Section 61

EurekaMag PDF full texts Chapter 60,118


Maznah, Z.; Halimah, M.; Shitan, M.; Kumar Karmokar, P.; Najwa, S. 2017: Prediction of Hexaconazole Concentration in the Top Most Layer of Oil Palm Plantation Soil Using Exploratory Data Analysis (EDA). Plos one 12(1): E0166203
Langdon, R.; Docherty, P.D.; Schranz, C.; Chase, J.Geoffrey. 2017: Prediction of high airway pressure using a non-linear autoregressive model of pulmonary mechanics. Biomedical Engineering Online 16(1): 126
Sung Tae, H.; Deuk Jae, S.; Kyung Sook, Y.; Ki Choon, S.; Na Yeon, H.; Beom Jin, P.; Min Ju, K.; Sung Bum, C. 2017: Prediction of high-grade ureteral urothelial carcinoma on CT urography. British Journal of Radiology 90(1078): 20170159
Podda, G.M.; Grossi, E.; Palmerini, T.; Buscema, M.; Femia, E.A.; Della Riva, D.; de Servi, S.; Calabrò, P.; Piscione, F.; Maffeo, D.; Toso, A.; Palmieri, C.; De Carlo, M.; Capodanno, D.; Genereux, P.; Cattaneo, M. 2017: Prediction of high on-treatment platelet reactivity in clopidogrel-treated patients with acute coronary syndromes. International Journal of Cardiology 240: 60-65
Harada, T.L.; Saito, K.; Araki, Y.; Matsubayashi, J.; Nagao, T.; Sugimoto, K.; Tokuuye, K. 2018: Prediction of high-stage liver fibrosis using ADC value on diffusion-weighted imaging and quantitative enhancement ratio at the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRi at 1.5 T. Acta Radiologica 59(5): 509-516
Ho-Le, T.P.; Center, J.R.; Eisman, J.A.; Nguyen, T.V.; Nguyen, H.T. 2017: Prediction of hip fracture in post-menopausal women using artificial neural network approach. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2017: 4207-4210
Palaniandy, K.; Haspani, M.Saffari.Mohammad.; Zain, N.Rose.Mohd. 2017: Prediction of Histological Grade and Completeness of Resection of Intracranial Meningiomas: Role of Peritumoural Brain Edema. Malaysian Journal of Medical Sciences: Mjms 24(3): 33-43
Singh, O.; Su, E.C.-Y. 2016: Prediction of HIV-1 protease cleavage site using a combination of sequence, structural, and physicochemical features. Bmc Bioinformatics 17(Suppl 17): 478
Hake, A.; Pfeifer, N. 2017: Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time. Plos Computational Biology 13(10): E1005789
Khalid, Z.; Sezerman, O.Ugur. 2018: Prediction of HIV Drug Resistance by Combining Sequence and Structural Properties. Ieee/Acm Transactions on Computational Biology and Bioinformatics 15(3): 966-973
Matsuda, F.; Tomita, A.; Shimizu, H. 2017: Prediction of Hopeless Peptides Unlikely to be Selected for Targeted Proteome Analysis. Mass Spectrometry 6(1): A0056
Ugalde, H.éc.; Yubini, M.ía.C.; Rozas, S.án.; Sanhueza, M.ía.I.; Jara, H.án. 2017: Prediction of hospital mortality of ST elevation myocardial infarction using TIMi score. Revista Medica de Chile 145(5): 572-578
Guven-Maiorov, E.; Tsai, C-Jung.; Ma, B.; Nussinov, R. 2017: Prediction of Host-Pathogen Interactions for Helicobacter pylori by Interface Mimicry and Implications to Gastric Cancer. Journal of Molecular Biology 429(24): 3925-3941
Wang, P.; Jiang, X.; Hu, J.; Huang, X.; Zhao, J.; Ahuja, R. 2017: Prediction of huge magnetic anisotropies in 5d transition metallocenes. Journal of Physics. Condensed Matter: An Institute of Physics Journal 29(43): 435802
