Catching up with solid tumor oncology: what is the evidence for a prognostic role of programmed cell death-ligand 1/programmed cell death-1 expression in B-cell lymphomas?

McClanahan, F.; Sharp, T.G.; Gribben, J.G.

Haematologica 101(10): 1144-1158

2016


ISSN/ISBN: 0390-6078
PMID: 27694502
DOI: 10.3324/haematol.2016.145904
Accession: 057365321

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Therapeutic strategies targeting the programmed cell death-ligand 1/programmed cell death-1 pathway have shown significant responses and good tolerability in solid malignancies. Although preclinical studies suggest that inhibiting programmed cell death-ligand 1/programmed cell death-1 interactions might also be highly effective in hematological malignancies, remarkably few clinical trials have been published. Determining patients who will benefit most from programmed cell death-ligand 1/programmed cell death-1-directed immunotherapy and whether programmed cell death-ligand 1/programmed cell death-1 are adequate prognostic markers becomes an increasingly important clinical question, especially as aberrant programmed cell death-ligand 1/programmed cell death-1 expression are key mediators of impaired anti-tumor immune responses in a range of B-cell lymphomas. Herein, we systematically review the published literature on the expression and prognostic value of programmed cell death-ligand 1/programmed cell death-1 in these patients and identify considerable differences in expression patterns, distribution and numbers of programmed cell death-ligand 1+/programmed cell death-1+cells, both between and within lymphoma subtypes, which is reflected in conflicting findings regarding the prognostic value of programmed cell death-ligand 1+/programmed cell death-1+ cells. This can be partly explained by differences in methodologies (techniques, protocols, cutoff values) and definitions of positivity. Moreover, lymphomagenesis, disease progression, and prognosis appear to be determined not only by the presence, numbers and distribution of specific subtypes of T cells, but also by other cells and additional immune checkpoints. Collectively, our findings indicate that programmed cell death-ligand 1/programmed cell death-1 interactions play an essential role in B-cell lymphoma biology and are of clinical importance, but that the overall outcome is determined by additional components. To categorize the exact prognostic value of programmed cell death-ligand 1/programmed cell death-1 expressing cells and cell types, efforts should be made to harmonize their assessment and interpretation, optimally within ongoing clinical immune checkpoint inhibitor trials, and to identify and validate novel high-throughput platforms.