Section 59
Chapter 58,859

Single carbon nanotube-based reversible regulation of biological motor activity

Inoue, Y.; Nagata, M.; Matsutaka, H.; Okada, T.; Sato, M.K.; Ishijima, A.

Acs Nano 9(4): 3677-3684


ISSN/ISBN: 1936-086X
PMID: 25767902
DOI: 10.1021/nn505607c
Accession: 058858897

Download citation:  

Because of their small size and high thermal conductivity, carbon nanotubes (CNTs) are excellent candidates for exploring heat transfer at the level of individual molecules in biological research. With a view toward examining the thermal regulation of single biomolecules, we here developed single CNTs as a new platform for observing the motile activity of myosin motors. On multiwall CNTs (diameter ∼170 nm; length ∼10 μm) coated with skeletal-muscle myosin, the ATP-driven sliding of single actin filaments was clearly observable. The normal sliding speed was ∼6 μm/s. Locally irradiating one end of the CNT with a red laser (642 nm), without directly irradiating the active myosin motors, accelerated the sliding speed to ∼12 μm/s, indicating the reversible activation of protein function on a single CNT in real time. The temperature along the CNT, which was estimated from the temperature-dependence of the sliding speed, decreased with the distance from the irradiated spot. Using these results with the finite element method, we calculated a first estimation of the thermal conductivity of multiwall CNTs in solution, as 1540 ± 260 (Wm(-1) K(-1)), which is consistent with the value estimated from the width dependency of multiwall CNTs and the length dependency of single-wall CNTs in a vacuum or air. The temporal regulation of local temperature through individual CNTs should be broadly applicable to the selective activation of various biomolecules in vitro and in vivo.

PDF emailed within 0-6 h: $19.90