+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Identification of functional SNPs potentially served as a genetic risk factor for the pathogenesis of parakeratosis in the gene encoding human deoxyribonuclease I-like 2 (DNase 1L2) implicated in terminal differentiation of keratinocytes



Identification of functional SNPs potentially served as a genetic risk factor for the pathogenesis of parakeratosis in the gene encoding human deoxyribonuclease I-like 2 (DNase 1L2) implicated in terminal differentiation of keratinocytes



Gene 561(1): 15-22



In the present study, we evaluated all of the 35 non-synonymous SNPs in the gene encoding DNase I-like 2 (DNase 1L2), implicated in terminal differentiation of keratinocytes, to seek a functional SNP that would potentially affect the levels of in vivo DNase 1L2 activity. Based on a compiled expression analysis of the amino acid-substituted DNase 1L2 corresponding to each of the 35 non-synonymous SNPs in the gene, these 35 SNPs were grouped into 4 classes according to the alteration of catalytic activity caused by the corresponding amino acid substitution in the DNase 1L2 protein; we were able to identify 12 non-synonymous SNPs as functional SNPs abolishing or substantially reducing the activity. Almost all of the amino acid residues corresponding to the SNPs abolishing the activity were completely or highly conserved in not only the DNase I family, but also animal DNase 1L2. Each of the minor alleles of these functional SNPs producing a loss-of-function or low activity-harboring variant was absent in 14 different populations derived from 3 ethnic groups, allowing us to assume that DNASE1L2 is generally well conserved with regard to these non-synonymous SNPs, thereby avoiding any marked reduction of the enzyme activity in human populations. However, it seems likely that each of the minor alleles for these SNPs may serve as a genetic risk factor for multiple skin diseases such as psoriasis, in which there is an aberrant retention of nuclear chromatin in cornified keratinocytes through incomplete DNA degradation.

(PDF emailed within 0-6 h: $19.90)

Accession: 058039314

Download citation: RISBibTeXText

PMID: 25576224

DOI: 10.1016/j.gene.2015.01.006


Related references

Five non-synonymous SNPs in the gene encoding human deoxyribonuclease I-like 2 implicated in terminal differentiation of keratinocytes reduce or abolish its activity. Electrophoresis 34(3): 456-462, 2013

Survey of single-nucleotide polymorphisms in the gene encoding human deoxyribonuclease I-like 2 producing loss of function potentially implicated in the pathogenesis of parakeratosis. Plos One 12(4): E0175083, 2017

Seven nonsynonymous SNPs in the gene encoding human deoxyribonuclease II may serve as a functional SNP potentially implicated in autoimmune dysfunction. Electrophoresis 34(24): 3361-3369, 2014

Five non-synonymous single nucleotide polymorphisms in the gene encoding human deoxyribonuclease I-like 2 implicated in terminal differentiation of keratinocytes reduce or abolish its activity. 2012

Functional Single Nucleotide Polymorphisms (SNPs) in the Genes Encoding the Human Deoxyribonuclease (DNase) Family Potentially Relevant to Autoimmunity. Immunological Investigations 45(5): 406-419, 2017

Evaluation of all non-synonymous single nucleotide polymorphisms (SNPs) in the genes encoding human deoxyribonuclease I and I-like 3 as a functional SNP potentially implicated in autoimmunity. Febs Journal 281(1): 376-390, 2014

Identification of the functional alleles of the nonsynonymous single-nucleotide polymorphisms potentially implicated in systemic lupus erythematosus in the human deoxyribonuclease I gene. Dna and Cell Biology 33(8): 492-502, 2014

Structure of the human deoxyribonuclease I (DNase I) gene: identification of the nucleotide substitution that generates its classical genetic polymorphism. Annals of Human Genetics 59(1): 1-15, 1995

A biochemical and genetic study on all non-synonymous single nucleotide polymorphisms of the gene encoding human deoxyribonuclease I potentially relevant to autoimmunity. International Journal of Biochemistry and Cell Biology 42(7): 1216-1225, 2010

Evaluation of all nonsynonymous single-nucleotide polymorphisms in the gene encoding human deoxyribonuclease I-like 1, possibly implicated in the blocking of endocytosis-mediated foreign gene transfer. Dna and Cell Biology 33(2): 79-87, 2014

Synthetic fragments of pth related peptide pthrp inhibit the proliferation and induce terminal differentiation of cultured human keratinocytes pthrp may be an endogenous antiproliferation and differentiation factor for keratinocytes. Clinical Research 37(2): 529A, 1989

The molecular basis for genetic polymorphism of human deoxyribonuclease II (DNase II): A single nucleotide substitution in the promoter region of human DNase II changes the promoter activity. FEBS Letters 467(2-3): 231-234, 2000

Cloning and expression in Escherichia coli of the gene encoding an extracellular deoxyribonuclease (DNase) from Aeromonas hydrophila. Gene (Amsterdam) 122(1): 175-180, 1992

Identification of a deoxyribonuclease implicated in genetic transformation of Diplococcus pneumoniae. Journal of Bacteriology 123(1): 222-232, 1975

Cloning of a human gene potentially encoding a novel matrix metalloproteinase having a C-terminal transmembrane domain. Gene (amsterdam). 155(2): 293-298, 1995