+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Summer and Winter Prevalence of Shiga Toxin-Producing Escherichia coli (STEC) O26, O45, O103, O111, O121, O145, and O157 in Feces of Feedlot Cattle



Summer and Winter Prevalence of Shiga Toxin-Producing Escherichia coli (STEC) O26, O45, O103, O111, O121, O145, and O157 in Feces of Feedlot Cattle



Foodborne Pathogens and Disease 12(8): 726-732



The United States Department of Agriculture Food Safety and Inspection Service has declared seven Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157) as adulterants in raw, nonintact beef products. The objective of this study was to determine the prevalence of these seven serogroups and the associated virulence genes (Shiga toxin [stx1, stx2], and intimin [eae]) in cattle feces during summer (June-August 2013) and winter (January-March 2014) months. Twenty-four pen floor fecal samples were collected from each of 24 cattle pens, in both summer and winter months, at a commercial feedlot in the United States. Samples were subjected to culture-based detection methods that included enrichment, serogroup-specific immunomagnetic separation and plating on selective media, followed by a multiplex polymerase chain reaction for serogroup confirmation and virulence gene detection. A sample was considered STEC positive if a recovered isolate harbored an O gene, stx1, and/or stx2, and eae genes. All O serogroups of interest were detected in summer months, and model-adjusted prevalence estimates are as follows: O26 (17.8%), O45 (14.6%), O103 (59.9%), O111 (0.2%), O121 (2.0%), O145 (2.7%), and O157 (41.6%); however, most non-O157 isolates did not harbor virulence genes. The cumulative model-adjusted sample-level prevalence estimates of STEC O26, O103, O145, and O157 during summer (n=576) were 1.0, 1.6, 0.8, and 41.4%, respectively; STEC O45, O111, and O121 were not detected during summer months. In winter, serogroups O26 (0.9%), O45 (1.5%), O103 (40.2%), and O121 (0.2%) were isolated; however, no virulence genes were detected in isolates from cattle feces collected during winter (n=576). Statistically significant seasonal differences in prevalence were identified for STEC O103 and O157 (p<0.05), but data on other STEC were sparse. The results of this study indicate that although non-O157 serogroups were present, non-O157 STEC were rarely detected in feces from the feedlot cattle populations tested in summer and winter months.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 058933357

Download citation: RISBibTeXText

PMID: 26075548

DOI: 10.1089/fpd.2015.1987


Related references

National Survey of Shiga Toxin-Producing Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces. Journal of Food Protection 79(11): 1868-1874, 2017

Isolation and characterization of shiga toxin-producing escherichia coli serogroups O26, O45, O103, O111, O113, O121, O145, and O157 shed from range and feedlot cattle from postweaning to slaughter. Journal of Food Protection 77(7): 1052-1061, 2014

Detection of Shiga toxin-producing Escherichia coli (STEC) O157:H7, O26, O45, O103, O111, O121, and O145, and Salmonella in retail raw ground beef using the DuPont™ BAX® system. Frontiers in Cellular and Infection Microbiology 4: 81, 2014

Latex agglutination assays for detection of non-O157 Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145. Journal of Food Protection 75(5): 819-826, 2012

Evaluation of commonly used antimicrobial interventions for fresh beef inoculated with Shiga toxin-producing Escherichia coli serotypes O26, O45, O103, O111, O121, O145, and O157:H7. Journal of Food Protection 75(7): 1207-1212, 2012

Prevalence of Enterohemorrhagic Escherichia coli O26, O45, O103, O111, O121, O145, and O157 on Hides and Preintervention Carcass Surfaces of Feedlot Cattle at Harvest. Foodborne Pathogens and Disease 12(7): 631-638, 2016

Prevalence of carriage of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 among slaughtered adult cattle in France. Applied and Environmental Microbiology 81(4): 1397-1405, 2016

An interlaboratory study on efficient detection of Shiga toxin-producing Escherichia coli O26, O103, O111, O121, O145, and O157 in food using real-time PCR assay and chromogenic agar. International Journal of Food Microbiology 230: 81-88, 2017

Thermal inactivation of a single strain each of serotype O26:H11, O45:H2, O103:H2, O104:H4, O111:H⁻, O121:H19, O145:NM, and O157:H7 cells of Shiga toxin-producing Escherichia coli in wafers of ground beef. Journal of Food Protection 76(8): 1434-1437, 2014

Intimin gene (eae) subtype-based real-time PCR strategy for specific detection of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 in cattle feces. Applied and Environmental Microbiology 80(3): 1177-1184, 2014

Applicability of a multiplex PCR to detect O26, O45, O103, O111, O121, O145, and O157 serogroups of Escherichia coli in cattle feces. Veterinary Microbiology 156(3-4): 381-388, 2012

Detection of Shiga toxin-producing Escherichia coli O26, O45, O103, O111, O113, O121, O145, and O157 serogroups by multiplex polymerase chain reaction of the wzx gene of the O-antigen gene cluster. Foodborne Pathogens and Disease 8(5): 651-652, 2012

Detection by hyperspectral imaging of shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 on rainbow agar. Journal of Food Protection 76(7): 1129-1136, 2013

Application of a real-time PCR-based system for monitoring of O26, O103, O111, O145 and O157 Shiga toxin-producing Escherichia coli in cattle at slaughter. Zoonoses and Public Health 59(6): 408-415, 2014

Effect of the enrichment time and immunomagnetic separation on the detection of Shiga toxin-producing Escherichia coli O26, O103, O111, O145 and sorbitol positive O157 from artificially inoculated cattle faeces. Veterinary Microbiology 145(1-2): 106-112, 2010