The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation
Rodríguez-Fernández, D.E.; Rodríguez-León, J.A.; de Carvalho, J.C.; Sturm, W.; Soccol, C.R.
Bioresource Technology 102(22): 10657-10662
2011
ISSN/ISBN: 1873-2976 PMID: 21945204 DOI: 10.1016/j.biortech.2011.08.106
Accession: 056248679
Solid-state fermentation (SSF) is defined as the growth of microbes without a free-flowing aqueous phase. The feasibility of using a citrus peel for producing pectinase and xylanase via the SSF process by Aspergillus niger F3 was evaluated in a 2 kg bioreactor. Different aeration conditions were tested to optimize the pectinase and xylanase production. The best air flow intensity was 1 V kg M (volumetric air flow per kilogram of medium), which allowed a sufficient amount of O2 for the microorganism growth producing 265 U/g and 65 U/g pectinases and xylanases, respectively. A mathematical model was applied to determine the different kinetic parameters related to SSF. The specific growth rate and biomass oxygen yield decreased during fermentation, whereas an increase in the maintenance coefficient for the different employed carbon sources was concurrently observed.