Yamamoto, Y.; Välitalo, P.A.; Wong, Y.C.; Huntjens, D.R.; Proost, J.H.; Vermeulen, A.; Krauwinkel, W.; Beukers, M.W.; Kokki, H.; Kokki, M.; Danhof, M.; van Hasselt, J.G.C.; de Lange, E.C.M. 2018: Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 112: 168-179
Hülsemann, F.; Koehler, K.; Wittsiepe, Jürgen.; Wilhelm, M.; Hilbig, A.; Kersting, M.; Braun, H.; Flenker, U.; Schänzer, W. 2017: Prediction of human dietary δ 15 N intake from standardised food records: validity and precision of single meal and 24-h diet data. Isotopes in Environmental and Health Studies 53(4): 356-367
Yuen, E.; Swanson, S.; Witkin, J.M. 2017: Prediction of human efficacious antidepressant doses using the mouse forced swim test. Pharmacology Biochemistry and Behavior 161: 22-29
Stoffel, N.U.; Zeder, C.; Fort, E.ïs.; Swinkels, D.W.; Zimmermann, M.B.; Moretti, D. 2017: Prediction of human iron bioavailability using rapid c-ELISAs for human plasma hepcidin. Clinical Chemistry and Laboratory Medicine 55(8): 1186-1192
Yoshimatsu, H.; Ishii, K.; Konno, Y.; Satsukawa, M.; Yamashita, S. 2017: Prediction of human percutaneous absorption from in vitro and in vivo animal experiments. International Journal of Pharmaceutics 534(1-2): 348-355
Yamamoto, S.; Karashima, M.; Arai, Y.; Tohyama, K.; Amano, N. 2017: Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin. Journal of Pharmaceutical Sciences 106(9): 2787-2794
Notaro, M.; Schubach, M.; Robinson, P.N.; Valentini, G. 2017: Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods. Bmc Bioinformatics 18(1): 449
Kleinbeck, S.; Schäper, M.; Zimmermann, A.; Blaszkewicz, M.; Brüning, T.; van Thriel, C. 2017: Prediction of human sensory irritation due to ethyl acrylate: the appropriateness of time-weighted average concentration × time models for varying concentrations. Archives of Toxicology 91(9): 3051-3064
Tebes-Stevens, C.; Patel, J.M.; Jones, W.J.; Weber, E.J. 2017: Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions. Environmental Science and Technology 51(9): 5008-5016
Yamauchi, K.; Enomoto, Y.; Otani, K.; Egashira, Y.; Iwama, T. 2018: Prediction of hyperperfusion phenomenon after carotid artery stenting and carotid angioplasty using quantitative DSA with cerebral circulation time imaging. Journal of Neurointerventional Surgery 10(6): 576-579
Shao, P.; Chen, B.-L.; Ding, L.P.; Luo, D.-B.; Lu, C.; Kuang, X.-Y. 2017: Prediction of hypervalent molecules: investigation on MnC (M = Li, Na, K, Rb and Cs; n = 1-8) clusters. Physical Chemistry Chemical Physics: Pccp 19(37): 25289-25297
Ladner, T.; Mühlmann, M.; Schulte, A.; Wandrey, G.; Büchs, J. 2017: Prediction of Escherichia coli expression performance in microtiter plates by analyzing only the temporal development of scattered light during culture. Journal of Biological Engineering 11: 20
Park, Y.W.; Han, K.; Ahn, S.S.; Bae, S.; Choi, Y.S.; Chang, J.H.; Kim, S.H.; Kang, S.-G.; Lee, S.-K. 2018: Prediction of IDH1-Mutation and 1p/19q-Codeletion Status Using Preoperative MR Imaging Phenotypes in Lower Grade Gliomas. AJNR. American Journal of Neuroradiology 39(1): 37-42
Guenther, P.L.; Stedman, D.H.; Lesko, J.M. 1996: Prediction of IM240 Mass Emissions Using Portable Exhaust Analyzers. Journal of the Air and Waste Management Association 46(4): 343-348
Permala, J.; Tarning, J.; Nosten, Fçois.; White, N.J.; Karlsson, M.O.; Bergstrand, M. 2017: Prediction of Improved Antimalarial Chemoprevention with Weekly Dosing of Dihydroartemisinin-Piperaquine. Antimicrobial Agents and ChemoTherapy 61(5)
