathan, S. 2014: Structure-based clustering of major histocompatibility complex (MHC) proteins for broad-based T-cell vaccine design. Methods in Molecular Biology 1184: 503-511
Fukuda, M.; Zhang, H.; Ishiguro, T.; Fukuzawa, K.; Itoh, S. 2013: Structure-based coarse-graining for inhomogeneous liquid polymer systems. Journal of Chemical Physics 139(5): 054901
Jochum, M.; Andrienko, D.; Kremer, K.; Peter, C. 2012: Structure-based coarse-graining in liquid slabs. Journal of Chemical Physics 137(6): 064102
Lee, S.-M.; Üpping, J.; Bielawny, A.; Knez, M. 2011: Structure-based color of natural petals discriminated by polymer replication. Acs Applied Materials and Interfaces 3(1): 30-34
Nisius, B.; Sha, F.; Gohlke, H. 2012: Structure-based computational analysis of protein binding sites for function and druggability prediction. Journal of Biotechnology 159(3): 123-134
Zhu, K.; Lu, J.; Ye, F.; Jin, L.; Kong, X.; Liang, Z.; Chen, Y.; Yu, K.; Jiang, H.; Li, J.-Q.; Luo, C. 2013: Structure-based computational study of the hydrolysis of new Delhi metallo-β-lactmase-1. Biochemical and Biophysical Research Communications 431(1): 2-7
Dehury, B.; Patra, M.Chandra.; Maharana, J.; Sahu, J.; Sen, P.; Modi, M.Kumar.; Choudhury, M.Dutta.; Barooah, M. 2014: Structure-based computational study of two disease resistance gene homologues (Hm1 and Hm2) in maize (Zea mays L.) with implications in plant-pathogen interactions. Plos one 9(5): E97852
Takase, R.; Mikami, B.; Kawai, S.; Murata, K.; Hashimoto, W. 2014: Structure-based conversion of the coenzyme requirement of a short-chain dehydrogenase/reductase involved in bacterial alginate metabolism. Journal of Biological Chemistry 289(48): 33198-33214
Park, H.; Jeong, Y.; Hong, S. 2012: Structure-based de novo design and biochemical evaluation of novel BRAF kinase inhibitors. Bioorganic and Medicinal Chemistry Letters 22(2): 1027-1030
Park, H.; Bahn, Y.J.; Ryu, S.E. 2009: Structure-based de novo design and biochemical evaluation of novel Cdc25 phosphatase inhibitors. Bioorganic and Medicinal Chemistry Letters 19(15): 4330-4334
Park, H.; Lee, S.; Lee, S.; Hong, S. 2014: Structure-based de novo design and identification of D816V mutant-selective c-KIT inhibitors. Organic and Biomolecular Chemistry 12(26): 4644-4655
Park, H.; Ryu, S.E.; Kim, S.J. 2012: Structure-based de novo design of Eya2 phosphatase inhibitors. Journal of Molecular Graphics and Modelling 38: 382-388
Zhao, W.; Xu, M.; Liang, Z.; Ding, B.; Niu, L.; Liu, H.; Teng, M. 2011: Structure-based de novo prediction of zinc-binding sites in proteins of unknown function. Bioinformatics 27(9): 1262-1268
Kare, P.; Bhat, J.; Sobhia, M.E. 2013: Structure-based design and analysis of MAO-B inhibitors for Parkinson's disease: using in silico approaches. Molecular Diversity 17(1): 111-122
Cho, M.-H.; Song, J.-S.; Kim, H.-J.; Park, S.-G.; Jung, G. 2013: Structure-based design and biochemical evaluation of sulfanilamide derivatives as hepatitis B virus capsid assembly inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 28(5): 916-925
Avila, C.M.; Lopes, A.B.; Gonçalves, A.S.; da Silva, L.L.; Romeiro, N.C.; Miranda, A.L.P.; Sant'Anna, C.M.R.; Barreiro, E.J.; Fraga, C.A.M. 2011: Structure-based design and biological profile of (E)-N-(4-Nitrobenzylidene)-2-naphthohydrazide, a novel small molecule inhibitor of IκB kinase-β. European Journal of Medicinal Chemistry 46(4): 1245-1253
Du, C.-L.; Yao, J.-M. 2007: Structure-based design and biosynthesis of collagen proteins. Sheng Wu Gong Cheng Xue Bao 23(2): 189-194
Dennis, M.L.; Chhabra, S.; Wang, Z.-C.; Debono, A.; Dolezal, O.; Newman, J.; Pitcher, N.P.; Rahmani, R.; Cleary, B.; Barlow, N.; Hattarki, M.; Graham, B.; Peat, T.S.; Baell, J.B.; Swarbrick, J.D. 2014: Structure-based design and development of functionalized Mercaptoguanine derivatives as inhibitors of the folate biosynthesis pathway enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Staphylococcus aureus. Journal of Medicinal Chemistry 57(22): 9612-9626
Micco, M.; Collie, G.W.; Dale, A.G.; Ohnmacht, S.A.; Pazitna, I.; Gunaratnam, M.; Reszka, A.P.; Neidle, S. 2013: Structure-based design and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. Journal of Medicinal Chemistry 56(7): 2959-2974
Arcangeli, C.; Circelli, P.; Donini, M.; Aljabali, A.A.A.; Benvenuto, E.; Lomonossoff, G.P.; Marusic, C. 2014: Structure-based design and experimental engineering of a plant virus nanoparticle for the presentation of immunogenic epitopes and as a drug carrier. Journal of Biomolecular Structure and Dynamics 32(4): 630-647
Herod, M.R.; Prince, C.A.; Skilton, R.J.; Ward, V.K.; Cooper, J.B.; Clarke, I.N. 2014: Structure-based design and functional studies of novel noroviral 3C protease chimaeras offer insights into substrate specificity. Biochemical Journal 464(3): 461-472
Tso, S.-C.; Qi, X.; Gui, W.-J.; Chuang, J.L.; Morlock, L.K.; Wallace, A.L.; Ahmed, K.; Laxman, S.; Campeau, P.M.; Lee, B.H.; Hutson, S.M.; Tu, B.P.; Williams, N.S.; Tambar, U.K.; Wynn, R.M.; Chuang, D.T. 2013: Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain α-ketoacid dehydrogenase kinase. Proceedings of the National Academy of Sciences of the United States of America 110(24): 9728-9733
Matter, H.; Scheiper, B.; Steinhagen, H.; Böcskei, Z.; Fleury, V.ér.; McCort, G. 2011: Structure-based design and optimization of potent renin inhibitors on 5- or 7-azaindole-scaffolds. Bioorganic and Medicinal Chemistry Letters 21(18): 5487-5492
Li, D.; Gui, J.; Li, Y.; Feng, L.; Han, X.; Sun, Y.; Sun, T.; Chen, Z.; Cao, Y.; Zhang, Y.; Zhou, L.; Hu, X.; Ren, Y.; Wan, J. 2012: Structure-based design and screen of novel inhibitors for class Ii 3-hydroxy-3-methylglutaryl coenzyme a reductase from Streptococcus pneumoniae. Journal of Chemical Information and Modeling 52(7): 1833-1841
Teng, M.; Zhu, J.; Johnson, M.D.; Chen, P.; Kornmann, J.; Chen, E.; Blasina, A.; Register, J.; Anderes, K.; Rogers, C.; Deng, Y.; Ninkovic, S.; Grant, S.; Hu, Q.; Lundgren, K.; Peng, Z.; Kania, R.S. 2007: Structure-based design and synthesis of (5-arylamino-2H-pyrazol-3-yl)-biphenyl-2',4'-diols as novel and potent human CHK1 inhibitors. Journal of Medicinal Chemistry 50(22): 5253-5256
Xu, Z.; Tice, C.M.; Zhao, W.; Cacatian, S.; Ye, Y.-J.; Singh, S.B.; Lindblom, P.; McKeever, B.M.; Krosky, P.M.; Kruk, B.A.; Berbaum, J.; Harrison, R.K.; Johnson, J.A.; Bukhtiyarov, Y.; Panemangalore, R.; Scott, B.B.; Zhao, Y.; Bruno, J.G.; Togias, J.; Guo, J.; Guo, R.; Carroll, P.J.; McGeehan, G.M.; Zhuang, L.; He, W.; Claremon, D.A. 2011: Structure-based design and synthesis of 1,3-oxazinan-2-one inhibitors of 11β-hydroxysteroid dehydrogenase type 1. Journal of Medicinal Chemistry 54(17): 6050-6062
Feng, E.; Shin, W.-J.; Zhu, X.; Li, J.; Ye, D.; Wang, J.; Zheng, M.; Zuo, J.-P.; No, K.T.; Liu, X.; Zhu, W.; Tang, W.; Seong, B.-L.; Jiang, H.; Liu, H. 2013: Structure-based design and synthesis of C-1- and C-4-modified analogs of zanamivir as neuraminidase inhibitors. Journal of Medicinal Chemistry 56(3): 671-684
Khalaf, A.I.; Huggan, J.K.; Suckling, C.J.; Gibson, C.L.; Stewart, K.; Giordani, F.; Barrett, M.P.; Wong, P.E.; Barrack, K.L.; Hunter, W.N. 2014: Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1. Journal of Medicinal Chemistry 57(15): 6479-6494
Valasani, K.R.; Hu, G.; Chaney, M.O.; Yan, S.S. 2013: Structure-based design and synthesis of benzothiazole phosphonate analogues with inhibitors of human ABAD-Aβ for treatment of Alzheimer's disease. Chemical Biology and Drug Design 81(2): 238-249
Lu, H.; Tu, W.; Fei, H.; Xu, G.; Hu, Q.; Zhang, L.; Lin, B.; Yuan, J.; Yin, J.; Gong, A.; Wan, M.; Wang, D.; Zhu, X.; Feng, J.; Wang, Q.; Sun, P. 2014: Structure-based design and synthesis of bicyclic fused-pyridines as MEK inhibitors. Bioorganic and Medicinal Chemistry Letters 24(11): 2555-2559
Araya, Y.; Kasuga, J-Ichi.; Toyota, K.; Hirakawa, Y.; Oyama, T.; Makishima, M.; Morikawa, K.; Hashimoto, Y.; Miyachi, H. 2008: Structure-based design and synthesis of fluorescent PPARalpha/delta co-agonist and its application as a probe for fluorescent polarization assay of PPARdelta ligands. Chemical and Pharmaceutical Bulletin 56(9): 1357-1359
Machauer, R.; Veenstra, S.; Rondeau, J.-M.; Tintelnot-Blomley, M.; Betschart, C.; Neumann, U.; Paganetti, P. 2009: Structure-based design and synthesis of macrocyclic peptidomimetic beta-secretase (BACE-1) inhibitors. Bioorganic and Medicinal Chemistry Letters 19(5): 1361-1365
Hanessian, S.; Shao, Z.; Betschart, C.; Rondeau, J.-M.; Neumann, U.; Tintelnot-Blomley, M. 2010: Structure-based design and synthesis of novel P2/P3 modified, non-peptidic beta-secretase (BACE-1) inhibitors. Bioorganic and Medicinal Chemistry Letters 20(6): 1924-1927
Li, D.; Han, X.; Tu, Q.; Feng, L.; Wu, D.; Sun, Y.; Chen, H.; Li, Y.; Ren, Y.; Wan, J. 2013: Structure-based design and synthesis of novel dual-target inhibitors against cyanobacterial fructose-1,6-bisphosphate aldolase and fructose-1,6-bisphosphatase. Journal of Agricultural and Food Chemistry 61(31): 7453-7461
Elsayed, M.S.A.; El-Araby, M.E.; Serya, R.A.T.; El-Khatib, A.H.; Linscheid, M.W.; Abouzid, K.A.M. 2013: Structure-based design and synthesis of novel pseudosaccharine derivatives as antiproliferative agents and kinase inhibitors. European Journal of Medicinal Chemistry 61: 122-131
MacKinnon, C.H.; Lau, K.; Burch, J.D.; Chen, Y.; Dines, J.; Ding, X.; Eigenbrot, C.; Heifetz, A.; Jaochico, A.; Johnson, A.; Kraemer, J.; Kruger, S.; Krülle, T.M.; Liimatta, M.; Ly, J.; Maghames, R.; Montalbetti, C.A.G.N.; Ortwine, D.F.; Pérez-Fuertes, Y.; Shia, S.; Stein, D.B.; Trani, G.; Vaidya, D.G.; Wang, X.; Bromidge, S.M.; Wu, L.C.; Pei, Z. 2013: Structure-based design and synthesis of potent benzothiazole inhibitors of interleukin-2 inducible T cell kinase (ITK). Bioorganic and Medicinal Chemistry Letters 23(23): 6331-6335
Fletcher, S.; Keaney, E.P.; Cummings, C.G.; Blaskovich, M.A.; Hast, M.A.; Glenn, M.P.; Chang, S.-Y.; Bucher, C.J.; Floyd, R.J.; Katt, W.P.; Gelb, M.H.; Van Voorhis, W.C.; Beese, L.S.; Sebti, S.M.; Hamilton, A.D. 2010: Structure-based design and synthesis of potent, ethylenediamine-based, mammalian farnesyltransferase inhibitors as anticancer agents. Journal of Medicinal Chemistry 53(19): 6867-6888
Wallace, M.B.; Adams, M.E.; Kanouni, T.; Mol, C.D.; Dougan, D.R.; Feher, V.A.; O'Connell, S.M.; Shi, L.; Halkowycz, P.; Dong, Q. 2010: Structure-based design and synthesis of pyrrole derivatives as MEK inhibitors. Bioorganic and Medicinal Chemistry Letters 20(14): 4156-4158
Hird, A.W.; Aquila, B.M.; Block, M.H.; Hennessy, E.J.; Kamhi, V.M.; Omer, C.A.; Laing, N.M.; Saeh, J.C.; Sha, L.; Yang, B. 2014: Structure-based design and synthesis of tricyclic IAP (Inhibitors of Apoptosis Proteins) inhibitors. Bioorganic and Medicinal Chemistry Letters 24(7): 1820-1824
Back, J.W.; Langedijk, J.P.M. 2012: Structure-based design for high-hanging vaccine fruits. Advances in Immunology 114: 33-50
Kontoyianni, M.; Liu, Z. 2012: Structure-based design in the GPCR target space. Current Medicinal Chemistry 19(4): 544-556
Kozikowski, A.P.; Gaisina, I.N.; Yuan, H.; Petukhov, P.A.; Blond, S.Y.; Fedolak, A.; Caldarone, B.; McGonigle, P. 2007: Structure-based design leads to the identification of lithium mimetics that block mania-like effects in rodents. possible new GSK-3beta therapies for bipolar disorders. Journal of the American Chemical Society 129(26): 8328-8332
Le Brazidec, J.-Y.; Pasis, A.; Tam, B.; Boykin, C.; Wang, D.; Marcotte, D.J.; Claassen, G.; Chong, J.-H.; Chao, J.; Fan, J.; Nguyen, K.; Silvian, L.; Ling, L.; Zhang, L.; Choi, M.; Teng, M.; Pathan, N.; Zhao, S.; Li, T.; Taveras, A. 2012: Structure-based design of 2,6,7-trisubstituted-7H-pyrrolo[2,3-d]pyrimidines as Aurora kinases inhibitors. Bioorganic and Medicinal Chemistry Letters 22(12): 4033-4037
Huang, H.; Guzman-Perez, A.; Acquaviva, L.; Berry, V.; Bregman, H.; Dovey, J.; Gunaydin, H.; Huang, X.; Huang, L.; Saffran, D.; Serafino, R.; Schneider, S.; Wilson, C.; DiMauro, E.F. 2013: Structure-based design of 2-aminopyridine oxazolidinones as potent and selective tankyrase inhibitors. Acs Medicinal Chemistry Letters 4(12): 1218-1223
Marchetti, F.; Sayle, K.L.; Bentley, J.; Clegg, W.; Curtin, N.J.; Endicott, J.A.; Golding, B.T.; Griffin, R.J.; Haggerty, K.; Harrington, R.W.; Mesguiche, V.; Newell, D.R.; Noble, M.E.M.; Parsons, R.J.; Pratt, D.J.; Wang, L.Z.; Hardcastle, I.R. 2007: Structure-based design of 2-arylamino-4-cyclohexylmethoxy-5-nitroso-6-aminopyrimidine inhibitors of cyclin-dependent kinase 2. Organic and Biomolecular Chemistry 5(10): 1577-1585
Grey, R.; Pierce, A.C.; Bemis, G.W.; Jacobs, M.D.; Moody, C.S.; Jajoo, R.; Mohal, N.; Green, J. 2009: Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of Pim-1 kinase. Bioorganic and Medicinal Chemistry Letters 19(11): 3019-3022
Valeur, E.; Christmann-Franck, S.; Lepifre, F.; Carniato, D.; Cravo, D.; Charon, C.; Bozec, S.; Musil, D.; Hillertz, P.; Doare, L.; Schmidlin, F.; Lecomte, M.; Schultz, M.; Roche, D. 2012: Structure-based design of 7-azaindole-pyrrolidine amides as inhibitors of 11β-hydroxysteroid dehydrogenase type i. Bioorganic and Medicinal Chemistry Letters 22(18): 5909-5914
Poulsen, A.; William, A.; Lee, A.; Blanchard, S.ép.; Teo, E.; Deng, W.; Tu, N.; Tan, E.; Sun, E.; Goh, K.L.; Ong, W.C.; Ng, C.P.; Goh, K.C.; Bonday, Z. 2008: Structure-based design of Aurora a and B inhibitors. Journal of Computer-Aided Molecular Design 22(12): 897-906
Gupta, R.K.; Thakur, T.S.; Desiraju, G.R.; Tyagi, J.S. 2009: Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. Journal of Medicinal Chemistry 52(20): 6324-6334
Akarsu, H.; Iwatsuki-Horimoto, K.; Noda, T.; Kawakami, E.; Katsura, H.; Baudin, F.; Horimoto, T.; Kawaoka, Y. 2011: Structure-based design of NS2 mutants for attenuated influenza a virus vaccines. Virus Research 155(1): 240-248
Poulsen, A.; Blanchard, S.ép.; Soh, C.K.; Lee, C.; Williams, M.; Wang, H.; Dymock, B. 2012: Structure-based design of PDK1 inhibitors. Bioorganic and Medicinal Chemistry Letters 22(1): 305-307
Vogrig, A.; Dorr, L.; Bouzidi, N.; Boucherle, B.; Wattiez, A.-S.; Cassier, E.; Vallon, G.; Ripoche, I.; Abrunhosa-Thomas, I.; Marin, P.; Nauton, L.; Thery, V.; Courteix, C.; Lian, L.-Y.; Ducki, S. 2013: Structure-based design of PDZ ligands as inhibitors of 5-HT(2A) receptor/PSD-95 PDZ1 domain interaction possessing anti-hyperalgesic activity. Acs Chemical Biology 8(10): 2209-2216
Haidar, J.N.; Pierce, B.; Yu, Y.; Tong, W.; Li, M.; Weng, Z. 2009: Structure-based design of a T-cell receptor leads to nearly 100-fold improvement in binding affinity for pepMHC. Proteins 74(4): 948-960
Vandyck, K.; Cummings, M.D.; Nyanguile, O.èn.; Boutton, C.W.; Vendeville, S.; McGowan, D.; Devogelaere, B.; Amssoms, K.; Last, S.; Rombauts, K.; Tahri, A.; Lory, P.; Hu, L.; Beauchamp, D.A.; Simmen, K.; Raboisson, P. 2009: Structure-based design of a benzodiazepine scaffold yields a potent allosteric inhibitor of hepatitis C NS5B RNA polymerase. Journal of Medicinal Chemistry 52(14): 4099-4102
Meinke, G.; Phelan, P.; Fradet-Turcotte, A.él.; Archambault, J.; Bullock, P.A. 2011: Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain. Acta Crystallographica. Section D Biological Crystallography 67(Part 6): 560-567
McLellan, J.S.; Chen, M.; Joyce, M.G.; Sastry, M.; Stewart-Jones, G.B.E.; Yang, Y.; Zhang, B.; Chen, L.; Srivatsan, S.; Zheng, A.; Zhou, T.; Graepel, K.W.; Kumar, A.; Moin, S.; Boyington, J.C.; Chuang, G.-Y.; Soto, C.; Baxa, U.; Bakker, A.Q.; Spits, H.; Beaumont, T.; Zheng, Z.; Xia, N.; Ko, S.-Y.; Todd, J.-P.; Rao, S.; Graham, B.S.; Kwong, P.D. 2013: Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342(6158): 592-598
Joshi, A.; Kate, S.; Poon, V.; Mondal, D.; Boggara, M.B.; Saraph, A.; Martin, J.T.; McAlpine, R.; Day, R.; Garcia, A.E.; Mogridge, J.; Kane, R.S. 2011: Structure-based design of a heptavalent anthrax toxin inhibitor. Biomacromolecules 12(3): 791-796
Hayashi, K.; Sugimoto, H.; Shinkyo, R.; Yamada, M.; Ikeda, S.; Ikushiro, S.; Kamakura, M.; Shiro, Y.; Sakaki, T. 2008: Structure-based design of a highly active vitamin D hydroxylase from Streptomyces griseolus CYP105A1. Biochemistry 47(46): 11964-11972
Hanessian, S.; Schroeder, B.R.; Giacometti, R.D.; Merner, B.L.; Ostergaard, M.; Swayze, E.E.; Seth, P.P. 2012: Structure-based design of a highly constrained nucleic acid analogue: improved duplex stabilization by restricting sugar pucker and torsion angle γ. Angewandte Chemie 51(45): 11242-11245
Tomasić, T.; Zidar, N.; Sink, R.; Kovac, A.; Blanot, D.; Contreras-Martel, C.; Dessen, A.éa.; Müller-Premru, M.; Zega, A.; Gobec, S.; Kikelj, D.; Masic, L.P. 2011: Structure-based design of a new series of D-glutamic acid based inhibitors of bacterial UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). Journal of Medicinal Chemistry 54(13): 4600-4610
Subba Rao, G.; Vijayakrishnan, R.; Kumar, M. 2008: Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis: a computer modelling approach. Chemical Biology and Drug Design 72(5): 444-449
Parsy, C.; Alexandre, F.ço.-R.é; Brandt, G.; Caillet, C.; Cappelle, S.; Chaves, D.; Convard, T.; Derock, M.; Gloux, D.; Griffon, Y.; Lallos, L.; Leroy, F.éd.ér.; Liuzzi, M.; Loi, A.-G.; Moulat, L.; Musiu, C.; Rahali, H.; Roques, V.; Seifer, M.; Standring, D.; Surleraux, D. 2014: Structure-based design of a novel series of azetidine inhibitors of the hepatitis C virus NS3/4A serine protease. Bioorganic and Medicinal Chemistry Letters 24(18): 4444-4449
Smith, A.L.; D'Angelo, N.D.; Bo, Y.Y.; Booker, S.K.; Cee, V.J.; Herberich, B.; Hong, F.-T.; Jackson, C.L.M.; Lanman, B.A.; Liu, L.; Nishimura, N.; Pettus, L.H.; Reed, A.B.; Tadesse, S.; Tamayo, N.A.; Wurz, R.P.; Yang, K.; Andrews, K.L.; Whittington, D.A.; McCarter, J.D.; Miguel, T.S.; Zalameda, L.; Jiang, J.; Subramanian, R.; Mullady, E.L.; Caenepeel, S.; Freeman, D.J.; Wang, L.; Zhang, N.; Wu, T.; Hughes, P.E.; Norman, M.H. 2012: Structure-based design of a novel series of potent, selective inhibitors of the class i phosphatidylinositol 3-kinases. Journal of Medicinal Chemistry 55(11): 5188-5219
Borrok, M.Jack.; Zhu, Y.; Forest, K.T.; Kiessling, L.L. 2009: Structure-based design of a periplasmic binding protein antagonist that prevents domain closure. Acs Chemical Biology 4(6): 447-456
Morgan, S.-A.; Al-Abdul-Wahid, S.; Woolley, G.A. 2010: Structure-based design of a photocontrolled DNA binding protein. Journal of Molecular Biology 399(1): 94-112
Langlois, C.; Del Gatto, A.; Arseneault, G.èv.; Lafrance-Vanasse, J.; De Simone, M.; Morse, T.; de Paola, I.; Lussier-Price, M.; Legault, P.; Pedone, C.; Zaccaro, L.; Omichinski, J.G. 2012: Structure-based design of a potent artificial transactivation domain based on p53. Journal of the American Chemical Society 134(3): 1715-1723
Geldenhuys, W.J.; Funk, M.O.; Barnes, K.F.; Carroll, R.T. 2010: Structure-based design of a thiazolidinedione which targets the mitochondrial protein mitoNEET. Bioorganic and Medicinal Chemistry Letters 20(3): 819-823
Chen, S.; Li, Y.; Depontieu, F.R.; McMiller, T.L.; English, A.M.; Shabanowitz, J.; Kos, F.; Sidney, J.; Sette, A.; Rosenberg, S.A.; Hunt, D.F.; Mariuzza, R.A.; Topalian, S.L. 2013: Structure-based design of altered MHC class II-restricted peptide ligands with heterogeneous immunogenicity. Journal of Immunology 191(10): 5097-5106
González-Bulnes, L.; Ibáñez, I.; Bedoya, L.M.; Beltrán, M.; Catalán, S.; Alcamí, J.é; Fustero, S.; Gallego, J.é 2013: Structure-based design of an RNA-binding p-terphenylene scaffold that inhibits HIV-1 Rev protein function. Angewandte Chemie 52(50): 13405-13409
Carriero, M.V.; Longanesi-Cattani, I.; Bifulco, K.; Maglio, O.; Lista, L.; Barbieri, A.; Votta, G.; Masucci, M.T.; Arra, C.; Franco, R.; De Rosa, M.; Stoppelli, M.P.; Pavone, V. 2009: Structure-based design of an urokinase-type plasminogen activator receptor-derived peptide inhibiting cell migration and lung metastasis. Molecular Cancer Therapeutics 8(9): 2708-2717
Agarwal, A.K.; Fishwick, C.W.G. 2010: Structure-based design of anti-infectives. Annals of the new York Academy of Sciences 1213: 20-45
El-Nezhawy, A.O.H.; Gaballah, S.T.; Radwan, M.A.A.; Baiuomy, A.R.; Abdel-Salam, O.M.E. 2009: Structure-based design of benzimidazole sugar conjugates: synthesis, SAR and in vivo anti-inflammatory and analgesic activities. Medicinal Chemistry 5(6): 558-569
Cheng, Y.; Li, D.; Ji, B.; Shi, X.; Gao, H. 2010: Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations. Journal of Molecular Graphics and Modelling 29(2): 171-177
Perchiacca, J.M.; Ladiwala, A.R.A.; Bhattacharya, M.; Tessier, P.M. 2012: Structure-based design of conformation- and sequence-specific antibodies against amyloid β. Proceedings of the National Academy of Sciences of the United States of America 109(1): 84-89
Stebbins, J.L.; Santelli, E.; Feng, Y.; De, S.K.; Purves, A.; Motamedchaboki, K.; Wu, B.; Ronai, Z.'e.A.; Liddington, R.C.; Pellecchia, M. 2013: Structure-based design of covalent Siah inhibitors. Chemistry and Biology 20(8): 973-982
Misawa, K.; Suzuki, Y.; Takahashi, S.; Yoshimori, A.; Takasawa, R.; Shibuya, Y.; Tanuma, S.-i. 2011: Structure-based design of dipeptide derivatives for the human neutral endopeptidase. Bioorganic and Medicinal Chemistry 19(20): 5935-5947
