+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum



Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum



Proceedings of the National Academy of Sciences of the United States of America 112(27): 8505-8510



Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 058130354

Download citation: RISBibTeXText

PMID: 26100881

DOI: 10.1073/pnas.1423143112


Related references

Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition. Bioresource Technology 200: 111-120, 2017

Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresource Technology 106: 110-116, 2012

Production of acetone-butanol-ethanol from concentrated substrates using Clostridium acetobutylicum in an integrated fermentation-product removal process. Process Biochemistry 30(3): 209-215, 1995

Directed metabolic flow and reduction state regulation in acetone butanol ethanol fermentation with clostridium acetobutylicum. Abstracts of Papers American Chemical Society 194: MBTD 37, 1987

A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product. Biotechnology and Bioengineering 114(12): 2907-2919, 2017

Acetone-butanol-ethanol fermentation and pervaporation by Clostridium acetobutylicum B18. 1995

Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum. Biotechnology Journal 7(5): 656-661, 2012

Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Journal of Biotechnology 165(1): 18-21, 2013

Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metabolic Engineering 14(6): 630-641, 2013

Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum. Biomass and Bioenergy 20(2): 119-132, 2001

Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnology Advances 31(1): 58-67, 2013

Dual function of ammonium acetate in acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Bioresource Technology 267: 319-325, 2018

Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum. World Journal of Microbiology & Biotechnology 17(6): 567-576, 2001

Promotion of the Clostridium acetobutylicum ATCC 824 growth and acetone-butanol-ethanol fermentation by flavonoids. World Journal of Microbiology and Biotechnology 30(7): 1969-1976, 2015

Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation. Biotechnology Letters 37(3): 577-584, 2015