Behrendt, S.; Bühringer, G.; Höfler, M.; Lieb, R.; Beesdo-Baum, K. 2017: Prediction of incidence and stability of alcohol use disorders by latent internalizing psychopathology risk profiles in adolescence and young adulthood. Drug and Alcohol Dependence 179: 32-41
Calhoun, V.D.; Lawrie, S.M.; Mourao-Miranda, J.; Stephan, K.E. 2017: Prediction of Individual Differences from Neuroimaging Data. Neuroimage 145(Part B): 135-136
Storlie, C.B.; Branda, M.E.; Gionfriddo, M.R.; Shah, N.D.; Rank, M.A. 2018: Prediction of individual outcomes for asthma sufferers. Biostatistics 19(4): 579-593
Hagenah, J.; Werrmann, E.; Scharfschwerdt, M.; Ernst, F.; Metzner, C. 2016: Prediction of individual prosthesis size for valve-sparing aortic root reconstruction based on geometric features. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2016: 3273-3276
Hellman, T.; Kiviniemi, T.; Vasankari, T.; Nuotio, I.; Biancari, F.; Bah, A.; Hartikainen, J.; Mäkäräinen, M.; Airaksinen, K.E.Juhani. 2017: Prediction of ineffective elective cardioversion of atrial fibrillation: a retrospective multi-center patient cohort study. Bmc Cardiovascular Disorders 17(1): 33
Rekik, I.; Li, G.; Wu, G.; Lin, W.; Shen, D. 2015: Prediction of Infant MRi Appearance and Anatomical Structure Evolution using Sparse Patch-based Metamorphosis Learning Framework. Patch-Based Techniques in Medical Imaging: first International Workshop Patch-Mi 2015 Held in Conjunction with Miccai 2015 Munich Germany October 9 2015 Revised Selected Papers. Patch-Mi 9467: 197-204
Doğan, C.; Bayram, Z.üb.; Candan, Öz.; Omaygenç, O.; Yılmaz, F.; Acar, R.D.; Akbal, Öz.ür.Y.şa.; Kaymaz, C.; Özdemir, N. 2017: Prediction of infarct size using two-dimensional speckle tracking echocardiography in acute myocardial infarction. Echocardiography 34(3): 376-382
García-Tello, A.; Gimbernat, H.; Redondo, C.; Meilán, E.; Arana, D.M.; Cacho, J.; Dorado, J.F.; Angulo, J.C. 2018: Prediction of infection caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: development of a clinical decision-making nomogram. Scandinavian Journal of Urology 52(1): 70-75
Chrysostomou, C.; Partaourides, H.; Seker, H. 2017: Prediction of Influenza a virus infections in humans using an Artificial Neural Network learning approach. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2017: 1186-1189
Leonenko, V.N.; Ivanov, S.V. 2018: Prediction of influenza peaks in Russian cities: Comparing the accuracy of two SEIR models. Mathematical Biosciences and Engineering: Mbe 15(1): 209-232
Velez-Serrano, J.F.; Velez-Serrano, D.; Hernandez-Barrera, V.; Jimenez-Garcia, R.; Lopez de Andres, A.; Garrido, P.Carrasco.; Álvaro-Meca, A. 2017: Prediction of in-hospital mortality after pancreatic resection in pancreatic cancer patients: A boosting approach via a population-based study using health administrative data. Plos one 12(6): E0178757
Sefton, J.M.; Lohse, K.R.; McAdam, J.S. 2016: Prediction of Injuries and Injury Types in Army Basic Training, Infantry, Armor, and Cavalry Trainees Using a Common Fitness Screen. Journal of Athletic Training 51(11): 849-857
Keshtidar, M.; Behzadnia, B. 2017: Prediction of intention to continue sport in athlete students: a self-determination theory approach. Plos one 12(2): E0171673
Jiao, X.; Ranganathan, S. 2017: Prediction of interface residue based on the features of residue interaction network. Journal of Theoretical Biology 432: 49-54
