+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Organic solvent-free low temperature method of preparation for self assembled amphiphilic poly(ϵ-caprolactone)-poly(ethylene glycol) block copolymer based nanocarriers for protein delivery



Organic solvent-free low temperature method of preparation for self assembled amphiphilic poly(ϵ-caprolactone)-poly(ethylene glycol) block copolymer based nanocarriers for protein delivery



Colloids and Surfaces. B Biointerfaces 135: 510-517



Degradation and denaturation of labile biomolecules during preparation of micelles by organic solvent at high temperature are some of the limitations for fabrication of advanced polymer based protein delivery systems. In this paper, effectiveness of heat-chill method for preparation of micelles containing large labile biomolecules was investigated using insulin as a model protein molecule. Micelles (average size, <120 nm) were prepared using amphiphilic diblock and triblock copolymers of poly(ethylene glycol) (PEG) and poly(ϵ-caprolactone) (PCL). Micelles were prepared by heating PEG-PCL block copolymers with distilled water at 60 °C followed by sudden chilling in an ice-water bath. Effects of molecular architecture on morphology, stability and protein loading capacity of micelles were investigated. Micelles prepared using high molecular weight block copolymers exhibited good colloidal stability, encapsulation efficiency and insulin release characteristics. Insulin retained its secondary structure after micelles preparation as confirmed by CD spectroscopic study. Furthermore, in vitro cytotoxicity test suggested that the prepared micellar nanoparticles possessed biocompatibility. In a nut shell, heat-chill method of micellar nanoparticles preparation is well suited for encapsulating labile proteins and other allied biomolecules which degrade in presence of toxic organic solvents and at elevated temperatures.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 058474165

Download citation: RISBibTeXText

PMID: 26291587

DOI: 10.1016/j.colsurfb.2015.07.075


Related references

The heat-chill method for preparation of self-assembled amphiphilic poly(ε-caprolactone)-poly(ethylene glycol) block copolymer based micellar nanoparticles for drug delivery. Soft Matter 10(13): 2150-2159, 2014

New self-nanoemulsifying drug delivery system (SNEDDS) with amphiphilic diblock copolymer methoxy poly (ethylene glycol)-block-poly (ε-caprolactone). Pharmaceutical Development and Technology 18(3): 745-751, 2013

Preparation, characterization and anticancer activity of norcantharidin-loaded poly(ethylene glycol)-poly(caprolactone) amphiphilic block copolymer micelles. Die Pharmazie 67(9): 781-788, 2012

Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chemistry 16(2): 397-405, 2005

Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel. Journal of Physical Chemistry. B 113(30): 10183-8, 2009

Amphiphilic methoxy poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-dimethylaminoethyl methacrylate) cationic copolymer nanoparticles as a vector for gene and drug delivery. Biomacromolecules 11(9): 2306-2312, 2010

Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Biomacromolecules 12(7): 2562-2572, 2011

Amphiphilic Block Copolymer Microspheres Derived from Castor Oil, Poly(ε-carpolactone), and Poly(ethylene glycol): Preparation, Characterization and Application in Naltrexone Drug Delivery. Materials 11(10):, 2018

Preparation of magnetic microspheres based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymers by modified solvent diffusion method. Journal of Biomedical Nanotechnology 6(3): 287-292, 2010

Amphiphilic multi-arm block copolymer based on hyperbranched polyester, poly(L-lactide) and poly(ethylene glycol) as a drug delivery carrier. Macromolecular Bioscience 9(5): 515-524, 2009

Self-assembled honokiol-loaded micelles based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. International Journal of Pharmaceutics 369(1-2): 170-175, 2009

Synthesis and characterization of a biodegradable amphiphilic copolymer based on branched poly(e-caprolactone) and poly(ethylene glycol). Journal of polymer science Part A Polymer chemistry15 45(22): 5256-5265, 2007

Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. Biomedical Materials 4(2): 025002, 2009

Temperature/pH Responsive Hydrogels Based on Poly(ethylene glycol) and Functionalized Poly(e-caprolactone) Block Copolymers for Controlled Delivery of Macromolecules. Pharmaceutical Research 33(2): 358-366, 2016

Stabilization of poly(ethylene glycol)-poly(ε-caprolactone) star block copolymer micelles via aromatic groups for improved drug delivery properties. Journal of Colloid and Interface Science 514: 468-478, 2018