Strontium-90 Biokinetics from Simulated Wound Intakes in Non-human Primates Compared with Combined Model Predictions from National Council on Radiation Protection and Measurements Report 156 and International Commission on Radiological Protection Publication 67

Allen, M.B.; Brey, R.R.; Gesell, T.; Derryberry, D.; Poudel, D.

Health physics 110(1): 11-28


ISSN/ISBN: 1538-5159
PMID: 26606061
DOI: 10.1097/hp.0000000000000372
Accession: 058912404

Download citation:  

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

This study had a goal to evaluate the predictive capabilities of the National Council on Radiation Protection and Measurements (NCRP) wound model coupled to the International Commission on Radiological Protection (ICRP) systemic model for 90Sr-contaminated wounds using non-human primate data. Studies were conducted on 13 macaque (Macaca mulatta) monkeys, each receiving one-time intramuscular injections of 90Sr solution. Urine and feces samples were collected up to 28 d post-injection and analyzed for 90Sr activity. Integrated Modules for Bioassay Analysis (IMBA) software was configured with default NCRP and ICRP model transfer coefficients to calculate predicted 90Sr intake via the wound based on the radioactivity measured in bioassay samples. The default parameters of the combined models produced adequate fits of the bioassay data, but maximum likelihood predictions of intake were overestimated by a factor of 1.0 to 2.9 when bioassay data were used as predictors. Skeletal retention was also over-predicted, suggesting an underestimation of the excretion fraction. Bayesian statistics and Monte Carlo sampling were applied using IMBA to vary the default parameters, producing updated transfer coefficients for individual monkeys that improved model fit and predicted intake and skeletal retention. The geometric means of the optimized transfer rates for the 11 cases were computed, and these optimized sample population parameters were tested on two independent monkey cases and on the 11 monkeys from which the optimized parameters were derived. The optimized model parameters did not improve the model fit in most cases, and the predicted skeletal activity produced improvements in three of the 11 cases. The optimized parameters improved the predicted intake in all cases but still over-predicted the intake by an average of 50%. The results suggest that the modified transfer rates were not always an improvement over the default NCRP and ICRP model values.