Kiyohara, S.; Oda, H.; Miyata, T.; Mizoguchi, T. 2016: Prediction of interface structures and energies via virtual screening. Science Advances 2(11): E1600746
Chen, P.; Liu, C.; Burge, L.; Mahmood, M.; Southerland, W.; Gloster, C. 2008: Prediction of inter-residue contact clusters from hydrophobic cores. International Journal of Data Mining and Bioinformatics 2008: 703-708
Lee, M.; Kim, H.S.; Chung, H.H.; Kim, J.-W.; Park, N.H.; Song, Y.S. 2017: Prediction of intra-abdominal adhesions using the visceral slide test: a prospective observational study. European Journal of Obstetrics Gynecology and Reproductive Biology 213: 22-25
Mateus, Aé.; Gordon, L.J.; Wayne, G.J.; Almqvist, H.; Axelsson, H.; Seashore-Ludlow, B.; Treyer, A.; Matsson, Pär.; Lundbäck, T.; West, A.; Hann, M.M.; Artursson, P. 2017: Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery. Proceedings of the National Academy of Sciences of the United States of America 114(30): E6231-E6239
Ballestero, M.Fernando.Manzolli.; Frigieri, G.; Cabella, B.Caetano.Troca.; de Oliveira, S.Mascarenhas.; de Oliveira, R.Santos. 2017: Prediction of intracranial hypertension through noninvasive intracranial pressure waveform analysis in pediatric hydrocephalus. Child's Nervous System: Chns: Official Journal of the International Society for Pediatric Neurosurgery 33(9): 1517-1524
Shurkhina, E.S.; Polyanskaya, T.Y.; Zorenko, V.Y.; Nesterenko, V.M. 2017: Prediction of Intraoperative Blood Loss during Total Knee Arthroplasty in HCV+ and HCV- Patients with Hemophilia a. Bulletin of Experimental Biology and Medicine 162(5): 676-678
Kamogashira, T.; Iwasaki, S.; Kashio, A.; Kakigi, A.; Karino, S.; Matsumoto, Y.; Yamasoba, T. 2017: Prediction of Intraoperative CSF Gusher and Postoperative Facial Nerve Stimulation in Patients with Cochleovestibular Malformations Undergoing Cochlear Implantation Surgery. Otology and Neurotology: Official Publication of the American Otological Society American Neurotology Society and European Academy of Otology and Neurotology 38(6): E114-E119
Semiz, A.ğ; Akpak, Y.şa.K.; Yılanlıoğlu, N.C.; Babacan, A.; Gönen, G.ök.; Çam Gönen, C.; Asıliskender, M.; Karaküçük, S. 2017: Prediction of intraoperative nausea and vomiting in caesarean delivery under regional anaesthesia. Journal of International Medical Research 45(1): 332-339
Uehara, S.; Yoshida, S.; Tanaka, H.; Yasuda, Y.; Tanaka, H.; Kijima, T.; Yokoyama, M.; Ishioka, J.; Matsuoka, Y.; Saito, K.; Fujii, Y. 2018: Prediction of Intraoperative Urinary Collecting System Entry in Patients with Peripheral Renal Tumors Undergoing Partial Nephrectomy: Usefulness of Tumor-Centered Multiplanar Reconstruction. Urologia Internationalis 100(1): 85-91
Lin, Y.S.; Kerr, S.J.; Randolph, T.; Shireman, L.M.; Senn, T.; McCune, J.S. 2016: Prediction of Intravenous Busulfan Clearance by Endogenous Plasma Biomarkers Using Global Pharmacometabolomics. Metabolomics: Official journal of the Metabolomic Society 12(10)
Sy, S.; Zhuang, L.; Xia, H.; Beaudoin, M.-E.; Schuck, V.J.; Derendorf, H. 2017: Prediction of in vivo and in vitro infection model results using a semimechanistic model of avibactam and aztreonam combination against multidrug resistant organisms. Cpt: Pharmacometrics and Systems Pharmacology 6(3): 197-207
