Section 58
Chapter 57,014

3,4-Dihydroxy-L-Phenylalanine as a Novel Covalent Linker of Extracellular Matrix Proteins to Polyacrylamide Hydrogels with a Tunable Stiffness

Wouters, O.Y.; Ploeger, D.T.A.; van Putten, S.M.; Bank, R.A.

Tissue Engineering. Part C Methods 22(2): 91-101


ISSN/ISBN: 1937-3392
PMID: 26779898
DOI: 10.1089/ten.tec.2015.0312
Accession: 057013163

Download citation:  

Cells acquire mechanical information from their surrounding and convert this into biochemical activity. The concept and mechanism behind this cellular mechanosensing and mechanotransduction are often studied by means of two-dimensional hydrogels. Polyacrylamide hydrogels (PAAMs) offer chemical, mechanical, and optical advantages but due to their inert surface do not allow protein and cell adherence. Several cross-linkers have been used to functionalize the surface of PAAMs with extracellular matrix (ECM) proteins to enable cell culture. However, the most commonly used cross-linkers are either unstable, expensive, or laborious and often show heterogeneous coating or require PAAM modification. Here, we introduce 3,4-dihydroxy-l-phenylalanine (L-DOPA) as a novel cross-linker that can functionalize PAAMs with ECM without the above-mentioned disadvantages. A homogenous collagen type I and fibronectin coating was observed after L-DOPA functionalization. Fibroblasts responded to differences in PAAMs' stiffness; morphology, cell area, and protein localization were all affected as expected, in accordance with literature where other cross-linkers were used. In conclusion, L-DOPA can be used as a cross-linker between PAAMs and ECM and represents a novel, straightforward, nonlaborious, and robust method to functionalize PAAMs for cell culture to study cell mechanosensing.

PDF emailed within 0-6 h: $19.90