Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum , and Ocimum sanctum (L.) using silver nanoparticles

Malapermal, V.; Botha, I.; Krishna, S.Babu.Naidu.; Mbatha, J.Nonhlanhla.

Saudi Journal of Biological Sciences 24(6): 1294-1305

2017


ISSN/ISBN: 1319-562X
PMID: 28855825
DOI: 10.1016/j.sjbs.2015.06.026
Accession: 059685617

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
The role of silver nanoparticles (AgNps) is an attractive proposition for advancing modern diabetes therapies and applied science. Stable AgNps with a size range of 3-25 nm were synthesized using aqueous leaf extracts from Ocimum basilicum, Ocimum sanctum, and in combination. The concentration of the extracts facilitated the reduction of silver nitrate that led to the rapid formation of AgNps at room temperature, indicating a higher reaction rate as opposed to harsh chemical methods, and high conversion energy usually involved in the synthesis. The size, shape and elemental analysis were carried out using UV-Visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), and zeta potential whilst, Fourier transform infrared (FTIR) supported by gas chromatography mass spectroscopy (GC-MS) was used to identify the type of capping agents. Inhibition of α-amylase and α-glucosidase enzymes retards the rate of carbohydrate digestion, thereby provides an alternative and a less evasive strategy of reducing postprandial hyperglycaemia in diabetic patients. The AgNps derived from O. sanctum and O. basilicum, respectively displayed an inhibitory effect at 89.31 ± 5.32%, and 79.74 ± 9.51%, respectively, against Bacillus stearothermophilus α-glucosidase enzyme model, indicating an enhanced biocatalytic potential compared to their respective crude extracts and the control. Furthermore, the emerging rate of infections in diabetic patients validates the need for the discovery of dual diabetes therapies. As a result, the bioderived AgNps displayed antimicrobial activity against bacterial species Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Salmonella species.