Cline, E.I.; Bicciato, S.; DiBello, C.; Lingen, M.W. 2002: Prediction of in vivo synergistic activity of antiangiogenic compounds by gene expression profiling. Cancer Research 62(24): 7143-7148
Tanashian, M.M.; Medvedev, R.B.; Evdokimenko, A.N.; Gemdzhian, É G.; Ckrylev, S.I.; Lagoda, O.V.; Krotenkova, M.V.; Suslin, A.S. 2017: Prediction of ischaemic lesions of the brain in reconstructive operations on internal carotid arteries. Angiologiia i Sosudistaia Khirurgiia 23(1): 59-66
Chow, E.J.; Chen, Y.; Hudson, M.M.; Feijen, E.A.M.; Kremer, L.C.; Border, W.L.; Green, D.M.; Meacham, L.R.; Mulrooney, D.A.; Ness, K.K.; Oeffinger, K.C.; Ronckers, C.éc.M.; Sklar, C.A.; Stovall, M.; van der Pal, H.J.; van Dijk, I.W.E.M.; van Leeuwen, F.E.; Weathers, R.E.; Robison, L.L.; Armstrong, G.T.; Yasui, Y. 2018: Prediction of Ischemic Heart Disease and Stroke in Survivors of Childhood Cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 36(1): 44-52
Ilário, C.R.S.; Azarpeyvand, M.; Rosa, V.; Self, R.H.; Meneghini, J.úl.R. 2017: Prediction of jet mixing noise with Lighthill's Acoustic Analogy and geometrical acoustics. Journal of the Acoustical Society of America 141(2): 1203
Ruff, A.; Fiolka, T.; Kostewicz, E.S. 2017: Prediction of Ketoconazole absorption using an updated in vitro transfer model coupled to physiologically based pharmacokinetic modelling. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 100: 42-55
Kim, S-Yeon.; Ko, J-A.; Kang, B-Sik.; Park, H-Jin. 2018: Prediction of key aroma development in coffees roasted to different degrees by colorimetric sensor array. Food Chemistry 240: 808-816
Duan, Y.; Zhou, M.; Xiao, J.; Wu, C.; Zhou, L.; Zhou, F.; Du, C.; Song, Y. 2016: Prediction of key genes and mi RNAs responsible for loss of muscle force in patients during an acute exacerbation of chronic obstructive pulmonary disease. International Journal of Molecular Medicine 38(5): 1450-1462
Usha, S.; Selvaraj, S. 2016: Prediction of kinase-inhibitor binding affinity using energetic parameters. Bioinformation 12(3): 172-181
Alberola-Rubio, J.; Garcia-Casado, J.; Prats-Boluda, G.; Ye-Lin, Y.; Desantes, D.; Valero, J.; Perales, A. 2017: Prediction of labor onset type: Spontaneous vs induced; role of electrohysterography?. Computer Methods and Programs in Biomedicine 144: 127-133
Chor, C.Ming.; Poon, L.Chiu.Yee.; Leung, T.Yeung. 2019: Prediction of labor outcome using serial transperineal ultrasound in the first stage of labor. Journal of Maternal-Fetal and Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine the Federation of Asia and Oceania Perinatal Societies the International Society of Perinatal Obstetricians 32(1): 31-37
Kjertakov, M.; Dalip, M.; Hristovski, R.; Epstein, Y. 2016: Prediction of lactate threshold using the modified Conconi test in distance runners. Physiology International 103(2): 262-270
Choi, S.H.; Kang, D.H. 2017: Prediction of Late Enophthalmos Using Preoperative Orbital Volume and Fracture Area Measurements in Blowout Fracture. Journal of Craniofacial Surgery 28(7): 1717-1720
Ogawa, S.; Hida, J-Ichi.; Ike, H.; Kinugasa, T.; Ota, M.; Shinto, E.; Itabashi, M.; Okamoto, T.; Yamamoto, M.; Sugihara, K.; Watanabe, T. 2017: Prediction of lateral pelvic lymph node metastasis from lower rectal cancer using magnetic resonance imaging and risk factors for metastasis: Multicenter study of the Lymph Node Committee of the Japanese Society for Cancer of the Colon and Rectum. International journal of colorectal disease 32(10): 1479-1487