Kubinyi, H. 1998: Structure-based design of enzyme inhibitors and receptor ligands. Current Opinion in Drug Discovery and Development 1(1): 4-15
Anita, Y.; Radifar, M.; Kardono, L.B.; Hanafi, M.; Istyastono, E.P. 2012: Structure-based design of eugenol analogs as potential estrogen receptor antagonists. Bioinformation 8(19): 901-906
Yang, H.; Zhong, H.-J.; Leung, K.-H.; Chan, D.S.-H.; Ma, V.P.-Y.; Fu, W.-C.; Nanjunda, R.; Wilson, W.D.; Ma, D.-L.; Leung, C.-H. 2013: Structure-based design of flavone derivatives as c-myc oncogene down-regulators. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 48(1-2): 130-141
Hayashi, H.; Inoue, M.; Morii, T. 2007: Structure-based design of fluorescent biosensors from ribonucleopeptide complexes. Nucleic Acids Symposium Series 51: 95-96
Phan, J.; Li, Z.; Kasprzak, A.; Li, B.; Sebti, S.; Guida, W.; Schönbrunn, E.; Chen, J. 2010: Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. Journal of Biological Chemistry 285(3): 2174-2183
Zhou, H.; Liu, L.; Huang, J.; Bernard, D.; Karatas, H.; Navarro, A.; Lei, M.; Wang, S. 2013: Structure-based design of high-affinity macrocyclic peptidomimetics to block the menin-mixed lineage leukemia 1 (MLL1) protein-protein interaction. Journal of Medicinal Chemistry 56(3): 1113-1123
Revuelta, J.; Vacas, T.; Corzana, F.; Gonzalez, C.; Bastida, A.; Asensio, J.L. 2010: Structure-based design of highly crowded ribostamycin/kanamycin hybrids as a new family of antibiotics. Chemistry 16(10): 2986-2991
Ghosh, A.K.; Venkateswara Rao, K.; Yadav, N.D.; Anderson, D.D.; Gavande, N.; Huang, X.; Terzyan, S.; Tang, J. 2012: Structure-based design of highly selective β-secretase inhibitors: synthesis, biological evaluation, and protein-ligand X-ray crystal structure. Journal of Medicinal Chemistry 55(21): 9195-9207
Bouloc, N.; Large, J.M.; Kosmopoulou, M.; Sun, C.; Faisal, A.; Matteucci, M.; Reynisson, J.óh.; Brown, N.; Atrash, B.; Blagg, J.; McDonald, E.; Linardopoulos, S.; Bayliss, R.; Bavetsias, V. 2010: Structure-based design of imidazo[1,2-a]pyrazine derivatives as selective inhibitors of Aurora-A kinase in cells. Bioorganic and Medicinal Chemistry Letters 20(20): 5988-5993
Mondal, M.; Radeva, N.; Köster, H.; Park, A.; Potamitis, C.; Zervou, M.; Klebe, G.; Hirsch, A.K.H. 2014: Structure-based design of inhibitors of the aspartic protease endothiapepsin by exploiting dynamic combinatorial chemistry. Angewandte Chemie 53(12): 3259-3263
Wang, X.; Salaski, E.J.; Berger, D.M.; Powell, D.; Hu, Y.; Wojciechowicz, D.; Collins, K.; Frommer, E. 2011: Structure-based design of isoindoline-1,3-diones and 2,3-dihydrophthalazine-1,4-diones as novel B-Raf inhibitors. Bioorganic and Medicinal Chemistry Letters 21(23): 6941-6944
Connelly, S.; Choi, S.; Johnson, S.M.; Kelly, J.W.; Wilson, I.A. 2010: Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Current Opinion in Structural Biology 20(1): 54-62
Li, X.; Hilgers, M.; Cunningham, M.; Chen, Z.; Trzoss, M.; Zhang, J.; Kohnen, L.; Lam, T.; Creighton, C.; G C, K.; Nelson, K.; Kwan, B.; Stidham, M.; Brown-Driver, V.; Shaw, K.J.; Finn, J. 2011: Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquinazolines. Bioorganic and Medicinal Chemistry Letters 21(18): 5171-5176
Carbajales, C.; Prado, M.Án.; Gutiérrez-de-Terán, H.; Cores, A.; Azuaje, J.; Novio, S.; Nuñez, M.ía.J.ús.; Fernández-García, B.én.; Sotelo, E.; García-Mera, X.; Sánchez-Lazo, P.; Freire-Garabal, M.; Coelho, A. 2014: Structure-based design of new KSP-Eg5 inhibitors assisted by a targeted multicomponent reaction. Chembiochem: a European Journal of Chemical Biology 15(10): 1471-1480
Lam, T.; Hilgers, M.T.; Cunningham, M.L.; Kwan, B.P.; Nelson, K.J.; Brown-Driver, V.; Ong, V.; Trzoss, M.; Hough, G.; Shaw, K.J.; Finn, J. 2014: Structure-based design of new dihydrofolate reductase antibacterial agents: 7-(benzimidazol-1-yl)-2,4-diaminoquinazolines. Journal of Medicinal Chemistry 57(3): 651-668
Poulsen, A.; William, A.; Blanchard, S.ép.; Nagaraj, H.; Williams, M.; Wang, H.; Lee, A.; Sun, E.; Teo, E.-L.; Tan, E.; Goh, K.C.; Dymock, B. 2013: Structure-based design of nitrogen-linked macrocyclic kinase inhibitors leading to the clinical candidate SB1317/TG02, a potent inhibitor of cyclin dependant kinases (CDKs), Janus kinase 2 (JAK2), and Fms-like tyrosine kinase-3 (FLT3). Journal of Molecular Modeling 19(1): 119-130
Rea, G.; Polticelli, F.; Antonacci, A.; Scognamiglio, V.; Katiyar, P.; Kulkarni, S.A.; Johanningmeier, U.; Giardi, M.T. 2009: Structure-based design of novel Chlamydomonas reinhardtii D1-D2 photosynthetic proteins for herbicide monitoring. Protein Science: a Publication of the Protein Society 18(10): 2139-2151
Beaulieu, P.L.; Coulombe, Ré.; Duan, J.; Fazal, G.; Godbout, Cédrickx.; Hucke, O.; Jakalian, A.; Joly, M-André.; Lepage, O.; Llinàs-Brunet, M.; Naud, J.; Poirier, M.; Rioux, N.; Thavonekham, B.; Kukolj, G.; Stammers, T.A. 2013: Structure-based design of novel HCV NS5B thumb pocket 2 allosteric inhibitors with submicromolar gt1 replicon potency: discovery of a quinazolinone chemotype. Bioorganic and Medicinal Chemistry Letters 23(14): 4132-4140
Gill, S.K.; Xu, H.; Kirchhoff, P.D.; Cierpicki, T.; Turbiak, A.J.; Wan, B.; Zhang, N.; Peng, K.-W.; Franzblau, S.G.; Garcia, G.A.; Showalter, H.D.H. 2012: Structure-based design of novel benzoxazinorifamycins with potent binding affinity to wild-type and rifampin-resistant mutant Mycobacterium tuberculosis RNA polymerases. Journal of Medicinal Chemistry 55(8): 3814-3826
Albers, H.M.H.G.; Hendrickx, L.J.D.; van Tol, R.J.P.; Hausmann, J.; Perrakis, A.; Ovaa, H. 2011: Structure-based design of novel boronic acid-based inhibitors of autotaxin. Journal of Medicinal Chemistry 54(13): 4619-4626
Norman, M.H.; Liu, L.; Lee, M.; Xi, N.; Fellows, I.; D'Angelo, N.D.; Dominguez, C.; Rex, K.; Bellon, S.F.; Kim, T.-S.; Dussault, I. 2012: Structure-based design of novel class Ii c-Met inhibitors: 1. Identification of pyrazolone-based derivatives. Journal of Medicinal Chemistry 55(5): 1858-1867
Liu, L.; Norman, M.H.; Lee, M.; Xi, N.; Siegmund, A.; Boezio, A.A.; Booker, S.; Choquette, D.; D'Angelo, N.D.; Germain, J.; Yang, K.; Yang, Y.; Zhang, Y.; Bellon, S.F.; Whittington, D.A.; Harmange, J.-C.; Dominguez, C.; Kim, T.-S.; Dussault, I. 2012: Structure-based design of novel class Ii c-Met inhibitors: 2. SAR and kinase selectivity profiles of the pyrazolone series. Journal of Medicinal Chemistry 55(5): 1868-1897
Bowers, S.; Xu, Y.-z.; Yuan, S.; Probst, G.D.; Hom, R.K.; Chan, W.; Konradi, A.W.; Sham, H.L.; Zhu, Y.L.; Beroza, P.; Pan, H.; Brecht, E.; Yao, N.; Lougheed, J.; Tam, D.; Ren, Z.; Ruslim, L.; Bova, M.P.; Artis, D.R. 2013: Structure-based design of novel dihydroisoquinoline BACE-1 inhibitors that do not engage the catalytic aspartates. Bioorganic and Medicinal Chemistry Letters 23(7): 2181-2186
Guo, C.; Hou, X.; Dong, L.; Dagostino, E.; Greasley, S.; Ferre, R.; Marakovits, J.; Johnson, M.C.; Matthews, D.; Mroczkowski, B.; Parge, H.; Vanarsdale, T.; Popoff, I.; Piraino, J.; Margosiak, S.; Thomson, J.; Los, G.; Murray, B.W. 2009: Structure-based design of novel human Pin1 inhibitors (I). Bioorganic and Medicinal Chemistry Letters 19(19): 5613-5616
Dong, L.; Marakovits, J.; Hou, X.; Guo, C.; Greasley, S.; Dagostino, E.; Ferre, R.; Johnson, M.C.; Kraynov, E.; Thomson, J.; Pathak, V.; Murray, B.W. 2010: Structure-based design of novel human Pin1 inhibitors (II). Bioorganic and Medicinal Chemistry Letters 20(7): 2210-2214
Guo, C.; Hou, X.; Dong, L.; Marakovits, J.; Greasley, S.; Dagostino, E.; Ferre, R.; Johnson, M.C.; Humphries, P.S.; Li, H.; Paderes, G.D.; Piraino, J.; Kraynov, E.; Murray, B.W. 2014: Structure-based design of novel human Pin1 inhibitors (III): optimizing affinity beyond the phosphate recognition pocket. Bioorganic and Medicinal Chemistry Letters 24(17): 4187-4191
Kokatla, H.P.; Sil, D.; Tanji, H.; Ohto, U.; Malladi, S.S.; Fox, L.M.; Shimizu, T.; David, S.A. 2014: Structure-based design of novel human Toll-like receptor 8 agonists. Chemmedchem 9(4): 719-723
Rew, Y.; Sun, D.; Gonzalez-Lopez De Turiso, F.; Bartberger, M.D.; Beck, H.P.; Canon, J.; Chen, A.; Chow, D.; Deignan, J.; Fox, B.M.; Gustin, D.; Huang, X.; Jiang, M.; Jiao, X.; Jin, L.; Kayser, F.; Kopecky, D.J.; Li, Y.; Lo, M.-C.; Long, A.M.; Michelsen, K.; Oliner, J.D.; Osgood, T.; Ragains, M.; Saiki, A.Y.; Schneider, S.; Toteva, M.; Yakowec, P.; Yan, X.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Medina, J.C.; Olson, S.H. 2012: Structure-based design of novel inhibitors of the MDM2-p53 interaction. Journal of Medicinal Chemistry 55(11): 4936-4954
Tarus, B.; Bertrand, Hélène.; Zedda, G.; Di Primo, C.; Quideau, Séphane.; Slama-Schwok, A. 2015: Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus. Journal of Biomolecular Structure and Dynamics 33(9): 1899-1912
Hou, Z.; Nakanishi, I.; Kinoshita, T.; Takei, Y.; Yasue, M.; Misu, R.; Suzuki, Y.; Nakamura, S.; Kure, T.; Ohno, H.; Murata, K.; Kitaura, K.; Hirasawa, A.; Tsujimoto, G.; Oishi, S.; Fujii, N. 2012: Structure-based design of novel potent protein kinase CK2 (CK2) inhibitors with phenyl-azole scaffolds. Journal of Medicinal Chemistry 55(6): 2899-2903
Zhao, Y.; Hammoudeh, D.; Yun, M.-K.; Qi, J.; White, S.W.; Lee, R.E. 2012: Structure-based design of novel pyrimido[4,5-c]pyridazine derivatives as dihydropteroate synthase inhibitors with increased affinity. Chemmedchem 7(5): 861-870
Kortagere, S.; Welsh, W.J.; Morrisey, J.M.; Daly, T.; Ejigiri, I.; Sinnis, P.; Vaidya, A.B.; Bergman, L.W. 2010: Structure-based design of novel small-molecule inhibitors of Plasmodium falciparum. Journal of Chemical Information and Modeling 50(5): 840-849
Naud, S.éb.; Westwood, I.M.; Faisal, A.; Sheldrake, P.; Bavetsias, V.; Atrash, B.; Cheung, K.-M.J.; Liu, M.; Hayes, A.; Schmitt, J.; Wood, A.; Choi, V.; Boxall, K.; Mak, G.; Gurden, M.; Valenti, M.; de Haven Brandon, A.; Henley, A.; Baker, R.; McAndrew, C.; Matijssen, B.; Burke, R.; Hoelder, S.; Eccles, S.A.; Raynaud, F.I.; Linardopoulos, S.; van Montfort, R.L.M.; Blagg, J. 2013: Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). Journal of Medicinal Chemistry 56(24): 10045-10065
Poulsen, A.; William, A.; Blanchard, Séphanie.; Lee, A.; Nagaraj, H.; Wang, H.; Teo, E.; Tan, E.; Goh, K.Chuan.; Dymock, B. 2012: Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3). Journal of Computer-Aided Molecular Design 26(4): 437-450
Cui, W.; Wei, Z.; Chen, Q.; Cheng, Y.; Geng, L.; Zhang, J.; Chen, J.; Hou, T.; Ji, M. 2010: Structure-based design of peptides against G3BP with cytotoxicity on tumor cells. Journal of Chemical Information and Modeling 50(3): 380-387
Wang, P.; Leung, C.-H.; Ma, D.-L.; Yan, S.-C.; Che, C.-M. 2010: Structure-based design of platinum(II) complexes as c-myc oncogene down-regulators and luminescent probes for G-quadruplex DNA. Chemistry 16(23): 6900-6911
Zhou, H.; Aguilar, A.; Chen, J.; Bai, L.; Liu, L.; Meagher, J.L.; Yang, C.-Y.; McEachern, D.; Cong, X.; Stuckey, J.A.; Wang, S. 2012: Structure-based design of potent Bcl-2/Bcl-xL inhibitors with strong in vivo antitumor activity. Journal of Medicinal Chemistry 55(13): 6149-6161
Nichols, D.A.; Jaishankar, P.; Larson, W.; Smith, E.; Liu, G.; Beyrouthy, R.; Bonnet, R.; Renslo, A.R.; Chen, Y. 2012: Structure-based design of potent and ligand-efficient inhibitors of CTX-M class a β-lactamase. Journal of Medicinal Chemistry 55(5): 2163-2172
Caldwell, J.J.; Welsh, E.J.; Matijssen, C.; Anderson, V.E.; Antoni, L.; Boxall, K.; Urban, F.; Hayes, A.; Raynaud, F.I.; Rigoreau, L.J.M.; Raynham, T.; Aherne, G.W.; Pearl, L.H.; Oliver, A.W.; Garrett, M.D.; Collins, I. 2011: Structure-based design of potent and selective 2-(quinazolin-2-yl)phenol inhibitors of checkpoint kinase 2. Journal of Medicinal Chemistry 54(2): 580-590
Medina, J.ús.R.; Becker, C.J.; Blackledge, C.W.; Duquenne, C.; Feng, Y.; Grant, S.W.; Heerding, D.; Li, W.H.; Miller, W.H.; Romeril, S.P.; Scherzer, D.; Shu, A.; Bobko, M.A.; Chadderton, A.R.; Dumble, M.; Gardiner, C.M.; Gilbert, S.; Liu, Q.; Rabindran, S.K.; Sudakin, V.; Xiang, H.; Brady, P.G.; Campobasso, N.; Ward, P.; Axten, J.M. 2011: Structure-based design of potent and selective 3-phosphoinositide-dependent kinase-1 (PDK1) inhibitors. Journal of Medicinal Chemistry 54(6): 1871-1895
Hutton, J.A.; Goncalves, V.; Brannigan, J.A.; Paape, D.; Wright, M.H.; Waugh, T.M.; Roberts, S.M.; Bell, A.S.; Wilkinson, A.J.; Smith, D.F.; Leatherbarrow, R.J.; Tate, E.W. 2014: Structure-based design of potent and selective Leishmania N-myristoyltransferase inhibitors. Journal of Medicinal Chemistry 57(20): 8664-8670
Caporuscio, F.; Rastelli, G.; Imbriano, C.; Del Rio, A. 2011: Structure-based design of potent aromatase inhibitors by high-throughput docking. Journal of Medicinal Chemistry 54(12): 4006-4017
Huhtiniemi, T.; Salo, H.S.; Suuronen, T.; Poso, A.; Salminen, A.; Leppänen, J.; Jarho, E.; Lahtela-Kakkonen, M. 2011: Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2. Journal of Medicinal Chemistry 54(19): 6456-6468
Lam, B.; Zhang, Z.; Stafford, J.A.; Skene, R.J.; Shi, L.; Gwaltney, S.L. 2012: Structure-based design of pyridopyrimidinediones as dipeptidyl peptidase IV inhibitors. Bioorganic and Medicinal Chemistry Letters 22(21): 6628-6631
Girnys, E.A.; Sobczyk-Kojiro, K.; Mosberg, H.I. 2010: Structure-based design of residue 1 analogs of the direct thrombin inhibitor pentapeptide FM 19. Chemical Biology and Drug Design 75(1): 35-39
Li, H.-q.; Yang, J.; Ma, S.; Qiao, C. 2012: Structure-based design of rhodanine-based acylsulfonamide derivatives as antagonists of the anti-apoptotic Bcl-2 protein. Bioorganic and Medicinal Chemistry 20(14): 4194-4200
Jasheway, K.; Pruet, J.; Anslyn, E.V.; Robertus, J.D. 2011: Structure-based design of ricin inhibitors. Toxins 3(10): 1233-1248
Lombardo, C.M.; Martínez, I.S.án.; Haider, S.; Gabelica, V.ér.; De Pauw, E.; Moses, J.E.; Neidle, S. 2010: Structure-based design of selective high-affinity telomeric quadruplex-binding ligands. Chemical Communications 46(48): 9116-9118
Wolff, P.; Oliéric, V.; Briand, J.P.; Chaloin, O.; Dejaegere, A.; Dumas, P.; Ennifar, E.; Guichard, G.; Wagner, J.ér.ôm.; Burnouf, D.Y. 2011: Structure-based design of short peptide ligands binding onto the E. coli processivity ring. Journal of Medicinal Chemistry 54(13): 4627-4637
Pyrkov, T.V.; Sevostyanova, I.A.; Schmalhausen, E.V.; Shkoporov, A.N.; Vinnik, A.A.; Muronetz, V.I.; Severin, F.F.; Fedichev, P.O. 2013: Structure-based design of small-molecule ligands of phosphofructokinase-2 activating or inhibiting glycolysis. Chemmedchem 8(8): 1322-1329
Falchi, F.; Caporuscio, F.; Recanatini, M. 2014: Structure-based design of small-molecule protein-protein interaction modulators: the story so far. Future Medicinal Chemistry 6(3): 343-357
Liu, B.; Joseph, R.W.; Dorsey, B.D.; Schiksnis, R.A.; Northrop, K.; Bukhtiyarova, M.; Springman, E.B. 2009: Structure-based design of substituted biphenyl ethylene ethers as ligands binding in the hydrophobic pocket of gp41 and blocking the helical bundle formation. Bioorganic and Medicinal Chemistry Letters 19(19): 5693-5697
Fauber, B.P.; de Leon Boenig, G.; Burton, B.; Eidenschenk, C.él.; Everett, C.; Gobbi, A.; Hymowitz, S.G.; Johnson, A.R.; Liimatta, M.; Lockey, P.; Norman, M.; Ouyang, W.; René, O.; Wong, H. 2013: Structure-based design of substituted hexafluoroisopropanol-arylsulfonamides as modulators of RORc. Bioorganic and Medicinal Chemistry Letters 23(24): 6604-6609
Ehara, T.; Irie, O.; Kosaka, T.; Kanazawa, T.; Breitenstein, W.; Grosche, P.; Ostermann, N.; Suzuki, M.; Kawakami, S.; Konishi, K.; Hitomi, Y.; Toyao, A.; Gunji, H.; Cumin, F.; Schiering, N.; Wagner, T.; Rigel, D.F.; Webb, R.L.; Maibaum, J.ür.; Yokokawa, F. 2014: Structure-based design of substituted piperidines as a new class of highly efficacious oral direct Renin inhibitors. Acs Medicinal Chemistry Letters 5(7): 787-792
Miklos, A.E.; Kluwe, C.; Der, B.S.; Pai, S.; Sircar, A.; Hughes, R.A.; Berrondo, M.; Xu, J.; Codrea, V.; Buckley, P.E.; Calm, A.M.; Welsh, H.S.; Warner, C.R.; Zacharko, M.A.; Carney, J.P.; Gray, J.J.; Georgiou, G.; Kuhlman, B.; Ellington, A.D. 2012: Structure-based design of supercharged, highly thermoresistant antibodies. Chemistry and Biology 19(4): 449-455
Staben, S.T.; Siu, M.; Goldsmith, R.; Olivero, A.G.; Do, S.; Burdick, D.J.; Heffron, T.P.; Dotson, J.; Sutherlin, D.P.; Zhu, B.-Y.; Tsui, V.; Le, H.; Lee, L.; Lesnick, J.; Lewis, C.; Murray, J.M.; Nonomiya, J.; Pang, J.; Prior, W.W.; Salphati, L.; Rouge, L.; Sampath, D.; Sideris, S.; Wiesmann, C.; Wu, P. 2011: Structure-based design of thienobenzoxepin inhibitors of PI3-kinase. Bioorganic and Medicinal Chemistry Letters 21(13): 4054-4058
De Bruin, G.; Huber, E.M.; Xin, B.-T.; van Rooden, E.J.; Al-Ayed, K.; Kim, K.-B.; Kisselev, A.F.; Driessen, C.; van der Stelt, M.; van der Marel, G.A.; Groll, M.; Overkleeft, H.S. 2014: Structure-based design of β1i or β5i specific inhibitors of human immunoproteasomes. Journal of Medicinal Chemistry 57(14): 6197-6209
Ishchenko, A.; Liu, Z.; Lindblom, P.; Wu, G.; Jim, K.-C.; Gregg, R.D.; Claremon, D.A.; Singh, S.B. 2012: Structure-based design technology contour and its application to the design of renin inhibitors. Journal of Chemical Information and Modeling 52(8): 2089-2097
Cheng, H.; Hoffman, J.E.; Le, P.T.; Pairish, M.; Kania, R.; Farrell, W.; Bagrodia, S.; Yuan, J.; Sun, S.; Zhang, E.; Xiang, C.; Dalvie, D.; Rahavendran, S.V. 2013: Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series. Bioorganic and Medicinal Chemistry Letters 23(9): 2787-2792
Matthews, T.P.; Jones, A.M.; Collins, I. 2013: Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anticancer therapies. Expert Opinion on Drug Discovery 8(6): 621-640
Hanessian, S.; Pachamuthu, K.; Szychowski, J.; Giguère, A.; Swayze, E.E.; Migawa, M.T.; François, B.; Kondo, J.; Westhof, E. 2010: Structure-based design, synthesis and A-site rRNA co-crystal complexes of novel amphiphilic aminoglycoside antibiotics with new binding modes: a synergistic hydrophobic effect against resistant bacteria. Bioorganic and Medicinal Chemistry Letters 20(23): 7097-7101
Getlik, M.äu.; Grütter, C.; Simard, J.R.; Nguyen, H.D.; Robubi, A.; Aust, B.; van Otterlo, W.A.L.; Rauh, D. 2012: Structure-based design, synthesis and biological evaluation of N-pyrazole, N'-thiazole urea inhibitors of MAP kinase p38α. European Journal of Medicinal Chemistry 48: 1-15
Liu, T.; Zhan, W.; Wang, Y.; Zhang, L.; Yang, B.; Dong, X.; Hu, Y. 2014: Structure-based design, synthesis and biological evaluation of diphenylmethylamine derivatives as novel Akt1 inhibitors. European Journal of Medicinal Chemistry 73: 167-176
Wang, Y.; Lu, H.; Zhu, Q.; Jiang, S.; Liao, Y. 2010: Structure-based design, synthesis and biological evaluation of new N-carboxyphenylpyrrole derivatives as HIV fusion inhibitors targeting gp41. Bioorganic and Medicinal Chemistry Letters 20(1): 189-192
Chen, T.-C.; Yu, D.-S.; Huang, K.-F.; Fu, Y.-C.; Lee, C.-C.; Chen, C.-L.; Huang, F.-C.; Hsieh, H.-H.; Lin, J.-J.; Huang, H.-S. 2013: Structure-based design, synthesis and biological evaluation of novel anthra[1,2-d]imidazole-6,11-dione homologues as potential antitumor agents. European Journal of Medicinal Chemistry 69: 278-293
Khan, K.M.; Ambreen, N.; Taha, M.; Halim, S.A.; Zaheer-ul-Haq; Naureen, S.; Rasheed, S.; Perveen, S.; Ali, S.; Choudhary, M.I. 2014: Structure-based design, synthesis and biological evaluation of β-glucuronidase inhibitors. Journal of Computer-Aided Molecular Design 28(5): 577-585
Yadav, A.A.; Wu, X.; Patel, D.; Yalowich, J.C.; Hasinoff, B.B. 2014: Structure-based design, synthesis and biological testing of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds designed to covalently bind to topoisomerase Ii and DNA. Bioorganic and Medicinal Chemistry 22(21): 5935-5949
Chen, C.-L.; Chang, D.-M.; Chen, T.-C.; Lee, C.-C.; Hsieh, H.-H.; Huang, F.-C.; Huang, K.-F.; Guh, J.-H.; Lin, J.-J.; Huang, H.-S. 2013: Structure-based design, synthesis and evaluation of novel anthra[1,2-d]imidazole-6,11-dione derivatives as telomerase inhibitors and potential for cancer polypharmacology. European Journal of Medicinal Chemistry 60: 29-41
Möller, G.; Deluca, D.; Gege, C.; Rosinus, A.; Kowalik, D.; Peters, O.; Droescher, P.; Elger, W.; Adamski, J.; Hillisch, A. 2009: Structure-based design, synthesis and in vitro characterization of potent 17beta-hydroxysteroid dehydrogenase type 1 inhibitors based on 2-substitutions of estrone and D-homo-estrone. Bioorganic and Medicinal Chemistry Letters 19(23): 6740-6744
Azam, F.; Prasad, M.V.V.; Thangavel, N.; Shrivastava, A.K.; Mohan, G. 2012: Structure-based design, synthesis and molecular modeling studies of thiazolyl urea derivatives as novel anti-parkinsonian agents. Medicinal Chemistry 8(6): 1057-1068
Petronzi, C.; Filosa, R.; Peduto, A.; Monti, M.C.; Margarucci, L.; Massa, A.; Ercolino, S.F.; Bizzarro, V.; Parente, L.; Riccio, R.; de Caprariis, P. 2011: Structure-based design, synthesis and preliminary anti-inflammatory activity of bolinaquinone analogues. European Journal of Medicinal Chemistry 46(2): 488-496
