The RBE of 3.4 MeV alpha-particles and 0.565 MeV neutrons relative to 60Co gamma-rays for neoplastic transformation of human hybrid cells and the impact of culture conditions

Frankenberg-Schwager, M.; Spieren, S.; Pralle, E.; Giesen, U.; Brede, H.J.; Thiemig, M.; Frankenberg, D.

Radiation Protection Dosimetry 138(1): 29-39


ISSN/ISBN: 0144-8420
PMID: 19828717
DOI: 10.1093/rpd/ncp201
Accession: 056211837

Download citation:  

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

The neoplastic transformation of human hybrid CGL1 cells is affected by perturbations from external influences such as serum batch and concentration, the number of medium changes during the 21-day expression period and cell seeding density. Nevertheless, for doses up to 1.5 Gy, published transformation frequencies for low linear energy transfer (LET) radiations (gamma-rays, MeV electrons or photons) are in good agreement, whereas for higher doses larger variations are reported. The (60)Co gamma-ray data here for doses up to 1.5 Gy, using a low-yield serum batch and only one medium change, are in agreement with published frequencies of neoplastic transformation of human hybrid cells. For 3.4 MeV alpha-particles (LET = 124 keV/mum) and 0.565 MeV monoenergetic neutrons relative to low doses of (60)Co gamma-rays, a maximum relative biological effectiveness (RBE(M)) of 2.8 +/- 0.2 and 1.5 +/- 0.2, respectively, was calculated. Surprisingly, at higher doses of (60)Co gamma-rays lower frequencies of neoplastic transformation were observed. This non-monotonic dose relationship for neoplastic transformation by (60)Co gamma-rays is likely due to the lack of a G2/M arrest observed at low doses resulting in higher transformation frequencies per dose, whereas the lower frequencies per dose observed for higher doses are likely related to the induction of a G2/M arrest.