Abdelgawwad, I.M.; Al Hawary, A.A.; Kamal, H.M.; Al Maghawry, L.M. 2017: Prediction of left ventricular contractile recovery using tissue Doppler strain and strain rate measurements at rest in patients undergoing percutaneous coronary intervention. International Journal of Cardiovascular Imaging 33(5): 643-651
Kiran, V.S.; Tiwari, A. 2018: Prediction of left ventricular dysfunction after device closure of patent ductus arteriosus: proposal for a new functional classification. Eurointervention: Journal of Europcr in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 13(18): E2124-E2129
Huttin, O.; Coiro, S.; Selton-Suty, C.; Juillière, Y.; Donal, E.; Magne, J.; Sadoul, N.; Zannad, F.; Rossignol, P.; Girerd, N. 2016: Prediction of Left Ventricular Remodeling after a Myocardial Infarction: Role of Myocardial Deformation: a Systematic Review and Meta-Analysis. Plos one 11(12): E0168349
Choo, C.C.; Harris, K.M.; Ho, R.C. 2019: Prediction of Lethality in Suicide Attempts: Gender Matters. Omega 80(1): 87-103
Viktorov, A.A.; Zharinov, G.M.; Neklasova, N.J.; Morozova, E.E. 2017: Prediction of life expectancy for prostate cancer patients based on the kinetic theory of aging of living systems. Advances in Gerontology 30(3): 356-362
Fuji, H.; Qi, F.; Qu, L.; Takaesu, Y.; Hoshino, T. 2017: Prediction of Ligand Binding Affinity to Target Proteins by Molecular Mechanics Theoretical Calculation. Chemical and Pharmaceutical Bulletin 65(5): 461-468
Turner, M.; Deeth, R.J.; Platts, J.A. 2017: Prediction of ligand effects in platinum-amyloid-β coordination. Journal of Inorganic Biochemistry 173: 44-51
Assis, C.; Ramos, R.S.; Silva, L.A.; Kist, V.; Barbosa, Márcio.H.P.; Teófilo, R.F. 2017: Prediction of Lignin Content in Different Parts of Sugarcane Using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS). Applied Spectroscopy 71(8): 2001-2012
Ramirez, T.; Strigun, A.; Verlohner, A.; Huener, H.-A.; Peter, E.; Herold, M.; Bordag, N.; Mellert, W.; Walk, T.; Spitzer, M.; Jiang, X.; Sperber, S.; Hofmann, T.; Hartung, T.; Kamp, H.; van Ravenzwaay, B. 2018: Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Archives of Toxicology 92(2): 893-906
Small, B.G.; Wendt, B.; Jamei, M.; Johnson, T.N. 2017: Prediction of liver volume - a population-based approach to meta-analysis of paediatric, adult and geriatric populations - an update. Biopharmaceutics and Drug Disposition 38(4): 290-300
Salas, S.; Resseguier, N.; Blay, J.Y.; Le Cesne, A.; Italiano, A.; Chevreau, C.; Rosset, P.; Isambert, N.; Soulie, P.; Cupissol, D.; Delcambre, C.; Bay, J.O.; Dubray-Longeras, P.; Krengli, M.; De Bari, B.; Villa, S.; Kaanders, J.H.A.M.; Torrente, S.; Pasquier, D.; Thariat, J.O.; Myroslav, L.; Sole, C.V.; Dincbas, H.F.; Habboush, J.Y.; Zilli, T.; Dragan, T.; Khan R, K.; Ugurluer, G.; Cena, T.; Duffaud, F.; Penel, N.; Bertucci, F.; Ranchere-Vince, D.; Terrier, P.; Bonvalot, S.; Macagno, N.; Lemoine, C.; Lae, M.; Coindre, J.M.; Bouvier, C. 2017: Prediction of local and metastatic recurrence in solitary fibrous tumor: construction of a risk calculator in a multicenter cohort from the French Sarcoma Group (FSG) database. Annals of Oncology: Official Journal of the European Society for Medical Oncology 28(8): 1979-1987
