+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis

Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis

Food and Function 6(2): 558-565

In this study, two Lactobacillus strains (L. rhamnosus LA68 and L. plantarum WCFS1) were evaluated for their effects on high fat diet induced pathology in mice. The aim was to determine whether the administration of lactic acid bacteria had beneficial effects on ameliorating pathology. C57BL/6 mice fed a high fat diet were orally administered with the Lactobacillus strains. Both the metabolic and immunological parameters were analyzed. The administration of both of the strains had beneficial effects on mouse weight, serum cholesterol, TNF-α levels and liver histology. LA68 lowered the total cholesterol and HDL levels more prominently, whereas WCFS1 was more potent in lowering the TG and LDL levels. Leptin and adiponectin levels were increased in all experimental groups to different extents. The administration of L. plantarum WCFS1 led to a marked increase in leptin levels, as well as an increase in CD3+CD4+ and CD3+CD8+ cells, and a decrease of CD25+ cells, and had a lowering effect on IL-6 production and cell metabolic activity. In conclusion, active administration of both Lactobacillus strains had a positive effect on HFD-induced pathology. Although both of the tested strains had beneficial effects, oral administration of WCFS1 increased leptin levels and had a more prominent immunomodulatory effect, which should be taken into consideration in case of humane usage.

Please choose payment method:

(PDF emailed within 0-6 h: $19.90)

Accession: 058195166

Download citation: RISBibTeXText

PMID: 25518825

DOI: 10.1039/c4fo00843j

Related references

Active Lactobacillus rhamnosus LA68 or Lactobacillus plantarum WCFS1 administration positively influences liver fatty acid composition in mice on a HFD regime. Food and Function 7(6): 2840-2848, 2016

Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Applied and Environmental Microbiology 80(20): 6506-6516, 2014

Eruca sativa might influence the growth, survival under simulated gastrointestinal conditions and some biological features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus strains. International Journal of Molecular Sciences 15(10): 17790-17805, 2014

Gallotannins and Lactobacillus plantarum WCFS1 Mitigate High-Fat Diet-Induced Inflammation and Induce Biomarkers for Thermogenesis in Adipose Tissue in Gnotobiotic Mice. Molecular Nutrition and Food Research 63(9): E1800937, 2019

Mg 2+ improves the thermotolerance of probiotic Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8. Letters in Applied Microbiology 64(4): 283-288, 2017

Influence of Lactobacillus brevis 15 and Lactobacillus plantarum 13 on blood glucose and body weight in rats after high-fructose diet. Beneficial Microbes 6(4): 505-512, 2015

The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the "gastric barrier effect" in patients chronically treated with PPI: a pilot study. Journal of Clinical Gastroenterology 46 Suppl (): S18-S26, 2013

Production of succinate by Lactobacillus plantarum, Lactobacillus casei and Lactobacillus rhamnosus. Abstracts of the General Meeting of the American Society for Microbiology 99: 509, 1999

Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia. Journal of Microbiology and Biotechnology 26(3): 483-487, 2016

Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice. Nutrition Research 67: 78-89, 2019

Physiological and metabolic response of thiol over-production in Lactobacillus plantarum WCFS1. 2006

Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats. Plos one 9(5): E98401, 2014

Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. Journal of Biological Chemistry 281(52): 40041-8, 2006

Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology letters 24(19): 1587-1591, 2002

Lactobacillus plantarum ZS2058 and Lactobacillus rhamnosus GG Use Different Mechanisms to Prevent Salmonella Infection in vivo. Frontiers in Microbiology 10: 299, 2019