Edink, E.; Akdemir, A.; Jansen, C.; van Elk, R.é; Zuiderveld, O.; de Kanter, F.J.J.; van Muijlwijk-Koezen, J.E.; Smit, A.B.; Leurs, R.; de Esch, I.J.P. 2012: Structure-based design, synthesis and structure-activity relationships of dibenzosuberyl- and benzoate-substituted tropines as ligands for acetylcholine-binding protein. Bioorganic and Medicinal Chemistry Letters 22(3): 1448-1454
Courter, J.R.; Madani, N.; Sodroski, J.; Schön, A.; Freire, E.; Kwong, P.D.; Hendrickson, W.A.; Chaiken, I.M.; LaLonde, J.M.; Smith, A.B. 2014: Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Accounts of Chemical Research 47(4): 1228-1237
Sheng, C.; Che, X.; Wang, W.; Wang, S.; Cao, Y.; Yao, J.; Miao, Z.; Zhang, W. 2011: Structure-based design, synthesis, and antifungal activity of new triazole derivatives. Chemical Biology and Drug Design 78(2): 309-313
Yan, F.; Bikbulatov, R.V.; Mocanu, V.; Dicheva, N.; Parker, C.E.; Wetsel, W.C.; Mosier, P.D.; Westkaemper, R.B.; Allen, J.A.; Zjawiony, J.K.; Roth, B.L. 2009: Structure-based design, synthesis, and biochemical and pharmacological characterization of novel salvinorin a analogues as active state probes of the kappa-opioid receptor. Biochemistry 48(29): 6898-6908
Kim, S.H.; Tran, M.T.; Ruebsam, F.; Xiang, A.X.; Ayida, B.; McGuire, H.; Ellis, D.; Blazel, J.; Tran, C.V.; Murphy, D.E.; Webber, S.E.; Zhou, Y.; Shah, A.M.; Tsan, M.; Showalter, R.E.; Patel, R.; Gobbi, A.; LeBrun, L.A.; Bartkowski, D.M.; Nolan, T.G.; Norris, D.A.; Sergeeva, M.V.; Kirkovsky, L.; Zhao, Q.; Han, Q.; Kissinger, C.R. 2008: Structure-based design, synthesis, and biological evaluation of 1,1-dioxoisothiazole and benzo[b]thiophene-1,1-dioxide derivatives as novel inhibitors of hepatitis C virus NS5B polymerase. Bioorganic and Medicinal Chemistry Letters 18(14): 4181-4185
Ghosh, A.K.; Takayama, J.; Aubin, Y.; Ratia, K.; Chaudhuri, R.; Baez, Y.; Sleeman, K.; Coughlin, M.; Nichols, D.B.; Mulhearn, D.C.; Prabhakar, B.S.; Baker, S.C.; Johnson, M.E.; Mesecar, A.D. 2009: Structure-based design, synthesis, and biological evaluation of a series of novel and reversible inhibitors for the severe acute respiratory syndrome-coronavirus papain-like protease. Journal of Medicinal Chemistry 52(16): 5228-5240
Ghosh, A.K.; Pandey, S.; Gangarajula, S.; Kulkarni, S.; Xu, X.; Rao, K.V.; Huang, X.; Tang, J. 2012: Structure-based design, synthesis, and biological evaluation of dihydroquinazoline-derived potent β-secretase inhibitors. Bioorganic and Medicinal Chemistry Letters 22(17): 5460-5465
Wang, Y.; Chan, F.-Y.; Sun, N.; Lui, H.-K.; So, P.-K.; Yan, S.-C.; Chan, K.-F.; Chiou, J.; Chen, S.; Abagyan, R.; Leung, Y.-C.; Wong, K.-Y. 2014: Structure-based design, synthesis, and biological evaluation of isatin derivatives as potential glycosyltransferase inhibitors. Chemical Biology and Drug Design 84(6): 685-696
Xue, F.; Huang, J.; Ji, H.; Fang, J.; Li, H.; Martásek, P.; Roman, L.J.; Poulos, T.L.; Silverman, R.B. 2010: Structure-based design, synthesis, and biological evaluation of lipophilic-tailed monocationic inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry 18(17): 6526-6537
Ghosh, A.K.; Xi, K.; Grum-Tokars, V.; Xu, X.; Ratia, K.; Fu, W.; Houser, K.V.; Baker, S.C.; Johnson, M.E.; Mesecar, A.D. 2007: Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors. Bioorganic and Medicinal Chemistry Letters 17(21): 5876-5880
Song, Y.; Shao, Z.; Dexheimer, T.S.; Scher, E.S.; Pommier, Y.; Cushman, M. 2010: Structure-based design, synthesis, and biological studies of new anticancer norindenoisoquinoline topoisomerase i inhibitors. Journal of Medicinal Chemistry 53(5): 1979-1989
LaLonde, J.M.; Kwon, Y.D.; Jones, D.M.; Sun, A.W.; Courter, J.R.; Soeta, T.; Kobayashi, T.; Princiotto, A.M.; Wu, X.; Schön, A.; Freire, E.; Kwong, P.D.; Mascola, J.R.; Sodroski, J.; Madani, N.; Smith, A.B. 2012: Structure-based design, synthesis, and characterization of dual hotspot small-molecule HIV-1 entry inhibitors. Journal of Medicinal Chemistry 55(9): 4382-4396
Davies, M.; Heikkilä, T.; McConkey, G.A.; Fishwick, C.W.G.; Parsons, M.R.; Johnson, A.P. 2009: Structure-based design, synthesis, and characterization of inhibitors of human and Plasmodium falciparum dihydroorotate dehydrogenases. Journal of Medicinal Chemistry 52(9): 2683-2693
Matsumoto, S.; Miyamoto, N.; Hirayama, T.; Oki, H.; Okada, K.; Tawada, M.; Iwata, H.; Nakamura, K.; Yamasaki, S.; Miki, H.; Hori, A.; Imamura, S. 2013: Structure-based design, synthesis, and evaluation of imidazo[1,2-b]pyridazine and imidazo[1,2-a]pyridine derivatives as novel dual c-Met and VEGFR2 kinase inhibitors. Bioorganic and Medicinal Chemistry 21(24): 7686-7698
Akaji, K.; Konno, H.; Mitsui, H.; Teruya, K.; Shimamoto, Y.; Hattori, Y.; Ozaki, T.; Kusunoki, M.; Sanjoh, A. 2011: Structure-based design, synthesis, and evaluation of peptide-mimetic SARS 3CL protease inhibitors. Journal of Medicinal Chemistry 54(23): 7962-7973
Ban, S.; Kasuga, J-ichi.; Nakagome, I.; Nobusada, H.; Takayama, F.; Hirono, S.; Kawasaki, H.; Hashimoto, Y.; Miyachi, H. 2011: Structure-based design, synthesis, and nonalcoholic steatohepatitis (NASH)-preventive effect of phenylpropanoic acid peroxisome proliferator-activated receptor (PPAR) α-selective agonists. Bioorganic and Medicinal Chemistry 19(10): 3183-3191
Soubhye, J.; Prévost, M.; Van Antwerpen, P.; Zouaoui Boudjeltia, K.; Rousseau, A.; Furtmüller, P.G.; Obinger, C.; Vanhaeverbeek, M.; Ducobu, J.; Néve, J.; Gelbcke, M.; Dufrasne, F.O. 2010: Structure-based design, synthesis, and pharmacological evaluation of 3-(aminoalkyl)-5-fluoroindoles as myeloperoxidase inhibitors. Journal of Medicinal Chemistry 53(24): 8747-8759
Ali, A.; Reddy, G.S.K.K.; Nalam, M.N.L.; Anjum, S.G.; Cao, H.; Schiffer, C.A.; Rana, T.M. 2010: Structure-based design, synthesis, and structure-activity relationship studies of HIV-1 protease inhibitors incorporating phenyloxazolidinones. Journal of Medicinal Chemistry 53(21): 7699-7708
Sun, H.; Stuckey, J.A.; Nikolovska-Coleska, Z.; Qin, D.; Meagher, J.L.; Qiu, S.; Lu, J.; Yang, C.-Y.; Saito, N.G.; Wang, S. 2008: Structure-based design, synthesis, evaluation, and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). Journal of Medicinal Chemistry 51(22): 7169-7180
Ahmed, M.A.; Azam, F.; Rghigh, A.M.; Gbaj, A.; Zetrini, A.E. 2012: Structure-based design, synthesis, molecular docking, and biological activities of 2-(3-benzoylphenyl) propanoic acid derivatives as dual mechanism drugs. Journal of Pharmacy and Bioallied Sciences 4(1): 43-50
Ta, H.M.; Nguyen, G.T.T.; Jin, H.M.; Choi, J.; Park, H.; Kim, N.; Hwang, H.-Y.; Kim, K.K. 2010: Structure-based development of a receptor activator of nuclear factor-kappaB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis. Proceedings of the National Academy of Sciences of the United States of America 107(47): 20281-20286
Zhang, C.; Hou, T.; Feng, Z.; Li, Y. 2013: Structure-based development of antagonists for chemokine receptor CXCR4. Current Computer-Aided Drug Design 9(1): 60-75
LinWu, S.-W.; Wu, C.-A.; Peng, F.-C.; Wang, A.H.-J. 2012: Structure-based development of bacterial nitroreductase against nitrobenzodiazepine-induced hypnosis. Biochemical Pharmacology 83(12): 1690-1699
Schlicker, C.; Rauch, A.; Hess, K.C.; Kachholz, B.; Levin, L.R.; Buck, J.; Steegborn, C. 2008: Structure-based development of novel adenylyl cyclase inhibitors. Journal of Medicinal Chemistry 51(15): 4456-4464
Schlicker, C.; Boanca, G.; Lakshminarasimhan, M.; Steegborn, C. 2011: Structure-based development of novel sirtuin inhibitors. Aging 3(9): 852-872
Seo, M.; Kim, J.-D.; Neau, D.; Sehgal, I.; Lee, Y.-H. 2011: Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. Plos one 6(9): E24179
Katunuma, N. 2011: Structure-based development of specific inhibitors for individual cathepsins and their medical applications. Proceedings of the Japan Academy. Series B Physical and Biological Sciences 87(2): 29-39
Farkas, E.; Bátka, D.áv.; Kremper, G.; Pócsi, I.án. 2008: Structure-based differences between the metal ion selectivity of two siderophores desferrioxamine B (DFB) and desferricoprogen (DFC): why DFC is much better Pb(II) sequestering agent than DFB?. Journal of Inorganic Biochemistry 102(8): 1654-1659
Li, M.; Ni, N.; Chou, H-Ting.; Lu, C-Dar.; Tai, P.C.; Wang, B. 2008: Structure-based discovery and experimental verification of novel AI-2 quorum sensing inhibitors against Vibrio harveyi. Chemmedchem 3(8): 1242-1249
Carlsson, J.; Yoo, L.; Gao, Z-Guo.; Irwin, J.J.; Shoichet, B.K.; Jacobson, K.A. 2010: Structure-based discovery of A2A adenosine receptor ligands. Journal of Medicinal Chemistry 53(9): 3748-3755
Chen, J.; Zhou, H.; Aguilar, A.; Liu, L.; Bai, L.; McEachern, D.; Yang, C-Yie.; Meagher, J.L.; Stuckey, J.A.; Wang, S. 2012: Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression. Journal of Medicinal Chemistry 55(19): 8502-8514
Labadie, S.; Dragovich, P.S.; Barrett, K.; Blair, W.S.; Bergeron, P.; Chang, C.; Deshmukh, G.; Eigenbrot, C.; Ghilardi, N.; Gibbons, P.; Hurley, C.A.; Johnson, A.; Kenny, J.R.; Kohli, P.Bir.; Kulagowski, J.J.; Liimatta, M.; Lupardus, P.J.; Mendonca, R.; Murray, J.M.; Pulk, R.; Shia, S.; Steffek, M.; Ubhayakar, S.; Ultsch, M.; van Abbema, A.; Ward, S.; Zak, M. 2012: Structure-based discovery of C-2 substituted imidazo-pyrrolopyridine JAK1 inhibitors with improved selectivity over JAK2. Bioorganic and Medicinal Chemistry Letters 22(24): 7627-7633
Tian, W.; Han, X.; Yan, M.; Xu, Y.; Duggineni, S.; Lin, N.; Luo, G.; Li, Y.Michael.; Han, X.; Huang, Z.; An, J. 2012: Structure-based discovery of a novel inhibitor targeting the β-catenin/Tcf4 interaction. Biochemistry 51(2): 724-731
Borriello, L.; Montès, M.; Lepelletier, Y.; Leforban, B.; Liu, W-Qing.; Demange, L.; Delhomme, B.; Pavoni, S.; Jarray, R.; Boucher, J.Luc.; Dufour, S.; Hermine, O.; Garbay, C.; Hadj-Slimane, Réda.; Raynaud, Fçoise. 2014: Structure-based discovery of a small non-peptidic Neuropilins antagonist exerting in vitro and in vivo anti-tumor activity on breast cancer model. Cancer Letters 349(2): 120-127
de Graaf, C.; Rein, C.; Piwnica, D.; Giordanetto, F.; Rognan, D. 2011: Structure-based discovery of allosteric modulators of two related class B G-protein-coupled receptors. Chemmedchem 6(12): 2159-2169
Kvist, T.; Greenwood, J.R.; Hansen, K.B.; Traynelis, S.F.; Bräuner-Osborne, H. 2013: Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Neuropharmacology 75: 324-336
Benod, C.; Carlsson, J.; Uthayaruban, R.; Hwang, P.; Irwin, J.J.; Doak, A.K.; Shoichet, B.K.; Sablin, E.P.; Fletterick, R.J. 2013: Structure-based discovery of antagonists of nuclear receptor LRH-1. Journal of Biological Chemistry 288(27): 19830-19844
Fukuoka, M.; Minakuchi, M.; Kawaguchi, A.; Nagata, K.; Kamatari, Y.O.; Kuwata, K. 2012: Structure-based discovery of anti-influenza virus A compounds among medicines. Biochimica et Biophysica Acta 1820(2): 90-95
Kolb, P.; Rosenbaum, D.M.; Irwin, J.J.; Fung, J.José.; Kobilka, B.K.; Shoichet, B.K. 2009: Structure-based discovery of beta2-adrenergic receptor ligands. Proceedings of the National Academy of Sciences of the United States of America 106(16): 6843-6848
Tomita, N.; Hayashi, Y.; Suzuki, S.; Oomori, Y.; Aramaki, Y.; Matsushita, Y.; Iwatani, M.; Iwata, H.; Okabe, A.; Awazu, Y.; Isono, O.; Skene, R.J.; Hosfield, D.J.; Miki, H.; Kawamoto, T.; Hori, A.; Baba, A. 2013: Structure-based discovery of cellular-active allosteric inhibitors of FAK. Bioorganic and Medicinal Chemistry Letters 23(6): 1779-1785
Jiang, L.; Liu, C.; Leibly, D.; Landau, M.; Zhao, M.; Hughes, M.P.; Eisenberg, D.S. 2013: Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. Elife 2: E00857
Meng, F.; Hou, J.; Shao, Y-Xian.; Wu, P-Ying.; Huang, M.; Zhu, X.; Cai, Y.; Li, Z.; Xu, J.; Liu, P.; Luo, H-Bin.; Wan, Y.; Ke, H. 2012: Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design. Journal of Medicinal Chemistry 55(19): 8549-8558
De Simone, R.; Chini, M.Giovanna.; Bruno, I.; Riccio, R.; Mueller, D.; Werz, O.; Bifulco, G. 2011: Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1, 5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. Journal of Medicinal Chemistry 54(6): 1565-1575
Williams, B.; Dwyer, D.S. 2009: Structure-based discovery of low molecular weight compounds that stimulate neurite outgrowth and substitute for nerve growth factor. Journal of Neurochemistry 110(6): 1876-1884
Chan, D.Shiu-Hin.; Lee, H-Man.; Yang, F.; Che, C-Ming.; Wong, C.C.L.; Abagyan, R.; Leung, C-Hang.; Ma, D-Lung. 2010: Structure-based discovery of natural-product-like TNF-α inhibitors. Angewandte Chemie 49(16): 2860-2864
Zheng, X.; Bauer, P.; Baumeister, T.; Buckmelter, A.J.; Caligiuri, M.; Clodfelter, K.H.; Han, B.; Ho, Y-Ching.; Kley, N.; Lin, J.; Reynolds, D.J.; Sharma, G.; Smith, C.C.; Wang, Z.; Dragovich, P.S.; Gunzner-Toste, J.; Liederer, B.M.; Ly, J.; O'Brien, T.; Oh, A.; Wang, L.; Wang, W.; Xiao, Y.; Zak, M.; Zhao, G.; Yuen, P-Wai.; Bair, K.W. 2013: Structure-based discovery of novel amide-containing nicotinamide phosphoribosyltransferase (nampt) inhibitors. Journal of Medicinal Chemistry 56(16): 6413-6433
Katritch, V.; Jaakola, V-Pekka.; Lane, J.Robert.; Lin, J.; Ijzerman, A.P.; Yeager, M.; Kufareva, I.; Stevens, R.C.; Abagyan, R. 2010: Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. Journal of Medicinal Chemistry 53(4): 1799-1809
Golub, A.G.; Bdzhola, V.G.; Kyshenia, Y.V.; Sapelkin, V.M.; Prykhod'ko, A.O.; Kukharenko, O.P.; Ostrynska, O.V.; Yarmoluk, S.M. 2011: Structure-based discovery of novel flavonol inhibitors of human protein kinase CK2. Molecular and Cellular Biochemistry 356(1-2): 107-115
Ruiz, F.M.; Gil-Redondo, Rén.; Morreale, A.; Ortiz, A.R.; Fábrega, C.; Bravo, Jónimo. 2008: Structure-based discovery of novel non-nucleosidic DNA alkyltransferase inhibitors: virtual screening and in vitro and in vivo activities. Journal of Chemical Information and Modeling 48(4): 844-854
Barreca, M.Letizia.; Manfroni, G.; Leyssen, P.; Winquist, J.; Kaushik-Basu, N.; Paeshuyse, J.; Krishnan, R.; Iraci, N.; Sabatini, S.; Tabarrini, O.; Basu, A.; Danielson, U.Helena.; Neyts, J.; Cecchetti, V. 2013: Structure-based discovery of pyrazolobenzothiazine derivatives as inhibitors of hepatitis C virus replication. Journal of Medicinal Chemistry 56(6): 2270-2282
Rodríguez, D.; Brea, Jé.; Loza, Mía.Isabel.; Carlsson, J. 2014: Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands. Structure 22(8): 1140-1151
Prudent, R.; Sautel, Céline.F.; Cochet, C. 2010: Structure-based discovery of small molecules targeting different surfaces of protein-kinase CK2. Biochimica et Biophysica Acta 1804(3): 493-498
Brvar, Mž.; Perdih, A.; Renko, M.; Anderluh, G.; Turk, Dšan.; Solmajer, T. 2012: Structure-based discovery of substituted 4,5'-bithiazoles as novel DNA gyrase inhibitors. Journal of Medicinal Chemistry 55(14): 6413-6426
Rastelli, G.; Anighoro, A.; Chripkova, M.; Carrassa, L.; Broggini, M. 2014: Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2. Cell Cycle 13(14): 2296-2305
Lejal, N.; Tarus, B.; Bouguyon, E.; Chenavas, S.; Bertho, N.; Delmas, B.; Ruigrok, R.W.H.; Di Primo, C.; Slama-Schwok, A. 2013: Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrobial Agents and ChemoTherapy 57(5): 2231-2242
Chen, C-Shu.; Chiou, C-Tang.; Chen, G.Shiahuy.; Chen, S-Chia.; Hu, C-Yung.; Chi, W-Kuang.; Chu, Y-Ding.; Hwang, L-Hwa.; Chen, P-Jer.; Chen, D-Shinn.; Liaw, S-Huey.; Chern, J-Wang. 2009: Structure-based discovery of triphenylmethane derivatives as inhibitors of hepatitis C virus helicase. Journal of Medicinal Chemistry 52(9): 2716-2723
Tholander, F.; Muroya, A.; Roques, B-Pierre.; Fournié-Zaluski, M-Claude.; Thunnissen, M.M.G.M.; Haeggström, J.Z. 2008: Structure-based dissection of the active site chemistry of leukotriene A4 hydrolase: implications for M1 aminopeptidases and inhibitor design. Chemistry and Biology 15(9): 920-929
Ali, H.I.; Nagamatsu, T.; Akaho, E. 2011: Structure-based drug design and AutoDock study of potential protein tyrosine kinase inhibitors. Bioinformation 5(9): 368-374
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M. 2015: Structure-based drug design and biological evaluation of 2-acetamidobenzothiazole derivative as EGFR kinase inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry 30(1): 160-165
Vijayakrishnan, R. 2009: Structure-based drug design and modern medicine. Journal of Postgraduate Medicine 55(4): 301-304
Han, Z.; Pinkner, J.S.; Ford, B.; Obermann, R.; Nolan, W.; Wildman, S.A.; Hobbs, D.; Ellenberger, T.; Cusumano, C.K.; Hultgren, S.J.; Janetka, J.W. 2010: Structure-based drug design and optimization of mannoside bacterial FimH antagonists. Journal of Medicinal Chemistry 53(12): 4779-4792
Kondaskar, A.; Kondaskar, S.; Fishbein, J.C.; Carter-Cooper, B.A.; Lapidus, R.G.; Sadowska, M.; Edelman, M.J.; Hosmane, R.S. 2013: Structure-based drug design and potent anti-cancer activity of tricyclic 5:7:5-fused diimidazo[4,5-d:4',5'-f][1,3]diazepines. Bioorganic and Medicinal Chemistry 21(3): 618-631
Cohen, N.Claude. 2007: Structure-based drug design and the discovery of aliskiren (Tekturna): perseverance and creativity to overcome a R&D pipeline challenge. Chemical Biology and Drug Design 70(6): 557-565
Meyers, M.J.; Pelc, M.; Kamtekar, S.; Day, J.; Poda, G.I.; Hall, M.K.; Michener, M.L.; Reitz, B.A.; Mathis, K.J.; Pierce, B.S.; Parikh, M.D.; Mischke, D.A.; Long, S.A.; Parlow, J.J.; Anderson, D.R.; Thorarensen, A. 2010: Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode. Bioorganic and Medicinal Chemistry Letters 20(5): 1543-1547
Congreve, M.; Dias, J.ão.M.; Marshall, F.H. 2014: Structure-based drug design for G protein-coupled receptors. Progress in Medicinal Chemistry 53: 1-63
Feng, Z.; Hou, T.; Li, Y. 2012: Structure-based drug design for dopamine D3 receptor. Combinatorial Chemistry and High Throughput Screening 15(10): 775-791
Higashijima, Y.; Tanaka, T.; Nangaku, M. 2013: Structure-based drug design for hypoxia-inducible factor prolyl-hydroxylase inhibitors and its therapeutic potential for the treatment of erythropoiesis-stimulating agent-resistant anemia: raising expectations for exploratory clinical trials. Expert Opinion on Drug Discovery 8(8): 965-976
Fells, J.I.; Tsukahara, R.; Liu, J.; Tigyi, G.; Parrill, A.L. 2009: Structure-based drug design identifies novel LPA3 antagonists. Bioorganic and Medicinal Chemistry 17(21): 7457-7464
Lou, Y.; Han, X.; Kuglstatter, A.; Kondru, R.K.; Sweeney, Z.K.; Soth, M.; McIntosh, J.; Litman, R.; Suh, J.; Kocer, B.; Davis, D.; Park, J.; Frauchiger, S.; Dewdney, N.; Zecic, H.; Taygerly, J.P.; Sarma, K.; Hong, J.; Hill, R.J.; Gabriel, T.; Goldstein, D.M.; Owens, T.D. 2015: Structure-based drug design of RN486, a potent and selective Bruton's tyrosine kinase (BTK) inhibitor, for the treatment of rheumatoid arthritis. Journal of Medicinal Chemistry 58(1): 512-516
Fedichev, P.; Timakhov, R.; Pyrkov, T.; Getmantsev, E.; Vinnik, A. 2011: Structure-based drug design of a new chemical class of small molecules active against influenza a nucleoprotein in vitro and in vivo. Plos Currents 3: Rrn1253
Li, X-hua.; Zou, H-jun.; Wu, A-hui.; Ye, Y-liang.; Shen, J-hua. 2007: Structure-based drug design of a novel family of chalcones as PPARalpha agonists: virtual screening, synthesis, and biological activities in vitro. Acta Pharmacologica Sinica 28(12): 2040-2052
Kojtari, A.; Shah, V.; Babinec, J.S.; Yang, C.; Ji, H.-F. 2014: Structure-based drug design of diphenyl α-aminoalkylphosphonates as prostate-specific antigen antagonists. Journal of Chemical Information and Modeling 54(10): 2967-2979
Coumar, M.S.; Leou, J.-S.; Shukla, P.; Wu, J.-S.; Dixit, A.K.; Lin, W.-H.; Chang, C.-Y.; Lien, T.-W.; Tan, U.-K.; Chen, C.-H.; Hsu, J.T.-A.; Chao, Y.-S.; Wu, S.-Y.; Hsieh, H.-P. 2009: Structure-based drug design of novel Aurora kinase a inhibitors: structural basis for potency and specificity. Journal of Medicinal Chemistry 52(4): 1050-1062
Van Huis, C.A.; Bigge, C.F.; Casimiro-Garcia, A.; Cody, W.L.; Dudley, D.A.; Filipski, K.J.; Heemstra, R.J.; Kohrt, J.T.; Narasimhan, L.S.; Schaum, R.P.; Zhang, E.; Bryant, J.W.; Haarer, S.; Janiczek, N.; Leadley, R.J.; McClanahan, T.; Thomas Peterson, J.; Welch, K.M.; Edmunds, J.J. 2007: Structure-based drug design of pyrrolidine-1, 2-dicarboxamides as a novel series of orally bioavailable factor Xa inhibitors. Chemical Biology and Drug Design 69(6): 444-450
Pulla, V.K.; Alvala, M.; Sriram, D.S.; Viswanadha, S.; Sriram, D.; Yogeeswari, P. 2014: Structure-based drug design of small molecule SIRT1 modulators to treat cancer and metabolic disorders. Journal of Molecular Graphics and Modelling 52: 46-56
Tsukada, T.; Takahashi, M.; Takemoto, T.; Kanno, O.; Yamane, T.; Kawamura, S.; Nishi, T. 2010: Structure-based drug design of tricyclic 8H-indeno[1,2-d][1,3]thiazoles as potent FBPase inhibitors. Bioorganic and Medicinal Chemistry Letters 20(3): 1004-1007
Ferguson, A.D. 2012: Structure-based drug design on membrane protein targets: human integral membrane protein 5-lipoxygenase-activating protein. Methods in Molecular Biology 841: 267-290
