EurekaMag
+ Most Popular
Cunninghamia lanceolata plantations in China
Mammalian lairs in paleo ecological studies and palynology
Studies on technological possibilities in utilization of anhydrous milk fat for production of recombined butter-like products
Should right-sided fibroelastomas be operated upon?
Large esophageal lipoma
Apoptosis in the mammalian thymus during normal histogenesis and under various in vitro and in vivo experimental conditions
Poissons characoides nouveaux ou non signales de l'Ilha do Bananal, Bresil
Desensitizing efficacy of Colgate Sensitive Maximum Strength and Fresh Mint Sensodyne dentifrices
Administration of fluid by subcutaneous infusion: revival of a forgotten method
Tundra mosquito control - an impossible dream?
Schizophrenia for primary care providers: how to contribute to the care of a vulnerable patient population
Geochemical pattern analysis; method of describing the Southeastern limestone regional aquifer system
Incidence of low birth weights in a hospital of Mexico City
Tabanidae
Graded management intensity of grassland systems for enhancing floristic diversity
Microbiology and biochemistry of cheese and fermented milk
The ember tetra: a new pygmy characid tetra from the Rio das Mortes, Brazil, Hyphessobrycon amandae sp. n. (Pisces, Characoidei)
Risk factors of contrast-induced nephropathy in patients after coronary artery intervention
Renovation of onsite domestic wastewater in a poorly drained soil
Observations of the propagation velocity and formation mechanism of burst fractures caused by gunshot
Systolic blood pressure in a population of infants in the first year of life: the Brompton study
Haematological studies in rats fed with metanil yellow
Studies on pasteurellosis. I. A new species of Pasteurella encountered in chronic fowl cholera
Dormancy breaking and germination of Acacia salicina Lindl. seeds
therapy of lupus nephritis. a two-year prospective study

Differential immunosuppression by inhibiting PLA2 affects virulence of Xenorhabdus hominickii and Photorhabdus temperata temperata


Differential immunosuppression by inhibiting PLA2 affects virulence of Xenorhabdus hominickii and Photorhabdus temperata temperata



Journal of Invertebrate Pathology 157: 136-146



ISSN/ISBN: 0022-2011

PMID: 29802883

DOI: 10.1016/j.jip.2018.05.009

Immunity negatively influences bacterial pathogenicity. Eicosanoids mediate both cellular and humoral immune responses in insects. This study tested a hypothesis that differential bacterial virulence of Xenorhabdus/Photorhabdus is dependent on their inhibitory activity against phospholipase A2 (PLA2) activity. P. temperata subsp. temperata ('Ptt') was more than 40 times more potent than X. hominickii ('Xh'). Although both bacteria suppressed cellular immune responses, Ptt infection suppressed hemocyte nodule formation much more than Xh infection. Their differential immunosuppression appeared to be induced by their secondary metabolites because organic extracts of Ptt-cultured broth exhibited higher inhibitory activities against cellular immune responses than Xn-cultured broth extracts. Humoral immune responses were analyzed by measuring expression levels of 11 antimicrobial peptide (AMP) genes. Among inducible AMPs in hemocytes and fat body, higher number and more kinds of AMPs exhibited lower expression levels in Ptt infection than those in Xh infection. Suppressed immune responses induced by Ptt or Xh infection were significantly rescued by the addition of a catalytic product of PLA2, suggesting that PLA2 was a common inhibitory target. In fact, Ptt infection inhibited PLA2 activity more strongly than Xh infection. RNA interference of a PLA2 gene decreased its expression and significantly increased bacterial virulence. Moreover, addition of PLA2 inhibitor to Xh infection enhanced its virulence, similar to virulence level of Ptt infection. These results suggest that variation in Xenorhabdus/Photorhabdus bacterial virulence can be explained by their differential inhibitory activities against host insect PLA2.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 058421815

Download citation: RISBibTeXText

Related references

Differential pathogenicity of two entomopathogenic bacteria, Photorhabdus temperata subsp. temperata and Xenorhabdus nematophila against the red flour beetle, Tribolium castaneum. Journal of Asia-Pacific Entomology 13(3): 209-213, 2010

Development of “Bt-Plus” Biopesticide Using Entomopathogenic Bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) Metabolites. Korean Journal of Applied Entomology 50(3): 171-178, 2011

Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Applied and Environmental Microbiology 78(11): 3816-3823, 2012

Synergistic Effect of Entomopathogenic Bacteria (Xenorhabdus sp and Photorhabdus temperata ssp temperata) on the pathogenicity of Bacillus thuringiensis ssp aizawai against Spodoptera exigua (Lepidoptera : Noctuidae). Environmental Entomology 35(6): 1584-1589, 2006

Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. International Journal of Systematic and Evolutionary Microbiology 60(Pt 8): 1921-1937, 2010

Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. Journal of Asia Pacific Entomology 7(3): 331-337, 2004

Overcoming the production limitations of Photorhabdus temperata ssp. temperata strain K122 bioinsecticides in low-cost medium. Bioprocess and Biosystems Engineering 34(8): 1039-1047, 2011

Medium optimization for biomass production and morphology variance overcome of Photorhabdus temperata ssp temperata strain K122. Process Biochemistry 43(12): 1338-1344, 2008

Structure of the O-polysaccharide of Photorhabdus temperata subsp. temperata XlNach(T) containing a novel branched monosaccharide, 3,6-dideoxy-4-C-[(S)-1,2-dihydroxyethyl]-d-xylo-hexose. Carbohydrate Research 403: 202-205, 2015

Eicosanoid mediation of immune responses at early bacterial infection stage and its inhibition by Photorhabdus temperata subsp. temperata, an entomopathogenic bacterium. Archives of Insect Biochemistry and Physiology 99(4): E21502, 2018

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media. Korean Journal of Applied Entomology 49(4): 409-416, 2010

Involvement of oxidative stress and growth at high cell density in the viable but nonculturable state of Photorhabdus temperata ssp. temperata strain K122. Process Biochemistry 45(5): 706-713, 2010

Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. International Journal of Systematic Bacteriology 49 Pt 4: 1645-1656, 1999

Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. Bmc Genomics 10: 433, 2009

Identification and characterization of Photorhabdus temperata mutants altered in hemolysis and virulence. Canadian Journal of Microbiology 62(8): 657-667, 2016