EurekaMag.com logo
+ Site Statistics
References:
53,869,633
Abstracts:
29,686,251
+ Search Articles
+ Subscribe to Site Feeds
EurekaMag Most Shared ContentMost Shared
EurekaMag PDF Full Text ContentPDF Full Text
+ PDF Full Text
Request PDF Full TextRequest PDF Full Text
+ Follow Us
Follow on FacebookFollow on Facebook
Follow on TwitterFollow on Twitter
Follow on LinkedInFollow on LinkedIn

+ Translate

Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB



Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB



Frontiers in Cellular and Infection Microbiology 7: 67-67



Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities for novel therapies of life-threatening gastrointestinal infections.

(PDF emailed within 0-6 h: $19.90)

Accession: 060059069

Download citation: RISBibTeXText

PMID: 28348980

DOI: 10.3389/fcimb.2017.00067



Related references

Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology 18(9): 698-706, 2008

Clostridium difficile Toxins TcdA and TcdB Cause Colonic Tissue Damage by Distinct Mechanisms. Infection and Immunity 84(10): 2871-2877, 2017

Sequence variation in tcdA and tcdB of Clostridium difficile: ST37 with truncated tcdA is a potential epidemic strain in China. Journal of Clinical Microbiology 52(9): 3264-3270, 2015

Comparison of VIDAS CDAB and CDA immunoassay for the detection of Clostridium difficile in a tcdA- tcdB+ C. difficile prevalent area. Anaerobe 15(6): 266-269, 2010

Oral immunization with non-toxic C. difficile strains expressing chimeric fragments of TcdA and TcdB elicits protective immunity against C. difficile infection in both mice and hamsters. Infection and Immunity: -, 2018

CdtR Regulates TcdA and TcdB Production in Clostridium difficile. Plos Pathogens 12(7): E1005758-E1005758, 2017

TcdB or not TcdB: a tale of two Clostridium difficile toxins. Future Microbiology 6(2): 121-123, 2011

Use of a neutralizing antibody helps identify structural features critical for binding of Clostridium difficile toxin TcdA to the host cell surface. Journal of Biological Chemistry 292(35): 14401-14412, 2017

Detection and transcriptional analysis of tcdA and tcdB in a non-toxigenic strain of Clostridium difficile. Abstracts of the General Meeting of the American Society for Microbiology 99: 45-46, 1999

A DNA vaccine targeting TcdA and TcdB induces protective immunity against Clostridium difficile. Bmc Infectious Diseases 16(1): 596-596, 2016

Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene. Microbial Pathogenesis 52(1): 92-100, 2012

Antibody against TcdB, but not TcdA, prevents development of gastrointestinal and systemic Clostridium difficile disease. Journal of Infectious Diseases 207(2): 323-330, 2013

Multiplex PCR method for detection of Clostridium difficile tcdA, tcdB, cdtA, and cdtB and internal in-frame deletion of tcdC. Journal of Clinical Microbiology 49(12): 4299-4300, 2012

A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. Journal of Infectious Diseases 210(6): 964-972, 2014

Intrinsic Toxin-Derived Peptides Destabilize and Inactivate Clostridium difficile TcdB. Mbio 8(3): -, 2018