Junior, M.C.S.; de Assis, S.A.; Góes-Neto, A.ót.; Duarte, A.A.ân.; Alves, R.J.é; Junior, M.C.; Taranto, A.G. 2013: Structure-based drug design studies of UDP-N-acetylglucosamine pyrophosphosrylase, a key enzyme for the control of witches' broom disease. Chemistry Central Journal 7(1): 48
Dong, X.; Zhao, Y.; Huang, X.; Lin, K.; Chen, J.; Wei, E.; Liu, T.; Hu, Y. 2013: Structure-based drug design using GPCR homology modeling: toward the discovery of novel selective CysLT2 antagonists. European Journal of Medicinal Chemistry 62: 754-763
Zhang, X.; Tang, H.; Ye, C.; Liu, M. 2006: Structure-based drug design: NMR-based approach for ligand-protein interactions. Drug Discovery Today. Technologies 3(3): 241-245
Kroemer, R.T. 2007: Structure-based drug design: docking and scoring. Current Protein and Peptide Science 8(4): 312-328
Katunuma, N. 2009: Structure-based drug development and medical/biological application of cathepsin specific inhibitors. Seikagaku. Journal of Japanese Biochemical Society 81(11): 952-961
Hubbard, R.E. 2011: Structure-based drug discovery and protein targets in the CNS. Neuropharmacology 60(1): 7-23
Swaminathan, S. 2013: Structure-based drug discovery for botulinum neurotoxins. Current Topics in Microbiology and Immunology 364: 197-218
Supuran, C.T. 2012: Structure-based drug discovery of carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 27(6): 759-772
Sun, H.; Scott, D.O. 2010: Structure-based drug metabolism predictions for drug design. Chemical Biology and Drug Design 75(1): 3-17
Fukunishi, Y. 2009: Structure-based drug screening and ligand-based drug screening with machine learning. Combinatorial Chemistry and High Throughput Screening 12(4): 397-408
Loving, K.A.; Lin, A.; Cheng, A.C. 2014: Structure-based druggability assessment of the mammalian structural proteome with inclusion of light protein flexibility. Plos Computational Biology 10(7): E1003741
Fauman, E.B.; Rai, B.K.; Huang, E.S. 2011: Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics. Current Opinion in Chemical Biology 15(4): 463-468
Hendershot, J.M.; Mishra, U.J.; Smart, R.P.; Schroeder, W.; Powers, R.A. 2014: Structure-based efforts to optimize a non-β-lactam inhibitor of AmpC β-lactamase. Bioorganic and Medicinal Chemistry 22(13): 3351-3359
Ta, H.M.; Bae, S.; Han, S.; Song, J.; Ahn, T.K.; Hohng, S.; Lee, S.; Kim, K.K. 2013: Structure-based elucidation of the regulatory mechanism for aminopeptidase activity. Acta Crystallographica. Section D Biological Crystallography 69(Part 9): 1738-1747
Satpati, P.; Sund, J.; Aqvist, J. 2014: Structure-based energetics of mRNA decoding on the ribosome. Biochemistry 53(10): 1714-1722
Aranko, A.S.; Oeemig, J.S.; Zhou, D.; Kajander, T.; Wlodawer, A.; Iwaï, H. 2014: Structure-based engineering and comparison of novel split inteins for protein ligation. Molecular Biosystems 10(5): 1023-1034
Zocher, G.; Saleh, O.; Heim, J.B.; Herbst, D.A.; Heide, L.; Stehle, T. 2012: Structure-based engineering increased the catalytic turnover rate of a novel phenazine prenyltransferase. Plos one 7(10): E48427
Grosse, W.; Psakis, G.; Mertins, B.; Reiss, P.; Windisch, D.; Brademann, F.; Bürck, J.; Ulrich, A.; Koert, U.; Essen, L.-O. 2014: Structure-based engineering of a minimal porin reveals loop-independent channel closure. Biochemistry 53(29): 4826-4838
Wu, S.-J.; Luo, J.; O'Neil, K.T.; Kang, J.; Lacy, E.R.; Canziani, G.; Baker, A.; Huang, M.; Tang, Q.M.; Raju, T.S.; Jacobs, S.A.; Teplyakov, A.; Gilliland, G.L.; Feng, Y. 2010: Structure-based engineering of a monoclonal antibody for improved solubility. Protein Engineering Design and Selection: Peds 23(8): 643-651
Abe, I.; Morita, H.; Oguro, S.; Noma, H.; Wanibuchi, K.; Kawahara, N.; Goda, Y.; Noguchi, H.; Kohno, T. 2007: Structure-based engineering of a plant type IIi polyketide synthase: formation of an unnatural nonaketide naphthopyrone. Journal of the American Chemical Society 129(18): 5976-5980
Deng, Z.; Yang, H.; Li, J.; Shin, H.-D.; Du, G.; Liu, L.; Chen, J. 2014: Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability. Applied Microbiology and Biotechnology 98(9): 3997-4007
Steinmetz, N.F.; Lin, T.; Lomonossoff, G.P.; Johnson, J.E. 2009: Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology. Current Topics in Microbiology and Immunology 327: 23-58
Patrikainen, P.; Niiranen, L.; Thapa, K.; Paananen, P.; Tähtinen, P.; Mäntsälä, P.; Niemi, J.; Metsä-Ketelä, M. 2014: Structure-based engineering of angucyclinone 6-ketoreductases. Chemistry and Biology 21(10): 1381-1391
Shimokawa, Y.; Morita, H.; Abe, I. 2010: Structure-based engineering of benzalacetone synthase. Bioorganic and Medicinal Chemistry Letters 20(17): 5099-5103
Lin, L.; Gårdsvoll, H.; Huai, Q.; Huang, M.; Ploug, M. 2010: Structure-based engineering of species selectivity in the interaction between urokinase and its receptor: implication for preclinical cancer therapy. Journal of Biological Chemistry 285(14): 10982-10992
Demonte, D.; Drake, E.J.; Lim, K.H.; Gulick, A.M.; Park, S. 2013: Structure-based engineering of streptavidin monomer with a reduced biotin dissociation rate. Proteins 81(9): 1621-1633
Gámez, A.; Wang, L.; Sarkissian, C.N.; Wendt, D.; Fitzpatrick, P.; Lemontt, J.F.; Scriver, C.R.; Stevens, R.C. 2007: Structure-based epitope and PEGylation sites mapping of phenylalanine ammonia-lyase for enzyme substitution treatment of phenylketonuria. Molecular Genetics and Metabolism 91(4): 325-334
Frey, K.M.; Gray, W.T.; Spasov, K.A.; Bollini, M.; Gallardo-Macias, R.; Jorgensen, W.L.; Anderson, K.S. 2014: Structure-based evaluation of C5 derivatives in the catechol diether series targeting HIV-1 reverse transcriptase. Chemical Biology and Drug Design 83(5): 541-549
Ramakrishnan, B.; Qasba, P.K. 2010: Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetylgalactosaminyltransferase and α-polypeptidyl-N-acetylgalactosaminyltransferase. Current Opinion in Structural Biology 20(5): 536-542
Wang, H.M.; Gao, H.; Luo, X.Y.; Berry, C.; Griffith, B.E.; Ogden, R.W.; Wang, T.J. 2013: Structure-based finite strain modelling of the human left ventricle in diastole. International Journal for Numerical Methods in Biomedical Engineering 29(1): 83-103
Lin, F.-Y.; Tseng, Y.J. 2011: Structure-based fragment hopping for lead optimization using predocked fragment database. Journal of Chemical Information and Modeling 51(7): 1703-1715
Stevens, B.D. 2013: Structure-based fragment screening is demonstrated to be a practical lead discovery method for a representative G-protein-coupled receptor. Journal of Medicinal Chemistry 56(9): 3444-3445
Xiang, D.Feng.; Kolb, P.; Fedorov, A.A.; Xu, C.; Fedorov, E.V.; Narindoshivili, T.; Williams, H.J.; Shoichet, B.K.; Almo, S.C.; Raushel, F.M. 2012: Structure-based function discovery of an enzyme for the hydrolysis of phosphorylated sugar lactones. Biochemistry 51(8): 1762-1773
Konc, J.; Hodošček, M.; Ogrizek, M.; Trykowska Konc, J.; Janežič, D.ša. 2013: Structure-based function prediction of uncharacterized protein using binding sites comparison. Plos Computational Biology 9(11): E1003341
Gherardini, P.F.; Helmer-Citterich, M. 2008: Structure-based function prediction: approaches and applications. Briefings in Functional Genomics and Proteomics 7(4): 291-302
Böhm, S.W.; Eckroth, E.; Backovic, M.; Klupp, B.G.; Rey, F.A.; Mettenleiter, T.C.; Fuchs, W. 2015: Structure-based functional analyses of domains Ii and IIi of pseudorabies virus glycoprotein H. Journal of Virology 89(2): 1364-1376
Killikelly, A.; Benson, M.A.; Ohneck, E.A.; Sampson, J.M.; Jakoncic, J.; Spurrier, B.; Torres, V.J.; Kong, X.-P. 2015: Structure-based functional characterization of repressor of toxin (Rot), a central regulator of Staphylococcus aureus virulence. Journal of Bacteriology 197(1): 188-200
Anderson, A.C. 2012: Structure-based functional design of drugs: from target to lead compound. Methods in Molecular Biology 823: 359-366
Wang, J.; Wang, G.; Sha, Y.; Zhao, D.-M.; Li, F.; Cheng, M.-S. 2013: Structure-based functional site recognition for p21-activated kinase 4. Archives of Pharmacal Research 36(12): 1494-1499
Funabashi, M.; Baba, S.; Takatsu, T.; Kizuka, M.; Ohata, Y.; Tanaka, M.; Nonaka, K.; Spork, A.P.; Ducho, C.; Chen, W-Chen.Leyla.; Van Lanen, S.G. 2013: Structure-based gene targeting discovery of sphaerimicin, a bacterial translocase I inhibitor. Angewandte Chemie 52(44): 11607-11611
Zhan, C.; Li, S.; Zhong, Q.; Zhou, D. 2015: Structure-based grafting, mutation, and optimization of peptide inhibitors to fit in the active pocket of human secreted phospholipase A2: find new use of old Peptide agents with anti-inflammatory activity. Chemical Biology and Drug Design 85(4): 418-426
Yuan, X.-H.; Wang, Y.-C.; Jin, W.-J.; Zhao, B.-B.; Chen, C.-F.; Yang, J.; Wang, J.-F.; Guo, Y.-Y.; Liu, J.-J.; Zhang, D.; Gong, L.-L.; He, Y.-W. 2012: Structure-based high-throughput epitope analysis of hexon proteins in B and C species human adenoviruses (HAdVs). Plos one 7(3): E32938
Watanabe, H.; Matsumaru, H.; Ooishi, A.; Honda, S. 2013: Structure-based histidine substitution for optimizing pH-sensitive Staphylococcus protein a. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences 929: 155-160
Acharya, P.; Dogo-Isonagie, C.; LaLonde, J.M.; Lam, S.N.; Leslie, G.J.; Louder, M.K.; Frye, L.L.; Debnath, A.K.; Greenwood, J.R.; Luongo, T.S.; Martin, L.ïc.; Watts, K.S.; Hoxie, J.A.; Mascola, J.R.; Bewley, C.A.; Kwong, P.D. 2011: Structure-based identification and neutralization mechanism of tyrosine sulfate mimetics that inhibit HIV-1 entry. Acs Chemical Biology 6(10): 1069-1077
Kumar, N.; Mohanty, D. 2010: Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy. Molecular Biosystems 6(12): 2508-2520
Munusamy, V.; Yap, B.K.; Buckle, M.J.C.; Doughty, S.W.; Chung, L.Y. 2013: Structure-based identification of aporphines with selective 5-HT(2A) receptor-binding activity. Chemical Biology and Drug Design 81(2): 250-256
Yahalom, R.; Reshef, D.; Wiener, A.; Frankel, S.; Kalisman, N.; Lerner, B.; Keasar, C. 2011: Structure-based identification of catalytic residues. Proteins 79(6): 1952-1963
Zeng, F.-Q.; Peng, S.-M.; Li, L.; Mu, L.-B.; Zhang, Z.-H.; Zhang, Z.-Y.; Huang, N. 2013: Structure-based identification of drug-like inhibitors of p300 histone acetyltransferase. Yao Xue Xue Bao 48(5): 700-708
Müh, F.; Madjet, M.E.-A.; Renger, T. 2010: Structure-based identification of energy sinks in plant light-harvesting complex Ii. Journal of Physical Chemistry. B 114(42): 13517-13535
Faisal Tarique, K.; Arif Abdul Rehman, S.; Betzel, C.; Gourinath, S. 2014: Structure-based identification of inositol polyphosphate 1-phosphatase from Entamoeba histolytica. Acta Crystallographica. Section D Biological Crystallography 70(Part 11): 3023-3033
Battistini, F.; Hunter, C.A.; Moore, I.K.; Widom, J. 2012: Structure-based identification of new high-affinity nucleosome binding sequences. Journal of Molecular Biology 420(1-2): 8-16
da Silva, Fávia.M.C.; dos Santos, J.C.; Campos, Jéssica.L.O.; Mafud, A.Carolina.; Polikarpov, I.; Figueira, A.Carolina.M.; Nascimento, A.S. 2013: Structure-based identification of novel PPAR gamma ligands. Bioorganic and Medicinal Chemistry Letters 23(21): 5795-5802
Kumar, M.; Verma, S.; Sharma, S.; Srinivasan, A.; Singh, T.P.; Kaur, P. 2010: Structure-based in silico design of a high-affinity dipeptide inhibitor for novel protein drug target Shikimate kinase of Mycobacterium tuberculosis. Chemical Biology and Drug Design 76(3): 277-284
Li, H.; Sun, J.; Wang, Y.; Sui, X.; Sun, L.; Zhang, J.; He, Z. 2011: Structure-based in silico model profiles the binding constant of poorly soluble drugs with β-cyclodextrin. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 42(1-2): 55-64
Kumar, M.; Sharma, S.; Srinivasan, A.; Singh, T.P.; Kaur, P. 2011: Structure-based in-silico rational design of a selective peptide inhibitor for thymidine monophosphate kinase of mycobacterium tuberculosis. Journal of Molecular Modeling 17(5): 1173-1182
Mastrangelo, E.; Pezzullo, M.; Tarantino, D.; Petazzi, R.; Germani, F.; Kramer, D.; Robel, I.; Rohayem, J.; Bolognesi, M.; Milani, M. 2012: Structure-based inhibition of Norovirus RNA-dependent RNA polymerases. Journal of Molecular Biology 419(3-4): 198-210
Watkins, A.M.; Arora, P.S. 2015: Structure-based inhibition of protein-protein interactions. European Journal of Medicinal Chemistry 94: 480-488
Liu, J-Shin.; Cheng, W-Chi.; Wang, H-Jung.; Chen, Y-Cheng.; Wang, W-Ching. 2008: Structure-based inhibitor discovery of Helicobacter pylori dehydroquinate synthase. Biochemical and Biophysical Research Communications 373(1): 1-7
Hall, A.; Nelson, K.; Poole, L.B.; Karplus, P.A. 2011: Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxidants and Redox Signaling 15(3): 795-815
Helbling, D.E.; Hollender, J.; Kohler, H.-P.E.; Fenner, K. 2010: Structure-based interpretation of biotransformation pathways of amide-containing compounds in sludge-seeded bioreactors. Environmental Science and Technology 44(17): 6628-6635
Kim, M.-K.; An, Y.J.; Song, J.M.; Jeong, C.-S.; Kang, M.H.; Kwon, K.K.; Lee, Y.-H.; Cha, S.-S. 2014: Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Proteins 82(11): 3217-3223
Hamzeh-Mivehroud, M.; Rahmani, S.; Rashidi, M.-R.; Hosseinpour Feizi, M.-A.; Dastmalchi, S. 2013: Structure-based investigation of rat aldehyde oxidase inhibition by flavonoids. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 43(8): 661-670
Cao, J.; Lin, Y.; Guo, L.-H.; Zhang, A.-Q.; Wei, Y.; Yang, Y. 2010: Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicology 277(1-3): 20-28
Zhang, L.; Ren, X.-M.; Guo, L.-H. 2013: Structure-based investigation on the interaction of perfluorinated compounds with human liver fatty acid binding protein. Environmental Science and Technology 47(19): 11293-11301
Xin, F.; Myers, S.; Li, Y.F.; Cooper, D.N.; Mooney, S.D.; Radivojac, P. 2010: Structure-based kernels for the prediction of catalytic residues and their involvement in human inherited disease. Bioinformatics 26(16): 1975-1982
Shao, Q-Chun.; Zhang, C-Juan.; Li, J. 2014: Structure-based lead discovery for protein kinase C zeta inhibitor design by exploiting kinase-inhibitor complex crystal structure data and potential therapeutics for preterm labour. Archives of Pharmacal Research 2014
Barf, T.; Kaptein, A.; de Wilde, S.; van der Heijden, R.; van Someren, R.; Demont, D.; Schultz-Fademrecht, C.; Versteegh, J.; van Zeeland, M.; Seegers, N.; Kazemier, B.; van de Kar, B.; van Hoek, M.; de Roos, J.; Klop, H.; Smeets, R.; Hofstra, C.; Hornberg, J.; Oubrie, A. 2011: Structure-based lead identification of ATP-competitive MK2 inhibitors. Bioorganic and Medicinal Chemistry Letters 21(12): 3818-3822
Liang, G.; Aldous, S.; Merriman, G.; Levell, J.; Pribish, J.; Cairns, J.; Chen, X.; Maignan, S.; Mathieu, M.; Tsay, J.; Sides, K.; Rebello, S.; Whitely, B.; Morize, I.; Pauls, H.W. 2012: Structure-based library design and the discovery of a potent and selective mast cell β-tryptase inhibitor as an oral therapeutic agent. Bioorganic and Medicinal Chemistry Letters 22(2): 1049-1054
Yan, S.; Selliah, R. 2011: Structure-based library design in efficient discovery of novel inhibitors. Methods in Molecular Biology 685: 175-190
Hunter, W.N. 2009: Structure-based ligand design and the promise held for antiprotozoan drug discovery. Journal of Biological Chemistry 284(18): 11749-11753
McPhillie, M.J.; Trowbridge, R.; Mariner, K.R.; O'Neill, A.J.; Johnson, A.P.; Chopra, I.; Fishwick, C.W.G. 2011: Structure-based ligand design of novel bacterial RNA polymerase inhibitors. Acs Medicinal Chemistry Letters 2(10): 729-734
Brändén, G.; Sjögren, T.; Schnecke, V.; Xue, Y. 2014: Structure-based ligand design to overcome CYP inhibition in drug discovery projects. Drug Discovery Today 19(7): 905-911
Geier, E.G.; Schlessinger, A.; Fan, H.; Gable, J.E.; Irwin, J.J.; Sali, A.; Giacomini, K.M. 2013: Structure-based ligand discovery for the Large-neutral Amino Acid Transporter 1, LAT-1. Proceedings of the National Academy of Sciences of the United States of America 110(14): 5480-5485
Mysinger, M.M.; Weiss, D.R.; Ziarek, J.J.; Gravel, Séphanie.; Doak, A.K.; Karpiak, J.; Heveker, N.; Shoichet, B.K.; Volkman, B.F. 2012: Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. Proceedings of the National Academy of Sciences of the United States of America 109(14): 5517-5522
Lane, J.Robert.; Chubukov, P.; Liu, W.; Canals, M.; Cherezov, V.; Abagyan, R.; Stevens, R.C.; Katritch, V. 2013: Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors. Molecular Pharmacology 84(6): 794-807
Cummings, M.D.; Lin, T.-I.; Hu, L.; Tahri, A.; McGowan, D.; Amssoms, K.; Last, S.; Devogelaere, B.; Rouan, M.-C.; Vijgen, L.; Berke, J.M.; Dehertogh, P.; Fransen, E.; Cleiren, E.; van der Helm, L.; Fanning, G.; Van Emelen, K.; Nyanguile, O.èn.; Simmen, K.; Raboisson, P.; Vendeville, S. 2012: Structure-based macrocyclization yields hepatitis C virus NS5B inhibitors with improved binding affinities and pharmacokinetic properties. Angewandte Chemie 51(19): 4637-4640
Di Salvo, M.L.; Scarsdale, J.N.; Kazanina, G.; Contestabile, R.; Schirch, V.; Wright, H.T. 2013: Structure-based mechanism for early PLP-mediated steps of rabbit cytosolic serine hydroxymethyltransferase reaction. Biomed Research International 2013: 458571
Hawse, W.F.; Wolberger, C. 2009: Structure-based mechanism of ADP-ribosylation by sirtuins. Journal of Biological Chemistry 284(48): 33654-33661
Heyes, D.J.; Levy, C.; Lafite, P.; Roberts, I.S.; Goldrick, M.; Stachulski, A.V.; Rossington, S.B.; Stanford, D.; Rigby, S.E.J.; Scrutton, N.S.; Leys, D. 2009: Structure-based mechanism of CMP-2-keto-3-deoxymanno-octulonic acid synthetase: convergent evolution of a sugar-activating enzyme with DNA/RNA polymerases. Journal of Biological Chemistry 284(51): 35514-35523
Lu, D.; Wörmann, M.E.; Zhang, X.; Schneewind, O.; Gründling, A.; Freemont, P.S. 2009: Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. Proceedings of the National Academy of Sciences of the United States of America 106(5): 1584-1589
Pan, K.; Boulais, E.; Yang, L.; Bathe, M. 2014: Structure-based model for light-harvesting properties of nucleic acid nanostructures. Nucleic Acids Research 42(4): 2159-2170
Bak, A.; Wyszomirski, M.; Magdziarz, T.; Smolinski, A.; Polanski, J. 2014: Structure-based modeling of dye-fiber affinity with SOM-4D-QSAR paradigm: application to set of anthraquinone derivatives. Combinatorial Chemistry and High Throughput Screening 17(6): 485-502
Renger, T.; Madjet, M.E.-A.; Schmidt am Busch, M.; Adolphs, J.; Müh, F. 2013: Structure-based modeling of energy transfer in photosynthesis. Photosynthesis Research 116(2-3): 367-388
Joyce, A.P.; Zhang, C.; Bradley, P.; Havranek, J.J. 2015: Structure-based modeling of protein: DNA specificity. Briefings in Functional Genomics 14(1): 39-49
Krishnan, L.; Li, X.; Naraharisetty, H.L.; Hare, S.; Cherepanov, P.; Engelman, A. 2010: Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proceedings of the National Academy of Sciences of the United States of America 107(36): 15910-15915
Nakagawa, T.; Satake, R.; Sato, M.; Kino, K. 2011: Structure-based modification of D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 for depsipeptide synthesis. Bioscience Biotechnology and Biochemistry 75(4): 700-704
Kaczor, A.A.; Selent, J.; Poso, A. 2013: Structure-based molecular modeling approaches to GPCR oligomerization. Methods in Cell Biology 117: 91-104
Kanada, R.; Kuwata, T.; Kenzaki, H.; Takada, S. 2013: Structure-based molecular simulations reveal the enhancement of biased Brownian motions in single-headed kinesin. Plos Computational Biology 9(2): E1002907
Tiwari, G.; Mohanty, D. 2014: Structure-based multiscale approach for identification of interaction partners of PDZ domains. Journal of Chemical Information and Modeling 54(4): 1143-1156
André-Leroux, G.én.ël.; Berrin, J.-G.; Georis, J.; Arnaut, F.; Juge, N. 2008: Structure-based mutagenesis of Penicillium griseofulvum xylanase using computational design. Proteins 72(4): 1298-1307
Steere, A.N.; Chasteen, N.D.; Miller, B.F.; Smith, V.C.; MacGillivray, R.T.A.; Mason, A.B. 2012: Structure-based mutagenesis reveals critical residues in the transferrin receptor participating in the mechanism of pH-induced release of iron from human serum transferrin. Biochemistry 51(10): 2113-2121
Rakic, B.; Rao, F.V.; Freimann, K.; Wakarchuk, W.; Strynadka, N.C.J.; Withers, S.G. 2013: Structure-based mutagenic analysis of mechanism and substrate specificity in mammalian glycosyltransferases: porcine ST3Gal-i. Glycobiology 23(5): 536-545
Ashby, J.A.; Stevenson, C.E.M.; Jarvis, G.E.; Lawson, D.M.; Maule, A.J. 2011: Structure-based mutational analysis of eIF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea. Plos one 6(1): E15873
Liu, X.; Schuck, S.; Stenlund, A. 2010: Structure-based mutational analysis of the bovine papillomavirus E1 helicase domain identifies residues involved in the nonspecific DNA binding activity required for double trimer formation. Journal of Virology 84(9): 4264-4276
Chen, C.; Joo, J.C.; Brown, G.; Stolnikova, E.; Halavaty, A.S.; Savchenko, A.; Anderson, W.F.; Yakunin, A.F. 2014: Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus. Applied and Environmental Microbiology 80(13): 3992-4002
