+ Site Statistics

+ Search Articles

+ PDF Full Text Service

How our service works

Request PDF Full Text

+ Follow Us

Follow on Facebook

Follow on Twitter

Follow on LinkedIn

+ Subscribe to Site Feeds

Most Shared

PDF Full Text

+ Translate

+ Recently Requested

Perspective: Kohn-Sham density functional theory descending a staircase

Yu, H.S.; Li, S.L.; Truhlar, D.G.

Journal of Chemical Physics 145(13): 130901

2016

This article presents a perspective on Kohn-Sham density functional theory (KS-DFT) for electronic structure calculations in chemical physics. This theory is in widespread use for applications to both molecules and solids. We pay special attention to several aspects where there are both concerns and progress toward solutions. These include: 1. The treatment of open-shell and inherently multiconfigurational systems (the latter are often called multireference systems and are variously classified as having strong correlation, near-degeneracy correlation, or high static correlation; KS-DFT must treat these systems with broken-symmetry determinants). 2. The treatment of noncovalent interactions. 3. The choice between developing new functionals by parametrization, by theoretical constraints, or by a combination. 4. The ingredients of the exchange-correlation functionals used by KS-DFT, including spin densities, the magnitudes of their gradients, spin-specific kinetic energy densities, nonlocal exchange (Hartree-Fock exchange), nonlocal correlation, and subshell-dependent corrections (DFT+U). 5. The quest for a universal functional, where we summarize some of the success of the latest Minnesota functionals, namely MN15-L and MN15, which were obtained by optimization against diverse databases. 6. Time-dependent density functional theory, which is an extension of DFT to treat time-dependent problems and excited states. The review is a snapshot of a rapidly moving field, and-like Marcel Duchamp-we hope to convey progress in a stimulating way.

Related references

**Open-system Kohn-Sham density functional theory**. Journal of Chemical Physics 136(9): 094105, 2012