Park, J.W.; Lee, S.W.; Kim, J.S.; Song, S.Y. 2017: Prediction of local control in early glottic carcinoma using the maximum standardised uptake value. Cancer Radiotherapie: Journal de la Societe Francaise de Radiotherapie Oncologique 21(3): 205-209
Murase, Y.; Izumi, K.; Ohkado, A.; Aono, A.; Chikamatsu, K.; Yamada, H.; Igarashi, Y.; Takaki, A.; Mitarai, S. 2018: Prediction of Local Transmission of Mycobacterium tuberculosis Isolates of a Predominantly Beijing Lineage by Use of a Variable-Number Tandem-Repeat Typing Method Incorporating a Consensus Set of Hypervariable Loci. Journal of clinical microbiology 56(1)
Boot, C.R.L.; van Drongelen, A.; Wolbers, I.; Hlobil, H.; van der Beek, A.J.; Smid, T. 2017: Prediction of long-term and frequent sickness absence using company data. Occupational Medicine 67(3): 176-181
Veenis, J.F.; Boiten, H.J.; van den Berge, J.C.; Caliskan, K.; Maat, A.P.W.M.; Valkema, R.; Constantinescu, A.A.; Manintveld, O.C.; Zijlstra, F.; van Domburg, R.T.; Schinkel, A.F.L. 2019: Prediction of long-term (> 10 year) cardiovascular outcomes in heart transplant recipients: Value of stress technetium-99m tetrofosmin myocardial perfusion imaging. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology 26(3): 845-852
Brouwer, W.P.; van der Meer, A.J.P.; Boonstra, A.; Plompen, E.P.C.; Pas, S.D.; de Knegt, R.J.; de Man, R.A.; Ten Kate, F.J.W.; Janssen, H.L.A.; Hansen, B.E. 2017: Prediction of long-term clinical outcome in a diverse chronic hepatitis B population: Role of the PAGE-B score. Journal of Viral Hepatitis 24(11): 1023-1031
Crook, S.; Frei, A.; Ter Riet, G.; Puhan, M.A. 2017: Prediction of long-term clinical outcomes using simple functional exercise performance tests in patients with COPD: a 5-year prospective cohort study. Respiratory Research 18(1): 112
Devore, E.E.; Fong, T.G.; Marcantonio, E.R.; Schmitt, E.M.; Travison, T.G.; Jones, R.N.; Inouye, S.K. 2017: Prediction of Long-term Cognitive Decline Following Postoperative Delirium in Older Adults. Journals of Gerontology. Series a Biological Sciences and Medical Sciences 72(12): 1697-1702
Masiá, M.; Padilla, S.; Moreno, S.; Barber, X.; Iribarren, J.A.; Del Romero, J.; Gómez-Sirvent, J.L.; Rivero, Mía.; Vidal, F.; Campins, A.A.; Gutiérrez, Félix. 2017: Prediction of long-term outcomes of HIV-infected patients developing non-AIDS events using a multistate approach. Plos one 12(9): E0184329
Latronico, N.; Minelli, C.; Eikermann, M. 2017: Prediction of long-term outcome subtypes in ARDS: first steps towards personalised medicine in critical care. Thorax 72(12): 1067-1068
Choi, Y.J.; Chang, J.E.; Chung, C.J.; Tahk, J.H.; Kim, K.-H. 2017: Prediction of long-term success of orthopedic treatment in skeletal Class IIi malocclusions. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists its Constituent Societies and the American Board of Orthodontics 152(2): 193-203
Hompland, I.; Bruland, Øyvind.Sverre.; Hølmebakk, T.; Poulsen, J.Peter.; Stoldt, S.; Hall, K.Sundby.; Boye, K. 2017: Prediction of long-term survival in patients with metastatic gastrointestinal stromal tumor: analysis of a large, single-institution cohort. Acta Oncologica 56(10): 1317-1323
Nguyen, H.Q.; Lin, J.; Kimoto, E.; Callegari, E.; Tse, S.; Obach, R.S. 2017: Prediction of Losartan-Active Carboxylic Acid Metabolite Exposure Following Losartan Administration Using Static and Physiologically Based Pharmacokinetic Models. Journal of Pharmaceutical Sciences 106(9): 2758-2770