Nichols, S.E.; Hernández, C.X.; Wang, Y.; McCammon, J.A. 2013: Structure-based network analysis of an evolved G protein-coupled receptor homodimer interface. Protein Science: a Publication of the Protein Society 22(6): 745-754
Ganglberger, F.; Schulze, F.; Tirian, L.; Novikov, A.; Dickson, B.; Bühler, K.; Langs, G. 2014: Structure-based neuron retrieval across Drosophila brains. Neuroinformatics 12(3): 423-434
Kieu, K.; Li, C.; Fang, Y.; Cohoon, G.; Herrera, O.D.; Hildebrand, M.; Sandhage, K.H.; Norwood, R.A. 2014: Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii. Optics Express 22(13): 15992-15999
El-Kabbani, O.; Scammells, P.J.; Day, T.; Dhagat, U.; Endo, S.; Matsunaga, T.; Soda, M.; Hara, A. 2010: Structure-based optimization and biological evaluation of human 20α-hydroxysteroid dehydrogenase (AKR1C1) salicylic acid-based inhibitors. European Journal of Medicinal Chemistry 45(11): 5309-5317
Park, B.S.; Al-Sanea, M.M.; Abdelazem, A.Z.; Park, H.M.; Roh, E.J.; Park, H.-M.; Yoo, K.H.; Sim, T.; Tae, J.S.; Lee, S.H. 2014: Structure-based optimization and biological evaluation of trisubstituted pyrazole as a core structure of potent ROS1 kinase inhibitors. Bioorganic and Medicinal Chemistry 22(15): 3871-3878
Chan, D.S.-H.; Yang, H.; Kwan, M.H.-T.; Cheng, Z.; Lee, P.; Bai, L.-P.; Jiang, Z.-H.; Wong, C.-Y.; Fong, W.-F.; Leung, C.-H.; Ma, D.-L. 2011: Structure-based optimization of FDA-approved drug methylene blue as a c-myc G-quadruplex DNA stabilizer. Biochimie 93(6): 1055-1064
Mosyak, L.; Xu, Z.; Joseph-McCarthy, D.; Brooijmans, N.; Somers, W.; Chaudhary, D. 2007: Structure-based optimization of PKCtheta inhibitors. Biochemical Society Transactions 35(Pt 5): 1027-1031
Qian, Z.; Dougherty, P.G.; Liu, T.; Oottikkal, S.; Hogan, P.G.; Hadad, C.M.; Pei, D. 2014: Structure-based optimization of a peptidyl inhibitor against calcineurin-nuclear factor of activated T cell (NFAT) interaction. Journal of Medicinal Chemistry 57(18): 7792-7797
Eisenmann, M.; Steuber, H.; Zentgraf, M.; Altenkämper, M.; Ortmann, R.; Perruchon, J.; Klebe, G.; Schlitzer, M. 2009: Structure-based optimization of aldose reductase inhibitors originating from virtual screening. Chemmedchem 4(5): 809-819
Jimenez, J.-M.; Davis, C.; Boyall, D.; Fraysse, D.; Knegtel, R.; Settimo, L.; Young, S.; Bolton, C.; Chiu, P.; Curnock, A.; Rasmussen, R.; Tanner, A.; Ager, I. 2012: Structure-based optimization of aminopyridines as PKCθ inhibitors. Bioorganic and Medicinal Chemistry Letters 22(14): 4645-4649
Dings, R.P.M.; Kumar, N.; Miller, M.C.; Loren, M.; Rangwala, H.; Hoye, T.R.; Mayo, K.H. 2013: Structure-based optimization of angiostatic agent 6DBF7, an allosteric antagonist of galectin-1. Journal of Pharmacology and Experimental Therapeutics 344(3): 589-599
Eldrup, A.B.; Soleymanzadeh, F.; Taylor, S.J.; Muegge, I.; Farrow, N.A.; Joseph, D.; McKellop, K.; Man, C.C.; Kukulka, A.; De Lombaert, S.ép. 2009: Structure-based optimization of arylamides as inhibitors of soluble epoxide hydrolase. Journal of Medicinal Chemistry 52(19): 5880-5895
Maccari, R.; Ottanà, R.; Ciurleo, R.; Paoli, P.; Manao, G.; Camici, G.; Laggner, C.; Langer, T. 2009: Structure-based optimization of benzoic acids as inhibitors of protein tyrosine phosphatase 1B and low molecular weight protein tyrosine phosphatase. Chemmedchem 4(6): 957-962
Morandi, S.; Morandi, F.; Caselli, E.; Shoichet, B.K.; Prati, F. 2008: Structure-based optimization of cephalothin-analogue boronic acids as beta-lactamase inhibitors. Bioorganic and Medicinal Chemistry 16(3): 1195-1205
Hou, J.; Feng, C.; Li, Z.; Fang, Q.; Wang, H.; Gu, G.; Shi, Y.; Liu, P.; Xu, F.; Yin, Z.; Shen, J.; Wang, P. 2011: Structure-based optimization of click-based histone deacetylase inhibitors. European Journal of Medicinal Chemistry 46(8): 3190-3200
Takai, K.; Nakajima, T.; Takanashi, Y.; Sone, T.; Nariai, T.; Chiyo, N.; Nakatani, S.; Ishikawa, C.; Yamaguchi, N.; Fujita, K.; Yamada, K. 2014: Structure-based optimization of cyclopropyl urea derivatives as potent soluble epoxide hydrolase inhibitors for potential decrease of renal injury without hypotensive action. Bioorganic and Medicinal Chemistry 22(5): 1548-1557
Madhurantakam, C.; Varadamsetty, G.; Grütter, M.G.; Plückthun, A.; Mittl, P.R.E. 2012: Structure-based optimization of designed Armadillo-repeat proteins. Protein Science: a Publication of the Protein Society 21(7): 1015-1028
Poulsen, A.; Williams, M.; Nagaraj, H.M.; William, A.D.; Wang, H.; Soh, C.K.; Xiong, Z.C.; Dymock, B. 2012: Structure-based optimization of morpholino-triazines as PI3K and mTOR inhibitors. Bioorganic and Medicinal Chemistry Letters 22(2): 1009-1013
Grädler, U.; Czodrowski, P.; Tsaklakidis, C.; Klein, M.; Werkmann, D.; Lindemann, S.; Maskos, K.; Leuthner, B. 2014: Structure-based optimization of non-peptidic Cathepsin D inhibitors. Bioorganic and Medicinal Chemistry Letters 24(17): 4141-4150
Lo Monte, F.; Kramer, T.; Gu, J.; Brodrecht, M.; Pilakowski, J.; Fuertes, A.; Dominguez, J.M.; Plotkin, B.; Eldar-Finkelman, H.; Schmidt, B. 2013: Structure-based optimization of oxadiazole-based GSK-3 inhibitors. European Journal of Medicinal Chemistry 61: 26-40
Scheiper, B.; Matter, H.; Steinhagen, H.; Böcskei, Z.; Fleury, V.ér.; McCort, G. 2011: Structure-based optimization of potent 4- and 6-azaindole-3-carboxamides as renin inhibitors. Bioorganic and Medicinal Chemistry Letters 21(18): 5480-5486
Angiolini, M.; Banfi, P.; Casale, E.; Casuscelli, F.; Fiorelli, C.; Saccardo, M.B.; Silvagni, M.; Zuccotto, F. 2010: Structure-based optimization of potent PDK1 inhibitors. Bioorganic and Medicinal Chemistry Letters 20(14): 4095-4099
Lafleur, K.; Huang, D.; Zhou, T.; Caflisch, A.; Nevado, C. 2009: Structure-based optimization of potent and selective inhibitors of the tyrosine kinase erythropoietin producing human hepatocellular carcinoma receptor B4 (EphB4). Journal of Medicinal Chemistry 52(20): 6433-6446
Wan, Z.-K.; Lee, J.; Hotchandani, R.; Moretto, A.; Binnun, E.; Wilson, D.P.; Kirincich, S.J.; Follows, B.C.; Ipek, M.; Xu, W.; Joseph-McCarthy, D.; Zhang, Y.-L.; Tam, M.; Erbe, D.V.; Tobin, J.F.; Li, W.; Tam, S.Y.; Mansour, T.S.; Wu, J. 2008: Structure-based optimization of protein tyrosine phosphatase-1 B inhibitors: capturing interactions with arginine 24. Chemmedchem 3(10): 1525-1529
Staben, S.T.; Heffron, T.P.; Sutherlin, D.P.; Bhat, S.R.; Castanedo, G.M.; Chuckowree, I.S.; Dotson, J.; Folkes, A.J.; Friedman, L.S.; Lee, L.; Lesnick, J.; Lewis, C.; Murray, J.M.; Nonomiya, J.; Olivero, A.G.; Plise, E.; Pang, J.; Prior, W.W.; Salphati, L.; Rouge, L.; Sampath, D.; Tsui, V.; Wan, N.C.; Wang, S.; Weismann, C.; Wu, P.; Zhu, B.-Y. 2010: Structure-based optimization of pyrazolo-pyrimidine and -pyridine inhibitors of PI3-kinase. Bioorganic and Medicinal Chemistry Letters 20(20): 6048-6051
Huang, S.-X.; Cao, B.; Morisseau, C.; Jin, Y.; Hammock, B.D.; Long, Y.-Q. 2012: Structure-based optimization of the piperazino-containing 1,3-disubstituted ureas affording sub-nanomolar inhibitors of soluble epoxide hydrolase. Medchemcomm 3: 379-384
Kadam, R.U.; Bergmann, M.; Garg, D.; Gabrieli, G.; Stocker, A.; Darbre, T.; Reymond, J.-L. 2013: Structure-based optimization of the terminal tripeptide in glycopeptide dendrimer inhibitors of Pseudomonas aeruginosa biofilms targeting LecA. Chemistry 19(50): 17054-17063
Sartini, S.; Coviello, V.; Bruno, A.; La Pietra, V.; Marinelli, L.; Simorini, F.; Taliani, S.; Salerno, S.; Marini, A.M.; Fioravanti, A.; Orlandi, P.; Antonelli, A.; Da Settimo, F.; Novellino, E.; Bocci, G.; La Motta, C. 2014: Structure-based optimization of tyrosine kinase inhibitor CLM3. Design, synthesis, functional evaluation, and molecular modeling studies. Journal of Medicinal Chemistry 57(4): 1225-1235
Fitch, C.A.; García-Moreno E, B. 2007: Structure-based pKa calculations using continuum electrostatics methods. Current Protocols in Bioinformatics Chapter 8: Unit 8.11
Xing, L.; Hamper, B.C.; Fletcher, T.R.; Wendling, J.M.; Carter, J.; Gierse, J.K.; Liao, S. 2011: Structure-based parallel medicinal chemistry approach to improve metabolic stability of benzopyran COX-2 inhibitors. Bioorganic and Medicinal Chemistry Letters 21(3): 993-996
Ohtaki, A.; Kieber-Emmons, T.; Murali, R. 2013: Structure-based peptide mimicry of tumor-associated antigens. Monoclonal Antibodies in Immunodiagnosis and ImmunoTherapy 32(1): 1-5
Tanrikulu, Y.; Rau, O.; Schwarz, O.; Proschak, E.; Siems, K.; Müller-Kuhrt, L.; Schubert-Zsilavecz, M.; Schneider, G. 2009: Structure-based pharmacophore screening for natural-product-derived PPARgamma agonists. Chembiochem: a European journal of chemical biology 10(1): 75-78
Agarwal, G.; Rajavel, M.; Gopal, B.; Srinivasan, N. 2009: Structure-based phylogeny as a diagnostic for functional characterization of proteins with a cupin fold. Plos one 4(5): E5736
Sun, Y.; Zeng, F.; Zhang, W.; Qiao, J. 2012: Structure-based phylogeny of polyene macrolide antibiotic glycosyltransferases. Gene 499(2): 288-296
Carneiro, E.O.; Andrade, C.H.; Braga, R.C.; Tôrres, A.éa.C.B.; Alves, R.ân.O.; Lião, L.M.; Fraga, C.A.M.; Barreiro, E.J.; de Oliveira, V.ér. 2010: Structure-based prediction and biosynthesis of the major mammalian metabolite of the cardioactive prototype LASSBio-294. Bioorganic and Medicinal Chemistry Letters 20(12): 3734-3736
Zhao, H.; Yang, Y.; Zhou, Y. 2010: Structure-based prediction of DNA-binding proteins by structural alignment and a volume-fraction corrected DFIRE-based energy function. Bioinformatics 26(15): 1857-1863
Bordner, A.J. 2013: Structure-based prediction of Major Histocompatibility Complex (MHC) epitopes. Methods in Molecular Biology 1061: 323-343
Sydow, J.F.; Lipsmeier, F.; Larraillet, V.; Hilger, M.; Mautz, B.; Mølhøj, M.; Kuentzer, J.; Klostermann, S.; Schoch, J.; Voelger, H.R.; Regula, J.T.; Cramer, P.; Papadimitriou, A.; Kettenberger, H. 2014: Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. Plos one 9(6): E100736
Natesan, S.; Lukacova, V.; Peng, M.; Subramaniam, R.; Lynch, S.; Wang, Z.; Tandlich, R.; Balaz, S. 2014: Structure-based prediction of drug distribution across the headgroup and core strata of a phospholipid bilayer using surrogate phases. Molecular Pharmaceutics 11(10): 3577-3595
Sun, L.; Liu, X.; Xiang, R.; Wu, C.; Wang, Y.; Sun, Y.; Sun, J.; He, Z. 2013: Structure-based prediction of human intestinal membrane permeability for rapid in silico BCS classification. Biopharmaceutics and Drug Disposition 34(6): 321-335
Masso, M.; Vaisman, I.I. 2011: Structure-based prediction of protein activity changes: assessing the impact of single residue replacements. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2011: 3221-3224
King, C.A.; Bradley, P. 2010: Structure-based prediction of protein-peptide specificity in Rosetta. Proteins 78(16): 3437-3449
Kim, S.-K.; Fristrup, P.; Abrol, R.; Goddard, W.A. 2011: Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials. Journal of Chemical Information and Modeling 51(12): 3262-3274
Fernandez-Ballester, G.; Beltrao, P.; Gonzalez, J.M.; Song, Y.-H.; Wilmanns, M.; Valencia, A.; Serrano, L. 2009: Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions. Journal of Molecular Biology 388(4): 902-916
Li, H.; Sun, J.; Sui, X.; Yan, Z.; Sun, Y.; Liu, X.; Wang, Y.; He, Z. 2009: Structure-based prediction of the nonspecific binding of drugs to hepatic microsomes. Aaps Journal 11(2): 364-370
Smith, C.A.; Kortemme, T. 2010: Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. Journal of Molecular Biology 402(2): 460-474
Liu, Z.; Guo, J.-T.; Li, T.; Xu, Y. 2008: Structure-based prediction of transcription factor binding sites using a protein-DNA docking approach. Proteins 72(4): 1114-1124
Bryan, A.W.; Starner-Kreinbrink, J.L.; Hosur, R.; Clark, P.L.; Berger, B. 2011: Structure-based prediction reveals capping motifs that inhibit β-helix aggregation. Proceedings of the National Academy of Sciences of the United States of America 108(27): 11099-11104
Ashworth, J.; Bernard, B.; Reynolds, S.; Plaisier, C.L.; Shmulevich, I.; Baliga, N.S. 2014: Structure-based predictions broadly link transcription factor mutations to gene expression changes in cancers. Nucleic Acids Research 42(21): 12973-12983
Demerdash, O.N.A.; Daily, M.D.; Mitchell, J.C. 2009: Structure-based predictive models for allosteric hot spots. Plos Computational Biology 5(10): E1000531
Masso, M.; Chuang, G.; Hao, K.; Jain, S.; Vaisman, I.I. 2014: Structure-based predictors of resistance to the HIV-1 integrase inhibitor Elvitegravir. Antiviral Research 106: 5-12
Dong, X.; Hilliard, S.G.; Zheng, W. 2011: Structure-based quantitative structure--activity relationship modeling of estrogen receptor β-ligands. Future Medicinal Chemistry 3(8): 933-945
Du, J.; Xi, L.; Lei, B.; Lu, J.; Li, J.; Liu, H.; Yao, X. 2010: Structure-based quantitative structure-activity relationship studies of checkpoint kinase 1 inhibitors. Journal of Computational Chemistry 31(15): 2783-2793
Deng, Z.; Yang, H.; Shin, H.-d.; Li, J.; Liu, L. 2014: Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Applied Microbiology and Biotechnology 98(21): 8937-8945
Han, J.; Kim, H.J.; Lee, S.-C.; Hong, S.; Park, K.; Jeon, Y.H.; Kim, D.; Cheong, H.-K.; Kim, H.-S. 2012: Structure-based rational design of a Toll-like receptor 4 (TLR4) decoy receptor with high binding affinity for a target protein. Plos one 7(2): E30929
Jackson, C.J.; Weir, K.; Herlt, A.; Khurana, J.; Sutherland, T.D.; Horne, I.; Easton, C.; Russell, R.J.; Scott, C.; Oakeshott, J.G. 2009: Structure-based rational design of a phosphotriesterase. Applied and Environmental Microbiology 75(15): 5153-5156
Liu, J.; Li, C.; Ke, S.; Satyanarayanajois, S.D. 2007: Structure-based rational design of beta-hairpin peptides from discontinuous epitopes of cluster of differentiation 2 (CD2) protein to modulate cell adhesion interaction. Journal of Medicinal Chemistry 50(17): 4038-4047
Ren, Y.; He, J.; Feng, L.; Liao, X.; Jin, J.; Li, Y.; Cao, Y.; Wan, J.; He, H. 2011: Structure-based rational design of novel hit compounds for pyruvate dehydrogenase multienzyme complex E1 components from Escherichia coli. Bioorganic and Medicinal Chemistry 19(24): 7501-7506
Wang, H.; Xie, H.; Wu, J.; Wei, X.; Zhou, L.; Xu, X.; Zheng, S. 2014: Structure-based rational design of prodrugs to enable their combination with polymeric nanoparticle delivery platforms for enhanced antitumor efficacy. Angewandte Chemie 53(43): 11532-11537
Fang, Z.; Zhou, P.; Chang, F.; Yin, Q.; Fang, W.; Yuan, J.; Zhang, X.; Xiao, Y. 2014: Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. Plos one 9(7): E102423
Xu, Y.; Sheng, C.; Wang, W.; Che, X.; Cao, Y.; Dong, G.; Wang, S.; Ji, H.; Miao, Z.; Yao, J.; Zhang, W. 2010: Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives. Bioorganic and Medicinal Chemistry Letters 20(9): 2942-2945
Zhang, Q.; Li, D.; Wei, P.; Zhang, J.; Wan, J.; Ren, Y.; Chen, Z.; Liu, D.; Yu, Z.; Feng, L. 2010: Structure-based rational screening of novel hit compounds with structural diversity for cytochrome P450 sterol 14alpha-demethylase from Penicillium digitatum. Journal of Chemical Information and Modeling 50(2): 317-325
Suhas, R.; Channe Gowda, D. 2012: Structure-based rationale design and synthesis of aurantiamide acetate analogues - towards a new class of potent analgesic and anti-inflammatory agents. Chemical Biology and Drug Design 79(5): 850-862
Butts, C.P.; Filali, E.; Lloyd-Jones, G.C.; Norrby, P.-O.; Sale, D.A.; Schramm, Y. 2009: Structure-based rationale for selectivity in the asymmetric allylic alkylation of cycloalkenyl esters employing the Trost 'Standard Ligand' (TSL): isolation, analysis and alkylation of the monomeric form of the cationic eta(3)-cyclohexenyl complex [(eta(3)-c-C6H9)Pd(TSL)]+. Journal of the American Chemical Society 131(29): 9945-9957
Zhang, W.; Modén, O.; Tars, K.; Mannervik, B. 2012: Structure-based redesign of GST A2-2 for enhanced catalytic efficiency with azathioprine. Chemistry and Biology 19(3): 414-421
Kopacz, M.M.; Rovida, S.; van Duijn, E.; Fraaije, M.W.; Mattevi, A. 2011: Structure-based redesign of cofactor binding in putrescine oxidase. Biochemistry 50(19): 4209-4217
Choi, Y.; Griswold, K.E.; Bailey-Kellogg, C. 2013: Structure-based redesign of proteins for minimal T-cell epitope content. Journal of Computational Chemistry 34(10): 879-891
Chen, T.S.; Palacios, H.; Keating, A.E. 2013: Structure-based redesign of the binding specificity of anti-apoptotic Bcl-x(L). Journal of Molecular Biology 425(1): 171-185
Leung, C.-H.; Chan, D.S.-H.; Kwan, M.H.-T.; Cheng, Z.; Wong, C.-Y.; Zhu, G.-Y.; Fong, W.-F.; Ma, D.-L. 2011: Structure-based repurposing of FDA-approved drugs as TNF-α inhibitors. Chemmedchem 6(5): 765-768
Zhong, H.-J.; Liu, L.-J.; Chan, D.S.-H.; Wang, H.-M.; Chan, P.W.H.; Ma, D.-L.; Leung, C.-H. 2014: Structure-based repurposing of FDA-approved drugs as inhibitors of NEDD8-activating enzyme. Biochimie 102: 211-215
De Luca, L.; Ferro, S.; Damiano, F.M.; Supuran, C.T.; Vullo, D.; Chimirri, A.; Gitto, R. 2014: Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. European Journal of Medicinal Chemistry 71: 105-111
Jimenez, R.M.; Lupták, A. 2012: Structure-based search and in vitro analysis of self-cleaving ribozymes. Methods in Molecular Biology 848: 131-143
Bajda, M.; Więckowska, A.; Hebda, M.; Guzior, N.; Sotriffer, C.A.; Malawska, B. 2013: Structure-based search for new inhibitors of cholinesterases. International Journal of Molecular Sciences 14(3): 5608-5632
Jimenez, R.M.; Delwart, E.; Lupták, A. 2011: Structure-based search reveals hammerhead ribozymes in the human microbiome. Journal of Biological Chemistry 286(10): 7737-7743
Michels, A.W.; Ostrov, D.A.; Zhang, L.; Nakayama, M.; Fuse, M.; McDaniel, K.; Roep, B.O.; Gottlieb, P.A.; Atkinson, M.A.; Eisenbarth, G.S. 2011: Structure-based selection of small molecules to alter allele-specific MHC class II antigen presentation. Journal of Immunology 187(11): 5921-5930
Corona, P.; Gibellini, F.; Cavalli, A.; Saxena, P.; Carta, A.; Loriga, M.; Luciani, R.; Paglietti, G.; Guerrieri, D.; Nerini, E.; Gupta, S.; Hannaert, V.ér.; Michels, P.A.M.; Ferrari, S.; Costi, P.M. 2012: Structure-based selectivity optimization of piperidine-pteridine derivatives as potent Leishmania pteridine reductase inhibitors. Journal of Medicinal Chemistry 55(19): 8318-8329
Ebalunode, J.O.; Dong, X.; Ouyang, Z.; Liang, J.; Eckenhoff, R.G.; Zheng, W. 2009: Structure-based shape pharmacophore modeling for the discovery of novel anesthetic compounds. Bioorganic and Medicinal Chemistry 17(14): 5133-5138
Zheng, W.; Tekpinar, M. 2012: Structure-based simulations of the translocation mechanism of the hepatitis C virus NS3 helicase along single-stranded nucleic acid. Biophysical Journal 103(6): 1343-1353
Leioatts, N.; Suresh, P.; Romo, T.D.; Grossfield, A. 2014: Structure-based simulations reveal concerted dynamics of GPCR activation. Proteins 82(10): 2538-2551
Moors, S.L.C.; Vos, A.M.; Cummings, M.D.; Van Vlijmen, H.; Ceulemans, A. 2011: Structure-based site of metabolism prediction for cytochrome P450 2D6. Journal of Medicinal Chemistry 54(17): 6098-6105
Weininger, U.; Zeeb, M.; Neumann, P.; Löw, C.; Stubbs, M.T.; Lipps, G.; Balbach, J. 2009: Structure-based stability analysis of an extremely stable dimeric DNA binding protein from Sulfolobus islandicus. Biochemistry 48(42): 10030-10037
Dey, B.; Svehla, K.; Xu, L.; Wycuff, D.; Zhou, T.; Voss, G.; Phogat, A.; Chakrabarti, B.K.; Li, Y.; Shaw, G.; Kwong, P.D.; Nabel, G.J.; Mascola, J.R.; Wyatt, R.T. 2009: Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site. Plos Pathogens 5(5): E1000445
Baeza-Delgado, C.; Marti-Renom, M.A.; Mingarro, I. 2013: Structure-based statistical analysis of transmembrane helices. European Biophysics Journal: Ebj 42(2-3): 199-207
Prabhu, P.; Doan, T.-N.-T.; Tiwari, M.; Singh, R.; Kim, S.C.; Hong, M.-K.; Kang, Y.C.; Kang, L.-W.; Lee, J.-K. 2014: Structure-based studies on the metal binding of two-metal-dependent sugar isomerases. Febs Journal 281(15): 3446-3459
Xu, T.; Zhang, L.; Wang, X.; Wei, D.; Li, T. 2009: Structure-based substrate screening for an enzyme. Bmc Bioinformatics 10: 257
Xie, L.; Xie, L.; Bourne, P.E. 2011: Structure-based systems biology for analyzing off-target binding. Current Opinion in Structural Biology 21(2): 189-199
Kolb, P.; Kipouros, C.Berset.; Huang, D.; Caflisch, A. 2008: Structure-based tailoring of compound libraries for high-throughput screening: discovery of novel EphB4 kinase inhibitors. Proteins 73(1): 11-18
Trosset, J.-Y.; Vodovar, N. 2013: Structure-based target druggability assessment. Methods in Molecular Biology 986: 141-164
Ijiri, H.; Coulibaly, F.él.; Nishimura, G.; Nakai, D.; Chiu, E.; Takenaka, C.; Ikeda, K.; Nakazawa, H.; Hamada, N.; Kotani, E.; Metcalf, P.; Kawamata, S.; Mori, H. 2009: Structure-based targeting of bioactive proteins into cypovirus polyhedra and application to immobilized cytokines for mammalian cell culture. Biomaterials 30(26): 4297-4308
Mirjafari, A.; Murray, S.M.; O'Brien, R.A.; Stenson, A.C.; West, K.N.; Davis, J.H. 2012: Structure-based tuning of T(m) in lipid-like ionic liquids. Insights from Tf2N- salts of gene transfection agents. Chemical Communications 48(60): 7522-7524
