+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Oxidation of Phe454 in the Gating Segment Inactivates Trametes multicolor Pyranose Oxidase during Substrate Turnover



Oxidation of Phe454 in the Gating Segment Inactivates Trametes multicolor Pyranose Oxidase during Substrate Turnover



Plos One 11(2): E0148108



The flavin-dependent enzyme pyranose oxidase catalyses the oxidation of several pyranose sugars at position C-2. In a second reaction step, oxygen is reduced to hydrogen peroxide. POx is of interest for biocatalytic carbohydrate oxidations, yet it was found that the enzyme is rapidly inactivated under turnover conditions. We studied pyranose oxidase from Trametes multicolor (TmPOx) inactivated either during glucose oxidation or by exogenous hydrogen peroxide using mass spectrometry. MALDI-MS experiments of proteolytic fragments of inactivated TmPOx showed several peptides with a mass increase of 16 or 32 Da indicating oxidation of certain amino acids. Most of these fragments contain at least one methionine residue, which most likely is oxidised by hydrogen peroxide. One peptide fragment that did not contain any amino acid residue that is likely to be oxidised by hydrogen peroxide (DAFSYGAVQQSIDSR) was studied in detail by LC-ESI-MS/MS, which showed a +16 Da mass increase for Phe454. We propose that oxidation of Phe454, which is located at the flexible active-site loop of TmPOx, is the first and main step in the inactivation of TmPOx by hydrogen peroxide. Oxidation of methionine residues might then further contribute to the complete inactivation of the enzyme.

(PDF emailed within 1 workday: $29.90)

Accession: 058488260

Download citation: RISBibTeXText

PMID: 26828796


Related references

Mutations of Thr169 affect substrate specificity of pyranose 2-oxidase from Trametes multicolor. Biocatalysis and Biotransformation 26(1-2): 120-127, 2008

Enzymatic formation of dicarbonyl sugars: C-2 oxidation of 1->6 disaccharides gentiobiose, isomaltose and melibiose by pyranose 2-oxidase from Trametes multicolor. Journal of Carbohydrate Chemistry 18(8): 999-1007, 1999

Enzymatic formation of dicarbonyl sugars: C-2 oxidation of 1 leads to 6 disaccharides gentiobiose, isomaltose and melibiose by pyranose 2-oxidase from Trametes multicolor. Journal of carbohydrate chemistry8(8): 999-1007, 1999

Importance of the gating segment in the substrate-recognition loop of pyranose 2-oxidase. Febs Journal 277(13): 2892-2909, 2010

Kinetic mechanism of pyranose 2-oxidase from trametes multicolor. Biochemistry 48(19): 4170-4180, 2009

Production of a novel pyranose 2-oxidase by basidiomycete Trametes multicolor. Applied Biochemistry and Biotechnology 70-72: 237-248, 1998

Biochemical characteristics of Trametes multicolor pyranose oxidase and Aspergillus niger glucose oxidase and implications for their functionality in wheat flour dough. Food Chemistry 131(4): 1485-1492, 2012

Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Applied and Environmental Microbiology 67(8): 3636-3644, 2001

The bread dough stability improving effect of pyranose oxidase from trametes multicolor and glucose oxidase from Aspergillus niger: unraveling the molecular mechanism. Journal of Agricultural and Food Chemistry 61(32): 7848-7854, 2014

Impact of pyranose oxidase from Trametes multicolor, glucose oxidase from Aspergillus niger and hydrogen peroxide on protein agglomeration in wheat flour gluten-starch separation. Food Chemistry 148: 235-239, 2014

Crystallization and preliminary X-ray diffraction analysis of pyranose 2-oxidase from the white-rot fungus Trametes multicolor. Acta Crystallographica. Section D, Biological Crystallography 60(Pt 1): 197-199, 2003

Conformational heterogeneity in pyranose 2-oxidase from Trametes multicolor revealed by ultrafast fluorescence dynamics. Journal of Photochemistry and Photobiology A: Chemistry 234: 44-48, 2012

Identification of the covalent flavin adenine dinucleotide-binding region in pyranose 2-oxidase from Trametes multicolor. Analytical Biochemistry 314(2): 235-242, 2003

A thermostable triple mutant of pyranose 2-oxidase from Trametes multicolor with improved properties for biotechnological applications. Biotechnology Journal 4(4): 525-534, 2009

Probing active-site residues of pyranose 2-oxidase from Trametes multicolor by semi-rational protein design. Biotechnology Journal 4(4): 535-543, 2009