+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Tracing the SARS-coronavirus



Tracing the SARS-coronavirus



Journal of Thoracic Disease 5(Suppl. 2): S118-S121



Four coronaviruses (HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1) are endemic in humans and mainly associated with mild respiratory illnesses; whereas the other two coronaviruses [Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV)] present as emerging infections causing severe respiratory syndrome. Coronaviruses evolve by accumulation of point mutations and recombination of genomes among different strains or species. Mammalian coronaviruses including those infect humans are evolved from bat coronaviruses. While SARS-CoV and MERS-CoV are genetically closely related to bat coronaviruses, intermediate host(s) is (are) likely to be involved in the emergence and cross-species transmission of these novel human viruses. High prevalence of SARS-like coronaviruses have been found from masked palm civet cats and raccoon dogs collected from markets around the time of outbreaks in humans, but these animals are likely to be a transient accidental host rather than a persisting reservoir. More research is needed to elucidate the ecology of coronaviruses. Vigilance and surveillance should be maintained to promptly identify newly emerged coronaviruses.

Please choose payment method:






(PDF emailed within 1 workday: $29.90)

Accession: 056625910

Download citation: RISBibTeXText

PMID: 23977431


Related references

Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. Journal of Clinical Microbiology 43(7): 3054-3058, 2005

Tracing SARS-coronavirus variant with large genomic deletion. Emerging Infectious Diseases 11(1): 168-170, 2005

Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virology Journal 6: 230, 2009

Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Research 228: 7, 2017

Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. Journal of Virology 82(4): 1819-1826, 2008

Development of a quantitative assay for SARS coronavirus and correlation of GAPDH mRNA with SARS coronavirus in clinical specimens. Journal of Clinical Pathology 58(3): 276-280, 2005

Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. Journal of Virology 82(4): 1899-1907, 2008

Mouse studies of SARS coronavirus-specific immune responses to recombinant replication-defective adenovirus expressing SARS coronavirus N protein. Hong Kong Medical Journal 15(Suppl. 2): 33-36, 2009

Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. Journal of Clinical Microbiology 42(5): 2306-2309, 2004

Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clinical and Diagnostic Laboratory Immunology 11(4): 665-668, 2004

Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. Journal of Virology 89(20): 10532-10547, 2015

Anti-SARS virus antibody responses against human SARS-associated coronavirus and animal SARS-associated coronavirus-like virus. Chinese Medical Journal 117(11): 1723-1725, 2004

Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet 363(9412): 841-845, 2004

Immunogenicity difference between the SARS coronavirus and the bat SARS-like coronavirus spike (S) proteins. Biochemical and Biophysical Research Communications 387(2): 326-329, 2009