+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Ultratrace analysis of uracil and 5-fluorouracil by molecularly imprinted polymer brushes grafted to silylated solid-phase microextraction fiber in combination with complementary molecularly imprinted polymer-based sensor



Ultratrace analysis of uracil and 5-fluorouracil by molecularly imprinted polymer brushes grafted to silylated solid-phase microextraction fiber in combination with complementary molecularly imprinted polymer-based sensor



Biomedical Chromatography 23(5): 499-509



Main inborn errors of metabolism diagnosable through uracil (Ura) analysis and the therapeutic monitoring of toxic 5-fluorouracil (5FU) in dihydro pyrimidine dehydrogenase (DPD) deficient patients require a sensitive, reproducible, selective and accurate method. In this work, an artificial receptor in the format of molecularly imprinted polymer (MIP) brush 'grafted to' the surface of sol-gel immobilized on cost-effective homemade solid-phase microextraction (SPME) fibers, individually imprinted with either of Ura and 5FU, was used in combination with a voltammetric sensor duly modified with the same MIP. This combination provided up to 10- and 8.4-fold preconcentrations of Ura and 5FU, respectively, which was more than sufficient for achieving stringent detection limits in the primitive diagnosis of uracil disorders and fluoropyrimidine toxicity in DPD-deficient patients. The proposed method permits the assessment of Ura and 5FU plasma concentrations with detection limits pf 0.0245 and 0.0484 ng mL(-1) (RSD = 1.0-2.5%, S/N = 3), respectively, without any problems of non-specific false-positives and cross-reactivities in complicated matrices of biological samples.

(PDF emailed within 0-6 h: $19.90)

Accession: 056744496

Download citation: RISBibTeXText

PMID: 19101922

DOI: 10.1002/bmc.1145


Related references

Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer-based sensor for ultratrace analysis of ascorbic acid. Journal of Chromatography. a 1198-1199: 59-66, 2008

Enantioselective separation and electrochemical sensing of D- and L-tryptophan at ultratrace level using molecularly imprinted micro-solid phase extraction fiber coupled with complementary molecularly imprinted polymer-fiber sensor. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 879(5-6): 364-370, 2011

Development of a highly sensitive and selective hyphenated technique (molecularly imprinted micro-solid phase extraction fiber-molecularly imprinted polymer fiber sensor) for ultratrace analysis of folic acid. Analytica Chimica Acta 662(1): 14-22, 2010

Highly sensitive and selective hyphenated technique (molecularly imprinted polymer solid-phase microextraction-molecularly imprinted polymer sensor) for ultra trace analysis of aspartic acid enantiomers. Journal of Chromatography. a 1283: 9-19, 2013

Enatioselective quantitative separation of D- and L-thyroxine by molecularly imprinted micro-solid phase extraction silver fiber coupled with complementary molecularly imprinted polymer-sensor. Journal of Chromatography. a 1217(26): 4255-4266, 2010

An insulin monitoring device based on hyphenation between molecularly imprinted micro-solid phase extraction and complementary molecularly imprinted polymer-sensor. Journal of Chromatography. a 1337: 22-31, 2014

Molecularly imprinted micro solid-phase extraction technique coupled with complementary molecularly imprinted polymer-sensor for ultra trace analysis of epinephrine in real samples. Colloids and Surfaces. B, Biointerfaces 113: 69-76, 2014

Zwitterionic molecularly imprinted polymer-based solid-phase micro-extraction coupled with molecularly imprinted polymer sensor for ultra-trace sensing of L-histidine. Journal of Separation Science 32(7): 1096-1105, 2009

Molecularly imprinted polymer-based solid-phase extraction combined with molecularly imprinted polymer-based sensor for detection of uric acid. Journal of Chromatography. a 1173(1-2): 18-26, 2007

Molecularly imprinted solid-phase extraction combined with molecularly imprinted polymer-sensor: a diagnostic tool applicable to creatine deficiency syndrome. Biomedical Chromatography 21(9): 976-986, 2007

Highly selective and sensitive analysis of dopamine by molecularly imprinted stir bar sorptive extraction technique coupled with complementary molecularly imprinted polymer sensor. Journal of Colloid and Interface Science 396: 234-241, 2013

Preparation and application of solid-phase microextraction fiber based on molecularly imprinted polymer for determination of anabolic steroids in complicated samples. Journal of Chromatography. a 1217(48): 7461-7470, 2011

An automated solid-phase microextraction method based on magnetic molecularly imprinted polymer as fiber coating for detection of trace estrogens in milk powder. Journal of Chromatography. a 1331: 10-18, 2014

Core-shell molecularly imprinted polymer-based solid-phase microextraction fiber for ultra trace analysis of endosulfan I and II in real aqueous matrix through gas chromatography-micro electron capture detector. Journal of Chromatography. a 1337: 179-187, 2014

Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 147: 26-30, 2016