Making sense of genome-wide association studies: integrating genetic variation with gene expression to derive functional mechanisms underlying disease risk
Chen, H-Huei.; Stewart, A.F.R.
Circulation 131(6): 519-521
2015
ISSN/ISBN: 0009-7322
PMID: 25533968
DOI: 10.1161/circulationaha.114.014634
Accession: 058258620
PDF emailed within 0-6 h: $19.90
Related References
de Las Heras-Saldana, S.; Clark, S.A.; Duijvesteijn, N.; Gondro, C.; van der Werf, J.H.J.; Chen, Y. 2019: Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle Bmc Genomics 20(1): 939Paik, H.; Kim, J.; Lee, S.; Heo, H-Sam.; Hur, C-Goo.; Lee, D. 2012: Prioritization of SNPs for genome-wide association studies using an interaction model of genetic variation, gene expression, and trait variation Molecules and Cells 33(4): 351-361
Liu, G.; Zhang, F.; Jiang, Y.; Hu, Y.; Gong, Z.; Liu, S.; Chen, X.; Jiang, Q.; Hao, J. 2017: Integrating genome-wide association studies and gene expression data highlights dysregulated multiple sclerosis risk pathways Multiple Sclerosis 23(2): 205-212
Aimo, A.; Botto, N.; Vittorini, S.; Emdin, M. 2019: Polymorphisms in the eNOS gene and the risk of coronary artery disease: Making the case for genome-wide association studies European Journal of Preventive Cardiology 26(2): 157-159
Xiong, Q.; Ancona, N.; Hauser, E.R.; Mukherjee, S.; Furey, T.S. 2012: Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets Genome Research 22(2): 386-397
Zhou, Q.; Su, Z.; Li, Y.; Liu, Y.; Wang, L.; Lu, S.; Wang, S.; Gan, T.; Liu, F.; Zhou, X.; Wei, M.; Liu, G.; Chen, S. 2019: Genome-Wide Association Mapping and Gene Expression Analyses Reveal Genetic Mechanisms of Disease Resistance Variations in Cynoglossus semilaevis Frontiers in Genetics 10: 1167
Zhong, H.; Yang, X.; Kaplan, L.M.; Molony, C.; Schadt, E.E. 2010: Integrating pathway analysis and genetics of gene expression for genome-wide association studies American Journal of Human Genetics 86(4): 581-591
Cuyvers, E.; Sleegers, K. 2016: Genetic variations underlying Alzheimer's disease: evidence from genome-wide association studies and beyond Lancet. Neurology 15(8): 857-868
Chen, C.; Yang, B.; Zeng, Z.; Yang, H.; Liu, C.; Ren, J.; Huang, L. 2013: Genetic dissection of blood lipid traits by integrating genome-wide association study and gene expression profiling in a porcine model Bmc Genomics 14: 848
Hysi, P.G.; Mahroo, O.A.; Cumberland, P.; Wojciechowski, R.; Williams, K.M.; Young, T.L.; Mackey, D.A.; Rahi, J.S.; Hammond, C.J. 2014: Common mechanisms underlying refractive error identified in functional analysis of gene lists from genome-wide association study results in 2 European British cohorts JAMA Ophthalmology 132(1): 50-56
McLaren, P.J.; Fellay, J. 2015: Human genetic variation in HIV disease: beyond genome-wide association studies Current Opinion in HIV and Aids 10(2): 110-115
Long, J.; Liu, Z.; Wu, X.; Xu, Y.; Ge, C. 2016: Identification of disease-associated pathways in pancreatic cancer by integrating genome-wide association study and gene expression data Oncology Letters 12(1): 537-543
Workalemahu, T.; Enquobahrie, D.A.; Gelaye, B.; Sanchez, S.E.; Garcia, P.J.; Tekola-Ayele, F.; Hajat, A.; Thornton, T.A.; Ananth, C.V.; Williams, M.A. 2018: Genetic variations and risk of placental abruption: A genome-wide association study and meta-analysis of genome-wide association studies Placenta 66: 8-16
Mocellin, S.; Tropea, S.; Benna, C.; Rossi, C.Riccardo. 2018: Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies Bmc Medicine 16(1): 20
Tan, X.; Tang, H.; Gong, L.; Xie, L.; Lei, Y.; Luo, Z.; He, C.; Ma, J.; Han, S. 2020: Integrating Genome-Wide Association Studies and Gene Expression Profiles With Chemical-Genes Interaction Networks to Identify Chemicals Associated With Colorectal Cancer Frontiers in Genetics 11: 385