The effect of dietary arachidonic acid (ARA) on growth performance, fatty acid composition and expression of ARA metabolism-related genes in larval half-smooth tongue sole (Cynoglossus semilaevis)

Yuan, Y.; Li, S.; Mai, K.; Xu, W.; Zhang, Y.; Ai, Q.

British Journal of Nutrition 113(10): 1518-1530

2015


ISSN/ISBN: 1475-2662
PMID: 25851526
DOI: 10.1017/s0007114515000781
Accession: 059057201

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
The present study was conducted to investigate the effects of dietary arachidonic acid (ARA) on growth performance, fatty acid composition and ARA metabolism-related gene expression in larval half-smooth tongue sole (Cynoglossus semilaevis). Larvae (35 d after hatching, 54 (SEM 1) mg) were fed diets with graded concentrations of ARA (0.01, 0.39, 0.70, 1.07, 1.42 and 2.86 % dry weight) five times per d to apparent satiation for 30 d. Results showed that increased dietary ARA concentration caused a significant non-linear rise to a plateau in survival rate, final body weight and thermal growth coefficient, and the maximum values occurred with the 1.42 % ARA treatment. As dietary ARA increased to 1.07 or 1.42 %, activities of trypsin, leucine aminopeptidase and alkaline phosphatase levels increased, but they decreased with higher ARA concentrations. The fatty acid composition of tongue sole larvae was almost well correlated with their dietary fatty acid profiles, and the EPA content of the larvae decreased with increasing dietary ARA. Meanwhile, the partial sequences of COX-1a (cyclo-oxygenase-1a), COX-1b (cyclo-oxygenase-1b), COX-2 (cyclo-oxygenase-2), 5-LOX (5-lipoxygenase) and CYP2J6-like (cytochrome P450 2J6-like) were also obtained. Both COX-2 and 5-LOX mRNA expression levels significantly increased to a plateau in an 'L'-shaped manner as dietary ARA increased to 1.07 or 1.42 %, but no significant differences were found in the gene expression of COX-1a, COX-1b or CYP2J6-like. These results suggest that 1.07-1.42 % dietary ARA was beneficial to the growth performance of larval tongue sole, and the regulation of dietary ARA on the growth performance of larvae was probably involved in altering the mRNA expression of COX-2 and 5-LOX.