Thomas, S.; Thirumalapura, N.R.; Crocquet-Valdes, P.A.; Luxon, B.A.; Walker, D.H. 2011: Structure-based vaccines provide protection in a mouse model of ehrlichiosis. Plos one 6(11): E27981
Lagani, V.; Tsamardinos, I. 2010: Structure-based variable selection for survival data. Bioinformatics 26(15): 1887-1894
Ferguson, K.M. 2008: Structure-based view of epidermal growth factor receptor regulation. Annual Review of Biophysics 37: 353-373
Villoutreix, B.O.; Eudes, R.; Miteva, M.A. 2009: Structure-based virtual ligand screening: recent success stories. Combinatorial Chemistry and High Throughput Screening 12(10): 1000-1016
De Azevedo, W.F. 2010: Structure-based virtual screening. Current Drug Targets 11(3): 261-263
Cosconati, S.; Hong, J.A.; Novellino, E.; Carroll, K.S.; Goodsell, D.S.; Olson, A.J. 2008: Structure-based virtual screening and biological evaluation of Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase inhibitors. Journal of Medicinal Chemistry 51(21): 6627-6630
Yang, Q.; Fedida, D.; Xu, H.; Wang, B.; Du, L.; Wang, X.; Li, M.; You, Q. 2010: Structure-based virtual screening and electrophysiological evaluation of new chemotypes of K(v)1.5 channel blockers. Chemmedchem 5(8): 1353-1358
Song, C.-H.; Yang, S.H.; Park, E.; Cho, S.H.; Gong, E.-Y.; Khadka, D.B.; Cho, W.-J.; Lee, K. 2012: Structure-based virtual screening and identification of a novel androgen receptor antagonist. Journal of Biological Chemistry 287(36): 30769-30780
Toledo Warshaviak, D.; Golan, G.; Borrelli, K.W.; Zhu, K.; Kalid, O. 2014: Structure-based virtual screening approach for discovery of covalently bound ligands. Journal of Chemical Information and Modeling 54(7): 1941-1950
Park, H.; Li, M.; Choi, J.; Cho, H.; Ham, S.W. 2009: Structure-based virtual screening approach to identify novel classes of Cdc25B phosphatase inhibitors. Bioorganic and Medicinal Chemistry Letters 19(15): 4372-4375
Park, H.; Bhattarai, B.R.; Ham, S.W.; Cho, H. 2009: Structure-based virtual screening approach to identify novel classes of PTP1B inhibitors. European Journal of Medicinal Chemistry 44(8): 3280-3284
Park, H.; Kim, S.Yi.; Kyung, A.; Yoon, T-Sung.; Ryu, S.Eon.; Jeong, D.Gwin. 2012: Structure-based virtual screening approach to the discovery of novel PTPMT1 phosphatase inhibitors. Bioorganic and Medicinal Chemistry Letters 22(2): 1271-1275
Ko, S.; Lee, M.Kyu.; Shin, D.; Park, H. 2009: Structure-based virtual screening approach to the discovery of novel inhibitors of factor-inhibiting HIF-1: identification of new chelating groups for the active-site ferrous ion. Bioorganic and Medicinal Chemistry 17(22): 7769-7774
Choi, H.; Park, H.Jeong.; Shin, J.Chul.; Ko, H.Sun.; Lee, J.Kyun.; Lee, S.; Park, H.; Hong, S. 2012: Structure-based virtual screening approach to the discovery of p38 MAP kinase inhibitors. Bioorganic and Medicinal Chemistry Letters 22(6): 2195-2199
Park, H.; Choi, H.; Hong, S.; Kim, D.; Oh, D-Seok.; Hong, S. 2011: Structure-based virtual screening approach to the discovery of phosphoinositide 3-kinase alpha inhibitors. Bioorganic and Medicinal Chemistry Letters 21(7): 2021-2024
Yang, H.; Shen, Y.; Chen, J.; Jiang, Q.; Leng, Y.; Shen, J. 2009: Structure-based virtual screening for identification of novel 11beta-HSD1 inhibitors. European Journal of Medicinal Chemistry 44(3): 1167-1171
Pitt, W.R.; Calmiano, M.D.; Kroeplien, B.; Taylor, R.D.; Turner, J.P.; King, M.A. 2013: Structure-based virtual screening for novel ligands. Methods in Molecular Biology 1008: 501-519
Ravichandiran, V.; Shanmugam, K.; Anupama, K.; Thomas, S.; Princy, A. 2012: Structure-based virtual screening for plant-derived SdiA-selective ligands as potential antivirulent agents against uropathogenic Escherichia coli. European Journal of Medicinal Chemistry 48: 200-205
Daldrop, P.; Brenk, R. 2014: Structure-based virtual screening for the identification of RNA-binding ligands. Methods in Molecular Biology 1103: 127-139
Pala, D.; Beuming, T.; Sherman, W.; Lodola, A.; Rivara, S.; Mor, M. 2013: Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement. Journal of Chemical Information and Modeling 53(4): 821-835
Min, J.; Lin, D.; Zhang, Q.; Zhang, J.; Yu, Z. 2012: Structure-based virtual screening of novel inhibitors of the uridyltransferase activity of Xanthomonas oryzae pv. oryzae GlmU. European Journal of Medicinal Chemistry 53: 150-158
Kim, N.D.; Park, E.-S.; Kim, Y.H.; Moon, S.K.; Lee, S.S.; Ahn, S.K.; Yu, D.-Y.; No, K.T.; Kim, K.-H. 2010: Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents. Bioorganic and Medicinal Chemistry 18(19): 7092-7100
Muvva, C.; Singam, E.R.A.; Raman, S.S.; Subramanian, V. 2014: Structure-based virtual screening of novel, high-affinity BRD4 inhibitors. Molecular Biosystems 10(9): 2384-2397
Negri, A.; Li, J.; Naini, S.; Coller, B.S.; Filizola, M. 2012: Structure-based virtual screening of small-molecule antagonists of platelet integrin αIIbβ3 that do not prime the receptor to bind ligand. Journal of Computer-Aided Molecular Design 26(9): 1005-1015
Daga, P.R.; Polgar, W.E.; Zaveri, N.T. 2014: Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification. Journal of Chemical Information and Modeling 54(10): 2732-2743
Teramoto, R.; Fukunishi, H. 2008: Structure-based virtual screening with supervised consensus scoring: evaluation of pose prediction and enrichment factors. Journal of Chemical Information and Modeling 48(4): 747-754
Talele, T.T.; Arora, P.; Kulkarni, S.S.; Patel, M.R.; Singh, S.; Chudayeu, M.; Kaushik-Basu, N. 2010: Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorganic and Medicinal Chemistry 18(13): 4630-4638
Weissgraeber, S.; Hoffgaard, F.; Hamacher, K. 2011: Structure-based, biophysical annotation of molecular coevolution of acetylcholinesterase. Proteins 79(11): 3144-3154
Hu, X.; Li, Y.; He, X.; Li, C.; Li, Z.; Cao, X.; Xin, X.; Somasundaran, P. 2012: Structure-behavior-property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches. Journal of Physical Chemistry. B 116(1): 160-167
Reinartz, M.T.; Kälble, S.; Littmann, T.; Ozawa, T.; Dove, S.; Kaever, V.; Wainer, I.W.; Seifert, R. 2015: Structure-bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the β2-adrenoceptor. Naunyn-Schmiedeberg's Archives of Pharmacology 388(1): 51-65
Khandare, J.; Mohr, A.; Calderón, M.; Welker, P.; Licha, K.; Haag, R. 2010: Structure-biocompatibility relationship of dendritic polyglycerol derivatives. Biomaterials 31(15): 4268-4277
Hao, R.; Li, J.; Zhou, Y.; Cheng, S.; Zhang, Y. 2009: Structure-biodegradability relationship of nonylphenol isomers during biological wastewater treatment process. Chemosphere 75(8): 987-994
Saha, S.; Walia, S.; Kumar, J.; Parmar, B.S. 2010: Structure-biological activity relationships in triterpenic saponins: the relative activity of protobassic acid and its derivatives against plant pathogenic fungi. Pest Management Science 66(8): 825-831
Avram, S.; Milac, A.; Mernea, M.; Mihailescu, D.; Putz, M.V.; Buiu, C. 2014: Structure-biological function relationship extended to mitotic arrest-deficient 2-like protein Mad2 native and mutants-new opportunity for genetic disorder control. International Journal of Molecular Sciences 15(11): 21381-21400
Fridén, M.; Winiwarter, S.; Jerndal, G.; Bengtsson, O.; Wan, H.; Bredberg, U.; Hammarlund-Udenaes, M.; Antonsson, M. 2009: Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. Journal of Medicinal Chemistry 52(20): 6233-6243
Jian, X.-X.; Tang, P.; Liu, X.-X.; Chao, R.-B.; Chen, Q.-H.; She, X.-K.; Chen, D.-L.; Wang, F.-P. 2012: Structure-cardiac activity relationship of C19-diterpenoid alkaloids. Natural Product Communications 7(6): 713-720
Chłoń-Rzepa, G.ży.; Zmudzki, P.ł; Pawłowski, M.; Zygmunt, M.łg.; Filipek, B. 2011: Structure-cardiovascular activity relationships in a group of new 8-alkylamino-1,3-dimethyl-7-(2-hydroxy-3-aminopropyl)-3,7-dihydro-1H-purine-2,6-diones. Pharmacological Reports: Pr 63(2): 476-486
Grigoropoulou, G.; Christoforidis, K.C.; Louloudi, M.; Deligiannakis, Y. 2007: Structure-catalytic function relationship of SiO2-immobilized mononuclear Cu complexes: an EPR study. Langmuir: the Acs Journal of Surfaces and Colloids 23(20): 10407-10418
Rane, P.; Haselgrove, C.; Hodge, S.M.; Frazier, J.A.; Kennedy, D.N. 2014: Structure-centered portal for child psychiatry research. Frontiers in Neuroinformatics 8: 47
Zhou, L.; Xu, Z.-X.; Zhou, Y.; Feng, Y.; Zhou, X.-G.; Xiang, H.-F.; Roy, V.A.L. 2012: Structure-charge transport relationship of 5,15-dialkylated porphyrins. Chemical Communications 48(42): 5139-5141
Chmielewski, M.; Cierpucha, M.; Kowalska, P.; Kwit, M.; Frelek, J. 2008: Structure-chiroptical properties relationship in clavams: an experimental and theoretical study. Chirality 20(5): 621-627
Woźnica, M.; Masnyk, M.; Stecko, S.; Mames, A.; Furman, B.ło.; Chmielewski, M.; Frelek, J. 2010: Structure-chiroptical properties relationship of carbapenams by experiment and theory. Journal of Organic Chemistry 75(21): 7219-7226
Piszter, G.; Kertész, K.; Vértesy, Z.; Mark, G.I.; Bálint, Z.; Biró, L.P. 2012: Structure-color-species correlation in photonic nanoarchitectures occurring in blue lycaenid butterfly scales. Journal of Nanoscience and Nanotechnology 12(11): 8822-8828
Aparicio, S.; Alcalde, R.; García, B.; Leal, J.M. 2008: Structure-composition relationships in ternary solvents containing methylbenzoate. Journal of Physical Chemistry. B 112(11): 3420-3431
Tang, K.; Liu, R.; Su, Z.; Zhang, J. 2014: Structure-constrained low-rank representation. IEEE Transactions on Neural Networks and Learning Systems 25(12): 2167-2179
Chen, J.; Bushman, F.D.; Lewis, J.D.; Wu, G.D.; Li, H. 2013: Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics 14(2): 244-258
Jana, D.F.; Wodrich, M.D.; Corminboeuf, C.ém. 2012: Structure-correlation principles connecting ground state properties and reaction barrier heights for the Cope rearrangement of semibullvalenes. Journal of Organic Chemistry 77(5): 2548-2552
Hoxha, E.; Campion, S.R. 2014: Structure-critical distribution of aromatic residues in the fibronectin type IIi protein family. Protein Journal 33(2): 165-173
Kupcewicz, B.ła.; Balcerowska-Czerniak, G.ży.; Małecka, M.; Paneth, P.; Krajewska, U.; Rozalski, M. 2013: Structure-cytotoxic activity relationship of 3-arylideneflavanone and chromanone (E,Z isomers) and 3-arylflavones. Bioorganic and Medicinal Chemistry Letters 23(14): 4102-4106
Yamauchi, S.; Kawahara, S.; Wukirsari, T.; Nishiwaki, H.; Nishi, K.; Sugahara, T.; Akiyama, K.; Kishida, T. 2013: Structure-cytotoxic activity relationship of sesquilignan, morinol a. Bioorganic and Medicinal Chemistry Letters 23(17): 4923-4930
Łakomska, I.; Fandzloch, M.; Muzioł, T.; Sitkowski, J.; Wietrzyk, J. 2012: Structure-cytotoxicity relationship for different types of mononuclear platinum(II) complexes with 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine. Journal of Inorganic Biochemistry 115: 100-105
Leonova, E.S.; Makarov, M.V.; Rybalkina, E.Y.; Nayani, S.L.; Tongwa, P.; Fonari, A.; Timofeeva, T.V.; Odinets, I.L. 2010: Structure-cytotoxicity relationship in a series of N-phosphorus substituted E,E-3,5-bis(3-pyridinylmethylene)- and E,E-3,5-bis(4-pyridinylmethylene)piperid-4-ones. European Journal of Medicinal Chemistry 45(12): 5926-5934
Giancola, C.; Ercole, C.; Fotticchia, I.; Spadaccini, R.; Pizzo, E.; D'Alessio, G.; Picone, D. 2011: Structure-cytotoxicity relationships in bovine seminal ribonuclease: new insights from heat and chemical denaturation studies on variants. Febs Journal 278(1): 111-122
Wang, X.-S.; Metanawin, T.; Zheng, X.-Y.; Wang, P.-Y.; Ali, M.; Vernon, D. 2008: Structure-defined c60/polymer colloids supramolecular nanocomposites in water. Langmuir: the Acs Journal of Surfaces and Colloids 24(17): 9230-9232
Damen, M.; Cristóbal-Lecina, E.; Sanmartí, G.òr.C.; van Dongen, S.F.M.; García Rodríguez, C.L.; Dolbnya, I.P.; Nolte, R.J.M.; Feiters, M.C. 2014: Structure-delivery relationships of lysine-based gemini surfactants and their lipoplexes. Soft Matter 10(31): 5702-5714
Jarem, D.A.; Wilson, N.R.; Delaney, S. 2009: Structure-dependent DNA damage and repair in a trinucleotide repeat sequence. Biochemistry 48(28): 6655-6663
Li, Z.; Lui, C.H.; Cappelluti, E.; Benfatto, L.; Mak, K.F.; Carr, G.L.; Shan, J.; Heinz, T.F. 2012: Structure-dependent Fano resonances in the infrared spectra of phonons in few-layer graphene. Physical Review Letters 108(15): 156801
Li, X.; Lee, S.-O.; Safe, S. 2012: Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3'-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. Biochemical Pharmacology 83(10): 1445-1455
Lei, P.; Abdelrahim, M.; Cho, S.D.; Liu, X.; Liu, X.; Safe, S. 2008: Structure-dependent activation of endoplasmic reticulum stress-mediated apoptosis in pancreatic cancer by 1,1-bis(3'-indoly)-1-(p-substituted phenyl)methanes. Molecular Cancer Therapeutics 7(10): 3363-3372
Hiromori, Y.; Nishikawa, J.-i.; Yoshida, I.; Nagase, H.; Nakanishi, T. 2009: Structure-dependent activation of peroxisome proliferator-activated receptor (PPAR) gamma by organotin compounds. Chemico-Biological Interactions 180(2): 238-244
Zhao, J.; Zhu, X.; Xu, T.; Yin, D. 2015: Structure-dependent activities of polybrominated diphenyl ethers and hydroxylated metabolites on zebrafish retinoic acid receptor. Environmental Science and Pollution Research International 22(3): 1723-1730
Chintharlapalli, S.; Papineni, S.; Jutooru, I.; McAlees, A.; Safe, S. 2007: Structure-dependent activity of glycyrrhetinic acid derivatives as peroxisome proliferator-activated receptor {gamma} agonists in colon cancer cells. Molecular Cancer Therapeutics 6(5): 1588-1598
Choi, D.; Kim, S.; Lee, S.; Kim, D.; Lee, K.; Park, H.; Hwang, W. 2008: Structure-dependent adhesion and friction on highly ordered metallic nanopore membranes. Nanotechnology 19(14): 145708
Wang, H.; Su, H.; Qian, H.; Wang, Z.; Wang, X.; Xia, A. 2010: Structure-dependent all-optical switching in graphene-nanoribbon-like molecules: fully conjugated tri(perylene bisimides). Journal of Physical Chemistry. a 114(34): 9130-9135
Bussolotti, F.; Yamada-Takamura, Y.; Wang, Y.; Friedlein, R. 2011: Structure-dependent band dispersion in epitaxial anthracene films. Journal of Chemical Physics 135(12): 124709
Zhang, L.; Ren, X-Min.; Wan, B.; Guo, L-Hong. 2014: Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ. Toxicology and Applied Pharmacology 279(3): 275-283
Chai, Y.; Munde, M.; Kumar, A.; Mickelson, L.; Lin, S.; Campbell, N.H.; Banerjee, M.; Akay, S.; Liu, Z.; Farahat, A.A.; Nhili, R.; Depauw, S.; David-Cordonnier, M.-H.él.èn.; Neidle, S.; Wilson, W.D.; Boykin, D.W. 2014: Structure-dependent binding of arylimidamides to the DNA minor groove. Chembiochem: a European Journal of Chemical Biology 15(1): 68-79
Ho, T.V.; Guainazzi, A.; Derkunt, S.B.; Enoiu, M.; Schärer, O.D. 2011: Structure-dependent bypass of DNA interstrand crosslinks by translesion synthesis polymerases. Nucleic Acids Research 39(17): 7455-7464
Bai, Y.; Liu, S.; Jiang, P.; Zhou, L.; Li, J.; Tang, C.; Verma, C.; Mu, Y.; Beuerman, R.W.; Pervushin, K. 2009: Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin. Biochemistry 48(30): 7229-7239
Dowgiallo, A.-M.; Schwartzberg, A.M.; Knappenberger, K.L. 2011: Structure-dependent coherent acoustic vibrations of hollow gold nanospheres. Nano Letters 11(8): 3258-3262
Nawara, K.; McCracken, J.L.; Krysiński, P.ł; Blanchard, G.J. 2013: Structure-dependent complexation of Fe3+ by anthracyclines. 1. the importance of pendent hydroxyl functionality. Journal of Physical Chemistry. B 117(23): 6859-6867
Nawara, K.; Beeckman, H.; Krysiński, P.ł; Blanchard, G.J. 2013: Structure-dependent complexation of Fe3+ by anthracyclines. 2. the roles of methoxy and daunosamine functionalities. Journal of Physical Chemistry. B 117(23): 6868-6873
Power, G.; Vij, J.K.; Johari, G.P. 2007: Structure-dependent dc conductivity and relaxation time in the Debye-Stokes-Einstein equation. Journal of Physical Chemistry. B 111(38): 11201-11208
Saga, Y.; Hirai, Y.; Sadaoka, K.; Isaji, M.; Tamiaki, H. 2013: Structure-dependent demetalation kinetics of chlorophyll a analogs under acidic conditions. Photochemistry and Photobiology 89(1): 68-73
Riedel, A.; Lang, R.; Rohm, B.; Rubach, M.; Hofmann, T.; Somoza, V. 2014: Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression. Journal of Nutritional Biochemistry 25(7): 750-757
Nai, J.; Chen, Z.; Li, H.; Li, F.; Bai, Y.; Li, L.; Guo, L. 2013: Structure-dependent electrocatalysis of Ni(OH)2 hourglass-like nanostructures towards L-histidine. Chemistry 19(2): 501-508
Chung, H.; Narita, T.; Yang, J.; Kim, P.; Takase, M.; Iyoda, M.; Kim, D. 2013: Structure-dependent electronic nature of star-shaped oligothiophenes, probed by ensemble and single-molecule spectroscopy. Chemistry 19(29): 9699-9709
Galicka, M.; Buczko, R.; Kacman, P. 2011: Structure-dependent ferromagnetism in Mn-doped III-V nanowires. Nano Letters 11(8): 3319-3323
Tsyboulski, D.A.; Rocha, J.-D.R.; Bachilo, S.M.; Cognet, L.; Weisman, R.B. 2007: Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Letters 7(10): 3080-3085
Shim, W.; Ham, J.; Noh, J.-S.; Lee, W. 2011: Structure-dependent growth control in nanowire synthesis via on-film formation of nanowires. Nanoscale Research Letters 6(1): 196
Hanagata, N. 2012: Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. International Journal of Nanomedicine 7: 2181-2195
Brodbeck, J.; McGuire, J.; Liu, Z.; Meyer-Franke, A.; Balestra, M.E.; Jeong, D.-e.; Pleiss, M.; McComas, C.; Hess, F.; Witter, D.; Peterson, S.; Childers, M.; Goulet, M.; Liverton, N.; Hargreaves, R.; Freedman, S.; Weisgraber, K.H.; Mahley, R.W.; Huang, Y. 2011: Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. Journal of Biological Chemistry 286(19): 17217-17226
Liuzzi, G.M.; Latronico, T.; Branà, M.T.; Gramegna, P.; Coniglio, M.G.; Rossano, R.; Larocca, M.; Riccio, P. 2011: Structure-dependent inhibition of gelatinases by dietary antioxidants in rat astrocytes and sera of multiple sclerosis patients. Neurochemical Research 36(3): 518-527
Zhao, B.; Chu, Y.; Huang, Y.; Hardy, D.O.; Lin, S.; Ge, R.-S. 2010: Structure-dependent inhibition of human and rat 11beta-hydroxysteroid dehydrogenase 2 activities by phthalates. Chemico-Biological Interactions 183(1): 79-84
Munde, M.; Wang, S.; Kumar, A.; Stephens, C.E.; Farahat, A.A.; Boykin, D.W.; Wilson, W.D.; Poon, G.M.K. 2014: Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. Nucleic Acids Research 42(2): 1379-1390
Nakajima, J.'i.; Nakae, D.; Yasukawa, K. 2013: Structure-dependent inhibitory effects of synthetic cannabinoids against 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and skin tumour promotion in mice. Journal of Pharmacy and Pharmacology 65(8): 1223-1230
Yang, Y.; Min, Y.; Jun, Y.-S. 2013: Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration. Environmental Science and Technology 47(1): 150-158
Phan, H.T.T.; Yoda, T.; Chahal, B.; Morita, M.; Takagi, M.; Vestergaard, M.'d.C. 2014: Structure-dependent interactions of polyphenols with a biomimetic membrane system. Biochimica et Biophysica Acta 1838(10): 2670-2677
Sukhomlinov, S.V.; Smirnov, K.S. 2012: Structure-dependent interatomic dispersion coefficients in oxides with maximally localized Wannier functions. Journal of Physics. Condensed Matter: An Institute of Physics Journal 24(47): 475501
Lee, W.-J.; Chang, J.-G.; Ju, S.-P.; Weng, M.-H.; Lee, C.-H. 2011: Structure-dependent mechanical properties of ultrathin zinc oxide nanowires. Nanoscale Research Letters 6(1): 352
Wang, L.-R.; Xue, X.; Hu, X.-M.; Wei, M.-Y.; Zhang, C.-Q.; Ge, G.-L.; Liang, X.-J. 2014: Structure-dependent mitochondrial dysfunction and hypoxia induced with single-walled carbon nanotubes. Small 10(14): 2859-2869
Gondoni, P.; Ghidelli, M.; Di Fonzo, F.; Carminati, M.; Russo, V.; Li Bassi, A.; Casari, C.S. 2012: Structure-dependent optical and electrical transport properties of nanostructured Al-doped ZnO. Nanotechnology 23(36): 365706
Zhang, M.; Su, Z.; Chen, G. 2012: Structure-dependent optical properties of single-walled silicon nanotubes. Physical Chemistry Chemical Physics: Pccp 14(14): 4695-4702
Armaroli, N.; Accorsi, G.; Clifford, J.N.; Eckert, J.-F.ço.; Nierengarten, J.-F.ço. 2006: Structure-dependent photoinduced electron transfer in fullerodendrimers with light-harvesting oligophenylenevinylene terminals. Chemistry An Asian Journal 1(4): 564-574
Sugimoto, T.; Ebihara, Y.; Ogino, K.; Vacha, M. 2007: Structure-dependent photophysics studied in single molecules of polythiophene derivatives. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry 8(11): 1623-1628
Miao, W.; Shim, G.; Lee, S.; Oh, Y.-K. 2014: Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials 35(13): 4058-4065
Saito, M.; Mylvaganum, M.; Tam, P.; Novak, A.; Binnington, B.; Lingwood, C. 2012: Structure-dependent pseudoreceptor intracellular traffic of adamantyl globotriaosyl ceramide mimics. Journal of Biological Chemistry 287(20): 16073-16087
Doyle, C.D.; Rocha, J.-D.R.; Weisman, R.B.; Tour, J.M. 2008: Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts. Journal of the American Chemical Society 130(21): 6795-6800
