Novel 9-cis/all-trans β-carotene isomerases from plastidic oil bodies in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis β-carotene

Davidi, L.; Pick, U.

Plant Cell Reports 36(6): 807-814

2017


ISSN/ISBN: 1432-203X
PMID: 28285407
DOI: 10.1007/s00299-017-2110-7
Accession: 060028466

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
We identified and demonstrated the function of 9-cis/all-trans β-carotene isomerases in plastidic globules of Dunaliella bardawil, the species accumulating the highest levels of 9-cis β-carotene that is essential for humans. The halotolerant alga Dunaliella bardawil is unique in that it accumulates under light stress high levels of β-carotene in plastidic lipid globules. The pigment is composed of two major isomers: all-trans β-carotene, the common natural form of this pigment, and 9-cis β-carotene. The biosynthetic pathway of β-carotene is known, but it is not clear how the 9-cis isomer is formed. We identified in plastidic lipid globules that were isolated from D. bardawil two proteins with high sequence homology to the D27 protein-a 9-cis/all-trans β-carotene isomerase from rice (Alder et al. Science 335:1348-1351, 2012). The proteins are enriched in the oil globules by 6- to 17-fold compared to chloroplast proteins. The expression of the corresponding genes, 9-cis-βC-iso1 and 9-cis-βC-iso2, is enhanced under light stress. The synthetic proteins catalyze in vitro conversion of all-trans to 9-cis β-carotene. Expression of the 9-cis-βC-iso1 or of 9-cis-βC-iso2 genes in an E. coli mutant line that harbors β-carotene biosynthesis genes enhanced the conversion of all-trans into 9-cis β-carotene. These results suggest that 9-cis-βC-ISO1 and 9-cis-βC-ISO2 proteins are responsible for the formation of 9-cis β-carotene in D. bardawil under stress conditions.