Chu, Q.-J.; Weng, Y.-X. 2010: Structure-dependent wavelike energy transfer on pigment rings of individual light-harvesting-2 complexes from photosynthetic bacteria. Physical Review. e Statistical Nonlinear and Soft Matter Physics 81(4 Part 1): 041917
Sanii, B.; Haxton, T.K.; Olivier, G.K.; Cho, A.; Barton, B.; Proulx, C.; Whitelam, S.; Zuckermann, R.N. 2014: Structure-determining step in the hierarchical assembly of peptoid nanosheets. Acs Nano 8(11): 11674-11684
Zhou, J.Zhongxiang. 2008: Structure-directed combinatorial library design. Current Opinion in Chemical Biology 12(3): 379-385
Soteras, I.; Lozano, O.; Escolano, C.; Orozco, M.; Amat, M.; Bosch, J.; Luque, F.J. 2008: Structure-directed reversion in the pi-facial stereoselective alkylation of chiral bicyclic lactams. Journal of Organic Chemistry 73(19): 7756-7763
Ghedini, E.; Nichele, V.; Signoretto, M.; Cerrato, G. 2012: Structure-directing agents for the synthesis of TiO(2) -based drug-delivery systems. Chemistry 18(34): 10653-10660
Attia, Y.A.; Buceta, D.; Blanco-Varela, C.; Mohamed, M.B.; Barone, G.; López-Quintela, M.Arturo. 2014: Structure-directing and high-efficiency photocatalytic hydrogen production by Ag clusters. Journal of the American Chemical Society 136(4): 1182-1185
Bernini, M.ía.C.; Snejko, N.; Gutierrez-Puebla, E.; Brusau, E.V.; Narda, G.E.; Monge, M.Án. 2011: Structure-directing and template roles of aromatic molecules in the self-assembly formation process of 3D holmium-succinate MOFs. Inorganic Chemistry 50(13): 5958-5968
Schulz-Dobrick, M.; Jansen, M. 2007: Structure-directing effects in the supramolecular intercluster compound [Au9(PPh3)8]2[V10O28H3]2: long-range versus short-range bonding interactions. Inorganic Chemistry 46(11): 4380-4382
Gruber, F.; Schulz-Dobrick, M.; Jansen, M. 2010: Structure-directing forces in intercluster compounds of cationic [Ag(14)(C[triple bond]CtBu)(12)Cl](+) building blocks and polyoxometalates: long-range versus short-range bonding interactions. Chemistry 16(5): 1464-1469
Jahan, M.; Bao, Q.; Yang, J.-X.; Loh, K.P. 2010: Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. Journal of the American Chemical Society 132(41): 14487-14495
Shayib, R.M.; George, N.C.; Seshadri, R.; Burton, A.W.; Zones, S.I.; Chmelka, B.F. 2011: Structure-directing roles and interactions of fluoride and organocations with siliceous zeolite frameworks. Journal of the American Chemical Society 133(46): 18728-18741
Van der Lee, A.; Rolland, M.; Marat, X.; Virieux, D.; Volle, J.N.; Pirat, J.L. 2008: Structure-directing weak phosphoryl XH...O=P (X = C, N) hydrogen bonds in cyclic oxazaphospholidines and oxazaphosphinanes. Acta Crystallographica. Section B Structural Science 64(Part 2): 196-205
Rojas, A.; Camblor, M.A. 2014: Structure-direction in the crystallization of ITW zeolites using 2-ethyl-1,3,4-trimethylimidazolium. Dalton Transactions 43(28): 10760-10766
Yamamoto, T.; Umemura, Y.; Einaga, Y. 2013: Structure-distortion-induced photomagnetic effect in azobenzene/polyoxometalate Langmuir-Blodgett films. Dalton Transactions 42(45): 16014-16020
Ploug, M. 2013: Structure-driven design of radionuclide tracers for non-invasive imaging of uPAR and targeted radiotherapy. the tale of a synthetic peptide antagonist. Theranostics 3(7): 467-476
Cherstvy, A.G.; Teif, V.B. 2013: Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging. Journal of Biological Physics 39(3): 363-385
Janvier, M.; Kishimoto, Y.; Li, J.Q. 2011: Structure-driven nonlinear instability as the origin of the explosive reconnection dynamics in resistive double tearing modes. Physical Review Letters 107(19): 195001
Sy, M.; Varret, F.ço.; Boukheddaden, K.; Bouchez, G.; Marrot, J.ér.ôm.; Kawata, S.; Kaizaki, S. 2014: Structure-driven orientation of the high-spin-low-spin interface in a spin-crossover single crystal. Angewandte Chemie 53(29): 7539-7542
Giladi, M.; Lee, S.Y.; Hiller, R.; Chung, K.Y.; Khananshvili, D. 2015: Structure-dynamic determinants governing a mode of regulatory response and propagation of allosteric signal in splice variants of Na+/Ca2+ exchange (NCX) proteins. Biochemical Journal 465(3): 489-501
Mäki-Marttunen, T.; Aćimović, J.; Ruohonen, K.; Linne, M.-L. 2013: Structure-dynamics relationships in bursting neuronal networks revealed using a prediction framework. Plos one 8(7): E69373
Perecko, T.; Jancinova, V.; Drabikova, K.; Nosal, R.; Harmatha, J. 2008: Structure-efficiency relationship in derivatives of stilbene. Comparison of resveratrol, pinosylvin and pterostilbene. Neuro Endocrinology Letters 29(5): 802-805
Shultz, M.D.; Majumdar, D.; Chin, D.N.; Fortin, P.D.; Feng, Y.; Gould, T.; Kirby, C.A.; Stams, T.; Waters, N.J.; Shao, W. 2013: Structure-efficiency relationship of [1,2,4]triazol-3-ylamines as novel nicotinamide isosteres that inhibit tankyrases. Journal of Medicinal Chemistry 56(17): 7049-7059
Belmessieri, D.; Joannesse, C.; Woods, P.A.; MacGregor, C.; Jones, C.; Campbell, C.D.; Johnston, C.P.; Duguet, N.; Concellón, C.; Bragg, R.A.; Smith, A.D. 2011: Structure-enantioselectivity effects in 3,4-dihydropyrimido[2,1-b]benzothiazole-based isothioureas as enantioselective acylation catalysts. Organic and Biomolecular Chemistry 9(2): 559-570
Anonymous 2012: Structure-energy indices assessment of the quality of drinking water. Gigiena i sanitariia 2012(4): 87-90
Cho, T.Y.; Byrne, N.; Moore, D.J.; Pethica, B.A.; Angell, C.A.; Debenedetti, P.G. 2009: Structure-energy relations in hen egg white lysozyme observed during refolding from a quenched unfolded state. Chemical Communications 29: 4441-4443
Roux, M.ía.V.; Temprado, M.; Notario, R.; Foces-Foces, C.ón.; Emel'yanenko, V.N.; Verevkin, S.P. 2008: Structure-energy relationship in barbituric acid: a calorimetric, computational, and crystallographic study. Journal of Physical Chemistry. a 112(32): 7455-7465
Seebacher, U.; Ramek, M. 1994: Structure-energy relationship inω-amino acids and related compounds. Amino Acids 7(2): 223-230
Emel'yanenko, V.N.; Toktonov, A.V.; Kozlova, S.A.; Verevkin, S.P.; Andrushko, V.; Andrushko, N.; Börner, A. 2008: Structure-energy relationships in unsaturated esters of carboxylic acids. Thermochemical measurements and ab initio calculations. Journal of Physical Chemistry. a 112(17): 4036-4045
Kiel, C.; Serrano, L. 2014: Structure-energy-based predictions and network modelling of RASopathy and cancer missense mutations. Molecular Systems Biology 10: 727
Kirian, R.A.; White, T.A.; Holton, J.M.; Chapman, H.N.; Fromme, P.; Barty, A.; Lomb, L.; Aquila, A.; Maia, F.R.N.C.; Martin, A.V.; Fromme, R.; Wang, X.; Hunter, M.S.; Schmidt, K.E.; Spence, J.C.H. 2011: Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallographica. Section a Foundations of Crystallography 67(Part 2): 131-140
Morris, S.M.; Clarke, M.J.; Blatch, A.E.; Coles, H.J. 2007: Structure-flexoelastic properties of bimesogenic liquid crystals. Physical Review. E Statistical Nonlinear and Soft Matter Physics 75(4 Part 1): 041701
Fürstenberg, A.; Deligeorgiev, T.G.; Gadjev, N.I.; Vasilev, A.A.; Vauthey, E. 2007: Structure-fluorescence contrast relationship in cyanine DNA intercalators: toward rational dye design. Chemistry 13(30): 8600-8609
Musharraf, S.G.; Goher, M.; Shahnaz, S.; Choudhary, M.I.; Atta-ur-Rahman 2013: Structure-fragmentation relationship and rapid dereplication of Buxus steroidal alkaloids by electrospray ionization-quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry: Rcm 27(1): 169-178
Ghosal, A.; Said, H.M. 2011: Structure-function activity of the human sodium-dependent multivitamin transporter: role of His&#185;&#185;&#8309; and His²⁵⁴. American Journal of Physiology. Cell Physiology 300(1): C97-104
Mondal, B.; Chatterjee, D.; Bhattacharyya, M. 2012: Structure-function alteration of hemoglobin in arsenicosis patients: a probable pathway to exert toxicity. Journal of Applied Toxicology: Jat 32(8): 581-589
Naaz, H.; Pandey, V.P.; Singh, S.; Dwivedi, U.N. 2013: Structure-function analyses and molecular modeling of caffeic acid-O-methyltransferase and caffeoyl-CoA-O-methyltransferase: revisiting the basis of alternate methylation pathways during monolignol biosynthesis. Biotechnology and Applied Biochemistry 60(2): 170-189
Louie, G.V.; Bowman, M.E.; Tu, Y.; Mouradov, A.; Spangenberg, G.; Noel, J.P. 2010: Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Plant Cell 22(12): 4114-4127
Takahashi, S.; Nagano, S.; Nogawa, T.; Kanoh, N.; Uramoto, M.; Kawatani, M.; Shimizu, T.; Miyazawa, T.; Shiro, Y.; Osada, H. 2014: Structure-function analyses of cytochrome P450revi involved in reveromycin a biosynthesis and evaluation of the biological activity of its substrate, reveromycin T. Journal of Biological Chemistry 289(47): 32446-32458
Skala, W.; Utzschneider, D.T.; Magdolen, V.; Debela, M.; Guo, S.; Craik, C.S.; Brandstetter, H.; Goettig, P. 2014: Structure-function analyses of human kallikrein-related peptidase 2 establish the 99-loop as master regulator of activity. Journal of Biological Chemistry 289(49): 34267-34283
Luo, Q.; Olucha, J.; Lamb, A.L. 2009: Structure-function analyses of isochorismate-pyruvate lyase from Pseudomonas aeruginosa suggest differing catalytic mechanisms for the two pericyclic reactions of this bifunctional enzyme. Biochemistry 48(23): 5239-5245
Weng, J.-K.; Noel, J.P. 2012: Structure-function analyses of plant type IIi polyketide synthases. Methods in Enzymology 515: 317-335
Mulfort, K.L.; Mukherjee, A.; Kokhan, O.; Du, P.; Tiede, D.M. 2013: Structure-function analyses of solar fuels catalysts using in situ X-ray scattering. Chemical Society Reviews 42(6): 2215-2227
Bulliard, Y.; Narvaiza, I.ñi.; Bertero, A.; Peddi, S.; Röhrig, U.F.; Ortiz, M.án.; Zoete, V.; Castro-Díaz, N.; Turelli, P.; Telenti, A.; Michielin, O.; Weitzman, M.D.; Trono, D. 2011: Structure-function analyses point to a polynucleotide-accommodating groove essential for APOBEC3A restriction activities. Journal of Virology 85(4): 1765-1776
Benz-Moy, T.L.; Herschlag, D. 2011: Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles. Biochemistry 50(40): 8733-8755
Grönholm, J.; Vanhatupa, S.; Ungureanu, D.; Väliaho, J.; Laitinen, T.; Valjakka, J.; Silvennoinen, O. 2012: Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1. Bmc Biochemistry 13: 20
Lu, Z.; Wang, L.; Dunaway-Mariano, D.; Allen, K.N. 2009: Structure-function analysis of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphatase defines specificity elements in type C0 haloalkanoate dehalogenase family members. Journal of Biological Chemistry 284(2): 1224-1233
Bauer, J.; Reiss, K.; Veerabagu, M.; Heunemann, M.; Harter, K.; Stehle, T. 2013: Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. Molecular Plant 6(3): 959-970
Leonardi, J.; Jafar-Nejad, H. 2014: Structure-function analysis of Drosophila Notch using genomic rescue transgenes. Methods in Molecular Biology 1187: 29-46
Shi, R.; Villarroya, M.; Ruiz-Partida, R.; Li, Y.; Proteau, A.; Prado, S.; Moukadiri, I.ïl.; Benítez-Páez, A.; Lomas, R.; Wagner, J.; Matte, A.; Velázquez-Campoy, A.án.; Armengod, M.-E.; Cygler, M. 2009: Structure-function analysis of Escherichia coli MnmG (GidA), a highly conserved tRNA-modifying enzyme. Journal of Bacteriology 191(24): 7614-7619
Bridwell-Rabb, J.; Winn, A.M.; Barondeau, D.P. 2011: Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex. Biochemistry 50(33): 7265-7274
Albert, B.; Colleran, C.; Léger-Silvestre, I.; Berger, A.B.; Dez, C.; Normand, C.; Perez-Fernandez, J.; McStay, B.; Gadal, O. 2013: Structure-function analysis of Hmo1 unveils an ancestral organization of HMG-Box factors involved in ribosomal DNA transcription from yeast to human. Nucleic Acids Research 41(22): 10135-10149
Kim, S.; Swalla, B.M.; Gardner, J.F. 2010: Structure-function analysis of IntDOT. Journal of Bacteriology 192(2): 575-586
Durand, F.; Dagkessamanskaia, A.; Martin-Yken, H.; Graille, M.; Van Tilbeurgh, H.; Uversky, V.N.; François, J.M. 2008: Structure-function analysis of Knr4/Smi1, a newly member of intrinsically disordered proteins family, indispensable in the absence of a functional PKC1-SLT2 pathway in Saccharomyces cerevisiae. Yeast 25(8): 563-576
Butler, E.K.; Davis, R.M.; Bari, V.; Nicholson, P.A.; Ruiz, N. 2013: Structure-function analysis of MurJ reveals a solvent-exposed cavity containing residues essential for peptidoglycan biogenesis in Escherichia coli. Journal of Bacteriology 195(20): 4639-4649
Nakamura, R.; Nakamoto, C.; Obama, H.; Durward, E.; Nakamoto, M. 2012: Structure-function analysis of Nel, a thrombospondin-1-like glycoprotein involved in neural development and functions. Journal of Biological Chemistry 287(5): 3282-3291
Simms, J.; Hay, D.L.; Bailey, R.J.; Konycheva, G.; Bailey, G.; Wheatley, M.; Poyner, D.R. 2009: Structure-function analysis of RAMP1 by alanine mutagenesis. Biochemistry 48(1): 198-205
Qi, T.; Simms, J.; Bailey, R.J.; Wheatley, M.; Rathbone, D.L.; Hay, D.L.; Poyner, D.R. 2010: Structure-function analysis of RAMP1-RAMP3 chimeras. Biochemistry 49(3): 522-531
Werner, M.; Thuriaux, P.; Soutourina, J. 2009: Structure-function analysis of RNA polymerases i and IIi. Current Opinion in Structural Biology 19(6): 740-745
Ramanujam, R.; Yishi, X.; Liu, H.; Naqvi, N.I. 2012: Structure-function analysis of Rgs1 in Magnaporthe oryzae: role of DEP domains in subcellular targeting. Plos one 7(7): E41084
Luhtala, N.; Parker, R. 2012: Structure-function analysis of Rny1 in tRNA cleavage and growth inhibition. Plos one 7(7): E41111
Gao, P.; Ascano, M.; Zillinger, T.; Wang, W.; Dai, P.; Serganov, A.A.; Gaffney, B.L.; Shuman, S.; Jones, R.A.; Deng, L.; Hartmann, G.; Barchet, W.; Tuschl, T.; Patel, D.J. 2013: Structure-function analysis of STING activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA. Cell 154(4): 748-762
Vaddepalli, P.; Fulton, L.; Batoux, M.; Yadav, R.K.; Schneitz, K. 2011: Structure-function analysis of STRUBBELIG, an Arabidopsis atypical receptor-like kinase involved in tissue morphogenesis. Plos one 6(5): E19730
Büttner, F.M.; Zoll, S.; Nega, M.; Götz, F.; Stehle, T. 2014: Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage. Journal of Biological Chemistry 289(16): 11083-11094
Grünewald, F.S.; Prota, A.E.; Giese, A.; Ballmer-Hofer, K. 2010: Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochimica et Biophysica Acta 1804(3): 567-580
Tamura, K.; Ohbayashi, N.; Ishibashi, K.; Fukuda, M. 2011: Structure-function analysis of VPS9-ankyrin-repeat protein (Varp) in the trafficking of tyrosinase-related protein 1 in melanocytes. Journal of Biological Chemistry 286(9): 7507-7521
Eklöf, J.M.; Shojania, S.; Okon, M.; McIntosh, L.P.; Brumer, H. 2013: Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products. Journal of Biological Chemistry 288(22): 15786-15799
Qi, T.; Ly, K.; Poyner, D.R.; Christopoulos, G.; Sexton, P.M.; Hay, D.L. 2011: Structure-function analysis of amino acid 74 of human RAMP1 and RAMP3 and its role in peptide interactions with adrenomedullin and calcitonin gene-related peptide receptors. Peptides 32(5): 1060-1067
Jost, M.; Zocher, G.; Tarcz, S.; Matuschek, M.; Xie, X.; Li, S.-M.; Stehle, T. 2010: Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity. Journal of the American Chemical Society 132(50): 17849-17858
Leow, C.Y.; Willis, C.; Hofmann, A.; Jones, M.K. 2015: Structure-function analysis of apical membrane-associated molecules of the tegument of schistosome parasites of humans: prospects for identification of novel targets for parasite control. British Journal of Pharmacology 172(7): 1653-1663
Bai, S.; Liu, J.; Chang, C.; Zhang, L.; Maekawa, T.; Wang, Q.; Xiao, W.; Liu, Y.; Chai, J.; Takken, F.L.W.; Schulze-Lefert, P.; Shen, Q.-H. 2012: Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. Plos Pathogens 8(6): E1002752
Kean, M.J.; Ceccarelli, D.F.; Goudreault, M.; Sanches, M.; Tate, S.; Larsen, B.; Gibson, L.C.D.; Derry, W.B.; Scott, I.C.; Pelletier, L.; Baillie, G.S.; Sicheri, F.; Gingras, A.-C. 2011: Structure-function analysis of core STRIPAK Proteins: a signaling complex implicated in Golgi polarization. Journal of Biological Chemistry 286(28): 25065-25075
Cao, H. 2011: Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms. Bmc Research Notes 4: 249
Muhl, L.; Hersemeyer, K.; Preissner, K.T.; Weimer, T.; Kanse, S.M. 2009: Structure-function analysis of factor VIi activating protease (FSAP): sequence determinants for heparin binding and cellular functions. Febs Letters 583(12): 1994-1998
Lim, J.; Yao, S.; Graf, M.; Winkler, C.; Yang, D. 2013: Structure-function analysis of full-length midkine reveals novel residues important for heparin binding and zebrafish embryogenesis. Biochemical Journal 451(3): 407-415
Groh, A.; Krieger, P. 2013: Structure-function analysis of genetically defined neuronal populations. Cold Spring Harbor Protocols 10: 961-969
Kellenberger, C.; Leone, P.; Coquet, L.; Jouenne, T.; Reichhart, J.-M.; Roussel, A. 2011: Structure-function analysis of grass clip serine protease involved in Drosophila Toll pathway activation. Journal of Biological Chemistry 286(14): 12300-12307
Kuwasako, K.; Kitamura, K.; Nagata, S.; Hikosaka, T.; Kato, J. 2011: Structure-function analysis of helix 8 of human calcitonin receptor-like receptor within the adrenomedullin 1 receptor. Peptides 32(1): 144-149
Nayak, A.; Pattabiraman, N.; Fadra, N.; Goldman, R.; Kosakovsky Pond, S.L.; Mazumder, R. 2015: Structure-function analysis of hepatitis C virus envelope glycoproteins E1 and E2. Journal of Biomolecular Structure and Dynamics 33(8): 1682-1694
Roller, D.G.; Dollery, S.J.; Doyle, J.L.; Nicola, A.V. 2008: Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity. Virology 382(2): 207-216
Badarau, A.; Rouha, H.; Malafa, S.; Logan, D.T.; Håkansson, M.; Stulik, L.; Dolezilkova, I.; Teubenbacher, A.; Gross, K.; Maierhofer, B.; Weber, S.; Jägerhofer, M.; Hoffman, D.; Nagy, E. 2015: Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. Journal of Biological Chemistry 290(1): 142-156
Rodriguez, V.; Vasudevan, S.; Noma, A.; Carlson, B.A.; Green, J.E.; Suzuki, T.; Chandrasekharappa, S.C. 2012: Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW) base in phenylalanine-tRNA. Plos one 7(6): E39297
Ogert, R.A.; Ba, L.; Hou, Y.; Buontempo, C.; Qiu, P.; Duca, J.; Murgolo, N.; Buontempo, P.; Ralston, R.; Howe, J.A. 2009: Structure-function analysis of human immunodeficiency virus type 1 gp120 amino acid mutations associated with resistance to the CCR5 coreceptor antagonist vicriviroc. Journal of Virology 83(23): 12151-12163
Zhou, Y.; Shaw, N.; Li, Y.; Zhao, Y.; Zhang, R.; Liu, Z-Jie. 2010: Structure-function analysis of human l-prostaglandin D synthase bound with fatty acid molecules. Faseb Journal: Official Publication of the Federation of American Societies for Experimental Biology 24(12): 4668-4677
Chu, Y.; Yang, C.; Chen, X.; Zheng, W.; Yang, Y.; Tang, Y. 2009: Structure-function analysis of human protein Ero1-Lalpha. Biochemical and Biophysical Research Communications 389(4): 645-650
Pruitt, R.N.; Chagot, B.; Cover, M.; Chazin, W.J.; Spiller, B.; Lacy, D.B. 2009: Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin a. Journal of Biological Chemistry 284(33): 21934-21940
Prochazkova, K.; Satchell, K.J.F. 2008: Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. Journal of Biological Chemistry 283(35): 23656-23664
Zhao, L.; Ng, E.T.; Davidson, T.-L.; Longmuss, E.; Urschitz, J.; Elston, M.; Moisyadi, S.; Bowles, J.; Koopman, P. 2014: Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination. Proceedings of the National Academy of Sciences of the United States of America 111(32): 11768-11773
Gu, C.; Zeng, T.; Li, Y.; Xu, Z.; Mo, Z.; Zheng, C. 2009: Structure-function analysis of mutant RNA-dependent RNA polymerase complexes with VPg. BIOCHEMISTRY. Biokhimiia 74(10): 1132-1141
Canet, J.V.; Dobón, A.; Roig, A.; Tornero, P. 2010: Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell and Environment 33(11): 1911-1922
Farin, K.; Di Segni, A.; Mor, A.; Pinkas-Kramarski, R. 2009: Structure-function analysis of nucleolin and ErbB receptors interactions. Plos one 4(7): E6128
Geillon, F.; Gondcaille, C.; Charbonnier, S.ël.; Van Roermund, C.W.; Lopez, T.E.; Dias, A.M.M.; Pais de Barros, J.-P.; Arnould, C.; Wanders, R.J.; Trompier, D.; Savary, S.ép. 2014: Structure-function analysis of peroxisomal ATP-binding cassette transporters using chimeric dimers. Journal of Biological Chemistry 289(35): 24511-24520
Quevillon-Cheruel, S.; Campo, N.; Mirouze, N.; Mortier-Barrière, I.; Brooks, M.A.; Boudes, M.; Durand, D.; Soulet, A.-L.; Lisboa, J.; Noirot, P.; Martin, B.; van Tilbeurgh, H.; Noirot-Gros, M.-F.ço.; Claverys, J.-P.; Polard, P. 2012: Structure-function analysis of pneumococcal DprA protein reveals that dimerization is crucial for loading RecA recombinase onto DNA during transformation. Proceedings of the National Academy of Sciences of the United States of America 109(37): E2466-E2475
Cheng, G.; Liu, C.; Wang, X.; Ma, H.; Pan, Y.; Huang, L.; Hao, H.; Dai, M.; Yuan, Z. 2014: Structure-function analysis of porcine cytochrome P450 3A29 in the hydroxylation of T-2 toxin as revealed by docking and mutagenesis studies. Plos one 9(9): E106769
Ballanyi, K.; Ruangkittisakul, A. 2009: Structure-function analysis of rhythmogenic inspiratory pre-Bötzinger complex networks in "calibrated" newborn rat brainstem slices. Respiratory Physiology and Neurobiology 168(1-2): 158-178
Clausen, A.R.; Murray, M.S.; Passer, A.R.; Pedersen, L.C.; Kunkel, T.A. 2013: Structure-function analysis of ribonucleotide bypass by B family DNA replicases. Proceedings of the National Academy of Sciences of the United States of America 110(42): 16802-16807
Zevian, S.; Winterwood, N.E.; Stipp, C.S. 2011: Structure-function analysis of tetraspanin CD151 reveals distinct requirements for tumor cell behaviors mediated by α3β1 versus α6β4 integrin. Journal of Biological Chemistry 286(9): 7496-7506
Schwer, B.; Chang, J.; Shuman, S. 2013: Structure-function analysis of the 5' end of yeast U1 snRNA highlights genetic interactions with the Msl5*Mud2 branchpoint-binding complex and other spliceosome assembly factors. Nucleic acids research 41(15): 7485-7500
Staron, P.; Forchhammer, K.; Maldener, I. 2014: Structure-function analysis of the ATP-driven glycolipid efflux pump DevBCA reveals complex organization with TolC/HgdD. Febs Letters 588(3): 395-400
Povelones, M.; Upton, L.M.; Sala, K.A.; Christophides, G.K. 2011: Structure-function analysis of the Anopheles gambiae LRIM1/APL1C complex and its interaction with complement C3-like protein TEP1. Plos Pathogens 7(4): E1002023
Reen, F.J.; Clarke, S.L.; Legendre, C.; McSweeney, C.M.; Eccles, K.S.; Lawrence, S.E.; O'Gara, F.; McGlacken, G.P. 2012: Structure-function analysis of the C-3 position in analogues of microbial behavioural modulators HHQ and PQS. Organic and Biomolecular Chemistry 10(44): 8903-8910
Ravindranath, A.J.; Ravindranath, A.; Cadigan, K.M. 2014: Structure-function analysis of the C-clamp of TCF/Pangolin in Wnt/ß-catenin signaling. Plos one 9(1): E86180
Klenchin, V.A.; Frye, J.J.; Jones, M.H.; Winey, M.; Rayment, I. 2011: Structure-function analysis of the C-terminal domain of CNM67, a core component of the Saccharomyces cerevisiae spindle pole body. Journal of Biological Chemistry 286(20): 18240-18250
Upadhyay, A.; Burman, J.D.; Clark, E.A.; Leung, E.; Isenman, D.E.; van den Elsen, J.M.H.; Bagby, S. 2008: Structure-function analysis of the C3 binding region of Staphylococcus aureus immune subversion protein Sbi. Journal of Biological Chemistry 283(32): 22113-22120
Padilla-Sanchez, V.; Gao, S.; Kim, H.R.; Kihara, D.; Sun, L.; Rossmann, M.G.; Rao, V.B. 2014: Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine. Journal of Molecular Biology 426(5): 1019-1038
Nishi, R.; Sakai, W.; Tone, D.; Hanaoka, F.; Sugasawa, K. 2013: Structure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair. Nucleic Acids Research 41(14): 6917-6929
Cappelletti, P.A.; dos Santos, R.F.; do Amaral, A.M.; Homem, R.A.; Souza, T.ís.d.S.; Machado, M.A.; Farah, C.S. 2011: Structure-function analysis of the HrpB2-HrcU interaction in the Xanthomonas citri type IIi secretion system. Plos one 6(3): E17614
Peters, N.T.; Morlot, Cécile.; Yang, Dée.C.; Uehara, T.; Vernet, T.; Bernhardt, T.G. 2013: Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site. Molecular Microbiology 89(4): 690-701
Samai, P.; Shuman, S. 2011: Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase. Journal of Biological Chemistry 286(25): 22642-22652
Ubeda, C.; Tormo-Más, Mía.Ángeles.; Penadés, Jé.R.; Novick, R.P. 2012: Structure-function analysis of the SaPIbov1 replication origin in Staphylococcus aureus. Plasmid 67(2): 183-190
Dong, X.; Patino-Lopez, G.; Candotti, F.; Shaw, S. 2007: Structure-function analysis of the WIP role in T cell receptor-stimulated NFAT activation: evidence that WIP-WASP dissociation is not required and that the WIP NH2 terminus is inhibitory. Journal of Biological Chemistry 282(41): 30303-30310
Schwer, B.; Shuman, S. 2014: Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28. Nucleic Acids Research 42(7): 4697-4711
Dym, O.; Albeck, S.; Peleg, Y.; Schwarz, A.; Shakked, Z.; Burstein, Y.; Zimhony, O. 2009: Structure-function analysis of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis. Journal of Molecular Biology 393(4): 937-950
Georgelis, N.; Tabuchi, A.; Nikolaidis, N.; Cosgrove, D.J. 2011: Structure-function analysis of the bacterial expansin EXLX1. Journal of Biological Chemistry 286(19): 16814-16823
Chen, A.; Brûlé-Babel, A.; Baumann, U.; Collins, N.C. 2009: Structure-function analysis of the barley genome: the gene-rich region of chromosome 2HL. Functional and Integrative Genomics 9(1): 67-79
Ziercher, L.éa.; Filhol, O.; Laudet, B.éa.; Prudent, R.; Cochet, C.; Buchou, T. 2011: Structure-function analysis of the beta regulatory subunit of protein kinase CK2 by targeting embryonic stem cell. Molecular and Cellular Biochemistry 356(1-2): 75-81
Zhou, J.; Xie, H.; Liu, Z.; Luo, H.-B.; Wu, R. 2014: Structure-function analysis of the conserved tyrosine and diverse π-stacking among class i histone deacetylases: a QM (DFT)/MM MD study. Journal of Chemical Information and Modeling 54(11): 3162-3171
Berges, R.; Balzeau, J.; Takahashi, M.; Prevost, C.; Eyer, J. 2012: Structure-function analysis of the glioma targeting NFL-TBS.40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit. Plos one 7(11): E49436
Neu, U.; Maginnis, M.S.; Palma, A.S.; Ströh, L.J.; Nelson, C.D.S.; Feizi, T.; Atwood, W.J.; Stehle, T. 2010: Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host and Microbe 8(4): 309-319
Dick, F.A. 2007: Structure-function analysis of the retinoblastoma tumor suppressor protein - is the whole a sum of its parts?. Cell Division 2: 26
Tanco, Sán.; Arolas, J.L.; Guevara, T.; Lorenzo, J.; Avilés, F.X.; Gomis-Rüth, F.Xavier. 2010: Structure-function analysis of the short splicing variant carboxypeptidase encoded by Drosophila melanogaster silver. Journal of Molecular Biology 401(3): 465-477
Koshiba, T.; Holman, H.A.; Kubara, K.; Yasukawa, K.; Kawabata, S.-i.; Okamoto, K.; MacFarlane, J.; Shaw, J.M. 2011: Structure-function analysis of the yeast mitochondrial Rho GTPase, Gem1p: implications for mitochondrial inheritance. Journal of Biological Chemistry 286(1): 354-362
Santos-López, G.; Scior, T.; Borraz-Argüello, M.ía.d.T.án.; Vallejo-Ruiz, V.ón.; Herrera-Camacho, I.; Tapia-Ramírez, J.é; Reyes-Leyva, J. 2009: Structure-function analysis of two variants of mumps virus hemagglutinin-neuraminidase protein. Brazilian Journal of Infectious Diseases: An Official Publication of the Brazilian Society of Infectious Diseases 13(1): 24-34
Luchniak, A.; Fukuda, Y.; Gupta, M.L. 2013: Structure-function analysis of yeast tubulin. Methods in Cell Biology 115: 355-374
Zheng, X.L. 2013: Structure-function and regulation of ADAMTS-13 protease. Journal of Thrombosis and Haemostasis: Jth 11(Suppl 1): 11-23
Fux, L.; Feibish, N.; Cohen-Kaplan, V.; Gingis-Velitski, S.; Feld, S.; Geffen, C.; Vlodavsky, I.; Ilan, N. 2009: Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Research 69(5): 1758-1767
Chepenik, L.G.; Wang, F.; Spencer, L.; Spann, M.; Kalmar, J.H.; Womer, F.; Kale Edmiston, E.; Pittman, B.; Blumberg, H.P. 2012: Structure-function associations in hippocampus in bipolar disorder. Biological Psychology 90(1): 18-22
Ghosh, A.; Ali, M.A.; Selvanesan, L.; Dias, G.J. 2010: Structure-function characteristics of the biomaterials based on milk-derived proteins. International Journal of Biological Macromolecules 46(4): 404-411
Mazorra-Manzano, M.A.; Tanaka, T.; Dee, D.R.; Yada, R.Y. 2010: Structure-function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. Phytochemistry 71(5-6): 515-523
Sarkar, D.; Ray, K.; Sengupta, M. 2014: Structure-function correlation analysis of connexin50 missense mutations causing congenital cataract: electrostatic potential alteration could determine intracellular trafficking fate of mutants. Biomed Research International 2014: 673895
Dascălu, A.-M.; Alexandrescu, C.; Popa-Cherecheanu, A.; Stana, D.; Panca, A.; Pascu, R.; Voinea, L. 2011: Structure-function correlation in early diagnosis of glaucoma progression. Oftalmologia 55(4): 111-116
Majumder, A.; Govindasamy, L.; Magis, A.; Kiss, R.ób.; Polgár, T.ím.; Baskin, R.; Allan, R.W.; Agbandje-McKenna, M.; Reuther, G.W.; Keseru, G.ör.M.; Bisht, K.S.; Sayeski, P.P. 2010: Structure-function correlation of G6, a novel small molecule inhibitor of Jak2: indispensability of the stilbenoid core. Journal of Biological Chemistry 285(41): 31399-31407
Wong, E.N.; Tay-Kearney, M.-L.; Chen, F.K. 2014: Structure-function correlation of focal and diffuse temporal perifoveolar thinning in Alport syndrome. Clinical and Experimental Ophthalmology 42(7): 699-702
Yamazaki, A.; Ki, S.; Kokubo, T.; Yamaguchi, M. 2009: Structure-function correlation of micro1 for micromere specification in sea urchin embryos. Mechanisms of Development 126(8-9): 611-623
Charbel Issa, P.; Troeger, E.; Finger, R.; Holz, F.G.; Wilke, R.; Scholl, H.P.N. 2010: Structure-function correlation of the human central retina. Plos one 5(9): E12864
Zheng, W.; Zhang, J.; Zhu, B.; Blume, R.; Zhang, Y.; Schlichte, K.; Schlögl, R.; Schüth, F.; Su, D.S. 2010: Structure-function correlations for Ru/CNT in the catalytic decomposition of ammonia. Chemsuschem 3(2): 226-230
Pinto, L.M.; Costa, E.F.; Melo, L.A.S.; Gross, P.B.; Sato, E.T.; Almeida, A.P.; Maia, A.; Paranhos, A. 2014: Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices. Investigative Ophthalmology and Visual Science 55(5): 3074-3080
Olmeda, B.ár.; García-Álvarez, B.ña.; Pérez-Gil, J.ús. 2013: Structure-function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. European Biophysics Journal: Ebj 42(2-3): 209-222
Lee, P.-J.; Liu, C.J.-L.; Wojciechowski, R.; Bailey-Wilson, J.E.; Cheng, C.-Y. 2010: Structure-function correlations using scanning laser polarimetry in primary angle-closure glaucoma and primary open-angle glaucoma. American Journal of Ophthalmology 149(5): 817
Ton, R.; Deco, G.; Daffertshofer, A. 2014: Structure-function discrepancy: inhomogeneity and delays in synchronized neural networks. Plos Computational Biology 10(7): E1003736
Nibbs, R.J.B.; McLean, P.; McCulloch, C.; Riboldi-Tunnicliffe, A.; Blair, E.; Zhu, Y.; Isaacs, N.; Graham, G.J. 2009: Structure-function dissection of D6, an atypical scavenger receptor. Methods in Enzymology 460: 245-261
Strutt, D.; Madder, D.; Chaudhary, V.; Artymiuk, P.J. 2012: Structure-function dissection of the frizzled receptor in Drosophila melanogaster suggests different mechanisms of action in planar polarity and canonical Wnt signaling. Genetics 192(4): 1295-1313
Lebbe, E.K.M.; Peigneur, S.; Maiti, M.; Devi, P.; Ravichandran, S.; Lescrinier, E.; Ulens, C.; Waelkens, E.; D'Souza, L.; Herdewijn, P.; Tytgat, J. 2014: Structure-function elucidation of a new α-conotoxin, Lo1a, from Conus longurionis. Journal of Biological Chemistry 289(14): 9573-9583
Romero-García, J.; Francisco, C.; Biarnés, X.; Planas, A. 2013: Structure-function features of a Mycoplasma glycolipid synthase derived from structural data integration, molecular simulations, and mutational analysis. Plos one 8(12): E81990
Basu, A.; Naji, A.; Pandit, R. 2014: Structure-function hierarchies and von Kármán-Howarth relations for turbulence in magnetohydrodynamical equations. Physical Review. e Statistical Nonlinear and Soft Matter Physics 89(1): 012117
Myasnikov, A.G.; Simonetti, A.; Marzi, S.; Klaholz, B.P. 2009: Structure-function insights into prokaryotic and eukaryotic translation initiation. Current Opinion in Structural Biology 19(3): 300-309
Nogales, E.; Ramey, V.H. 2009: Structure-function insights into the yeast Dam1 kinetochore complex. Journal of Cell Science 122(Part 21): 3831-3836
Dreaden, T.M.; Devarajan, B.; Barry, B.A.; Schmidt-Krey, I. 2013: Structure-function insights of membrane and soluble proteins revealed by electron crystallography. Methods in Molecular Biology 955: 519-526
Brassen, S.; Büchel, C.; Weber-Fahr, W.; Lehmbeck, J.T.; Sommer, T.; Braus, D.F. 2009: Structure-function interactions of correct retrieval in healthy elderly women. Neurobiology of Aging 30(7): 1147-1156
Mehra, R.; Londoño, D.; Sondey, M.; Lawson, C.; Cadavid, D. 2009: Structure-function investigation of vsp serotypes of the spirochete Borrelia hermsii. Plos one 4(10): E7597
Zhang, J.Z.; Yarov-Yarovoy, V.; Scheuer, T.; Karbat, I.; Cohen, L.; Gordon, D.; Gurevitz, M.; Catterall, W.A. 2011: Structure-function map of the receptor site for β-scorpion toxins in domain Ii of voltage-gated sodium channels. Journal of Biological Chemistry 286(38): 33641-33651
Bell, S.A.; Niehaus, T.D.; Nybo, S.E.; Chappell, J. 2014: Structure-function mapping of key determinants for hydrocarbon biosynthesis by squalene and squalene synthase-like enzymes from the green alga Botryococcus braunii race B. Biochemistry 53(48): 7570-7581
Denniss, J.; Turpin, A.; Tanabe, F.; Matsumoto, C.; McKendrick, A.M. 2014: Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model. Investigative Ophthalmology and Visual Science 55(2): 728-736
Pepino, M.Y.; Kuda, O.; Samovski, D.; Abumrad, N.A. 2014: Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annual Review of Nutrition 34: 281-303
Agarwal, R.; Zakharov, S.; Hasan, S.S.; Ryan, C.M.; Whitelegge, J.P.; Cramer, W.A. 2014: Structure-function of cyanobacterial outer-membrane protein, Slr1270: homolog of Escherichia coli drug export/colicin import protein, TolC. Febs Letters 588(21): 3793-3801
Neely, A.; Hidalgo, P. 2014: Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Frontiers in Physiology 5: 209
Katritch, V.; Cherezov, V.; Stevens, R.C. 2013: Structure-function of the G protein-coupled receptor superfamily. Annual Review of Pharmacology and Toxicology 53: 531-556
Baniulis, D.; Yamashita, E.; Zhang, H.; Hasan, S.S.; Cramer, W.A. 2008: Structure-function of the cytochrome b6f complex. Photochemistry and Photobiology 84(6): 1349-1358
Scorciapino, M.A.; Spiga, E.; Vezzoli, A.; Mrakic-Sposta, S.; Russo, R.; Fink, B.; Casu, M.; Gussoni, M.; Ceccarelli, M. 2013: Structure-function paradigm in human myoglobin: how a single-residue substitution affects NO reactivity at low pO2. Journal of the American Chemical Society 135(20): 7534-7544
Girard, E.; Marchal, Séphane.; Perez, J.; Finet, Séphanie.; Kahn, R.; Fourme, R.; Marassio, G.; Dhaussy, A-Claire.; Prangé, T.; Giffard, M.; Dulin, F.; Bonneté, Fçoise.; Lange, R.; Abraini, J.H.; Mezouar, M.; Colloc'h, N. 2010: Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure. Biophysical Journal 98(10): 2365-2373
Finet, G.ér.; Huo, Y.; Rioufol, G.; Ohayon, J.; Guerin, P.; Kassab, G.S. 2010: Structure-function relation in the coronary artery tree: from fluid dynamics to arterial bifurcations. Eurointervention: Journal of Europcr in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 6 Suppl J: J10-J15
Smeazzetto, S.; Saponaro, A.; Young, H.S.; Moncelli, M.R.; Thiel, G. 2013: Structure-function relation of phospholamban: modulation of channel activity as a potential regulator of SERCA activity. Plos one 8(1): E52744
Silverberg, J.L.; Barrett, A.R.; Das, M.; Petersen, P.B.; Bonassar, L.J.; Cohen, I. 2014: Structure-function relations and rigidity percolation in the shear properties of articular cartilage. Biophysical Journal 107(7): 1721-1730
Wall, M.E. 2011: Structure-function relations are subtle in genetic regulatory networks. Mathematical Biosciences 231(1): 61-68
Granjon, T.; Maniti, O.; Auchli, Y.; Dahinden, P.; Buchet, R.é; Marcillat, O.; Dimroth, P. 2010: Structure-function relations in oxaloacetate decarboxylase complex. Fluorescence and infrared approaches to monitor oxomalonate and Na(+) binding effect. Plos one 5(6): E10935
Meineke, B.; Shuman, S. 2012: Structure-function relations in the NTPase domain of the antiviral tRNA ribotoxin Escherichia coli PrrC. Virology 427(2): 144-150
Chattah, N.L.-T.; Kupczik, K.; Shahar, R.; Hublin, J.-J.; Weiner, S. 2011: Structure-function relations of primate lower incisors: a study of the deformation of Macaca mulatta dentition using electronic speckle pattern interferometry (ESPI). Journal of Anatomy 218(1): 87-95
Shchedrina, V.A.; Zhang, Y.; Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. 2010: Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxidants and Redox Signaling 12(7): 839-849
Park, H.Y.L.; Park, C.K. 2013: Structure-function relationship and diagnostic value of RNFL Area Index compared with circumpapillary RNFL thickness by spectral-domain OCT. Journal of Glaucoma 22(2): 88-97
Kim, N.R.; Lee, E.S.; Seong, G.J.; Kim, J.H.; An, H.G.; Kim, C.Y. 2010: Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Investigative Ophthalmology and Visual Science 51(9): 4646-4651
Guariniello, S.; Colonna, G.; Raucci, R.; Costantini, M.; Di Bernardo, G.; Bergantino, F.; Castello, G.; Costantini, S. 2014: Structure-function relationship and evolutionary history of the human selenoprotein M (SelM) found over-expressed in hepatocellular carcinoma. Biochimica et Biophysica Acta 1844(2): 447-456
Kimura, M. 2009: Structure-function relationship and thermostability of ribonucleoprotein enzyme from hyperthermophilic archaeon. Seikagaku. Journal of Japanese Biochemical Society 81(12): 1038-1048
Lamparter, J.; Russell, R.A.; Schulze, A.; Schuff, A.-C.; Pfeiffer, N.; Hoffmann, E.M. 2012: Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. Investigative Ophthalmology and Visual Science 53(12): 7553-7559
Naghizadeh, F.; Garas, A.; Vargha, P.ét.; Holló, G.áb. 2014: Structure-function relationship between the octopus perimeter cluster mean sensitivity and sector retinal nerve fiber layer thickness measured with the RTVue optical coherence tomography and scanning laser polarimetry. Journal of Glaucoma 23(1): 11-18
Gonzalez-Hernandez, M.; Pablo, L.E.; Armas-Dominguez, K.; de la Vega, R.R.; Ferreras, A.; de la Rosa, M.G. 2009: Structure-function relationship depends on glaucoma severity. British Journal of Ophthalmology 93(9): 1195-1199
Cosío, B.G.; Shafiek, H.; Fiorentino, F.; Gómez, C.; López, M.; Rios, A.; Kersul, A.; Togores, B.; Palmer, J.; Sauleda, J.; Agustí, A. 2014: Structure-function relationship in COPD revisited: an in vivo microscopy view. Thorax 69(8): 724-730
Carella, M.; Becher, J.; Ohlenschläger, O.; Ramachandran, R.; Gührs, K.-H.; Wellenreuther, G.; Meyer-Klaucke, W.; Heinemann, S.H.; Görlach, M. 2011: Structure-function relationship in an archaebacterial methionine sulphoxide reductase B. Molecular Microbiology 79(2): 342-358
Costa, H.án.; del Canto, S.; Ferrarotti, S.; de Jiménez Bonino, M.B. 2009: Structure-function relationship in cyclodextrin glycosyltransferase from Bacillus circulans DF 9R. Carbohydrate Research 344(1): 74-79
Geitner, N.K.; Wang, B.; Andorfer, R.E.; Ladner, D.A.; Ke, P.C.; Ding, F. 2014: Structure-function relationship of PAMAM dendrimers as robust oil dispersants. Environmental Science and Technology 48(21): 12868-12875
Liu, C.; Han, Y.; Chen, X.; Zhang, W. 2014: Structure-function relationship of SW-AT-1, a serpin-type protease inhibitor in silkworm. Plos one 9(6): E99013
Ma, Q.; Jiao, W.; Lv, Y.; Dong, N.; Zhu, X.; Shan, A. 2014: Structure-function relationship of Val/Arg-rich peptides: effects of net charge and pro on activity. Chemical Biology and Drug Design 84(3): 348-353
Chung, H.-W.; Tu, S.-C. 2012: Structure-function relationship of Vibrio harveyi NADPH-flavin oxidoreductase FRP: essential residues Lys167 and Arg15 for NADPH binding. Biochemistry 51(24): 4880-4887
Morellet, N.; Roques, B.P.; Bouaziz, S. 2009: Structure-function relationship of Vpr: biological implications. Current HIV Research 7(2): 184-210
Witz, S.; Panwar, P.; Schober, M.; Deppe, J.; Pasha, F.Ahmad.; Lemieux, M.Joanne.; Möhlmann, T. 2014: Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis. Plos one 9(3): E91343
Pomin, V.H. 2012: Structure-function relationship of anticoagulant and antithrombotic well-defined sulfated polysaccharides from marine invertebrates. Advances in Food and Nutrition Research 65: 195-209
Nakano, S.; Takahashi, M.; Sakamoto, A.; Morikawa, H.; Katayanagi, K. 2012: Structure-function relationship of assimilatory nitrite reductases from the leaf and root of tobacco based on high-resolution structures. Protein Science: a Publication of the Protein Society 21(3): 383-395
Taheri-Kafrani, A.; Asgari-Mobarakeh, E.; Bordbar, A.-K.; Haertlé, T. 2010: Structure-function relationship of beta-lactoglobulin in the presence of dodecyltrimethyl ammonium bromide. Colloids and Surfaces. B Biointerfaces 75(1): 268-274
Hoehn, M.; Aswendt, M. 2013: Structure-function relationship of cerebral networks in experimental neuroscience: contribution of magnetic resonance imaging. Experimental Neurology 242: 65-73
Sun, D.; Ren, Z.; Zeng, X.; You, Y.; Pan, W.; Zhou, M.; Wang, L.; Xu, A. 2011: Structure-function relationship of conotoxin lt14a, a potential analgesic with low cytotoxicity. Peptides 32(2): 300-305
Manavalan, B.; Basith, S.; Choi, Y.-M.; Lee, G.; Choi, S. 2010: Structure-function relationship of cytoplasmic and nuclear IκB proteins: an in silico analysis. Plos one 5(12): E15782
Zhang, Y.; Zhao, H.; Yu, G.-Y.; Liu, X.-D.; Shen, J.-H.; Lee, W.-H.; Zhang, Y. 2010: Structure-function relationship of king cobra cathelicidin. Peptides 31(8): 1488-1493