Sinding, M.; Peters, D.A.; Frøkjær, J.B.; Christiansen, O.B.; Petersen, A.; Uldbjerg, N.; Sørensen, A. 2017: Prediction of low birth weight: Comparison of placental T2* estimated by MRi and uterine artery pulsatility index. Placenta 49: 48-54
Rejali, M.; Mansourian, M.; Babaei, Z.; Eshrati, B. 2017: Prediction of Low Birth Weight Delivery by Maternal Status and Its Validation: Decision Curve Analysis. International Journal of Preventive Medicine 8: 53
Sabour, S. 2017: Prediction of low birth weight: Methodological issues. Placenta 55: 101
Håkansson, P.är. 2017: Prediction of low-field nuclear singlet lifetimes with molecular dynamics and quantum-chemical property surface. Physical Chemistry Chemical Physics: Pccp 19(16): 10237-10254
Chen, F.; Sun, H.; Liu, H.; Li, D.; Li, Y.; Hou, T. 2017: Prediction of luciferase inhibitors by the high-performance MIEC-GBDT approach based on interaction energetic patterns. Physical Chemistry Chemical Physics: Pccp 19(15): 10163-10176
Lynch, C.M.; Abdollahi, B.; Fuqua, J.D.; de Carlo, A.R.; Bartholomai, J.A.; Balgemann, R.N.; van Berkel, V.H.; Frieboes, H.B. 2017: Prediction of lung cancer patient survival via supervised machine learning classification techniques. International Journal of Medical Informatics 108: 1-8
Tuomi, T.; Pasanen, A.; Leminen, A.; Bützow, R.; Loukovaara, M. 2017: Prediction of lymphatic dissemination in endometrioid endometrial cancer: Comparison of three risk-stratification models in a single-institution cohort. Gynecologic Oncology 144(3): 510-514
Wei, X.; Li, Y-Bo.; Li, Y.; Lin, B-Cheng.; Shen, X-Min.; Cui, R-Liang.; Gu, Y-Jun.; Gao, M.; Li, Y-Guo.; Zhang, S. 2017: Prediction of Lymph Node Metastases in Gastric Cancer by Serum APE1 Expression. Journal of Cancer 8(8): 1492-1497
Mizumoto, T.; Toyama, H.; Terai, S.; Mukubou, H.; Yamashita, H.; Shirakawa, S.; Nanno, Y.; Sofue, K.; Kido, M.; Ajiki, T.; Fukumoto, T. 2017: Prediction of lymph node metastasis in pancreatic neuroendocrine tumors by contrast enhancement characteristics. Pancreatology: Official Journal of the International Association of Pancreatology . 17(6): 956-961
Torrecilha, R.B.P.; Utsunomiya, Y.T.; Batista, L.ís.F.áb.d.S.; Bosco, A.M.; Nunes, C.ár.M.; Ciarlini, P.C.és.; Laurenti, M.ár.D. 2017: Prediction of lymph node parasite load from clinical data in dogs with leishmaniasis: An application of radial basis artificial neural networks. Veterinary Parasitology 234: 13-18
Ju, Z.; He, J.-J. 2017: Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC. Journal of Molecular Graphics and Modelling 77: 200-204
Ju, Z.; He, J.-J. 2017: Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC. Journal of Molecular Graphics and Modelling 76: 356-363
Di Nisio, M.; Raskob, G.; Büller, H.R.; Grosso, M.A.; Zhang, G.; Winters, S.M.; Cohen, A. 2017: Prediction of major and clinically relevant bleeding in patients with VTE treated with edoxaban or vitamin K antagonists. Thrombosis and haemostasis 117(4): 784-793
Gualandro, D.M.; Puelacher, C.; LuratiBuse, G.; Llobet, G.B.; Yu, P.C.; Cardozo, F.A.; Glarner, N.; Zimmerli, A.; Espinola, J.; Corbière, S.; Calderaro, D.; Marques, A.C.; Casella, I.B.; de Luccia, N.; Oliveira, M.T.; Lampart, A.; Bolliger, D.; Steiner, L.; Seeberger, M.; Kindler, C.; Osswald, S.; Gürke, L.; Caramelli, B.; Mueller, C. 2017: Prediction of major cardiac events after vascular surgery. Journal of Vascular Surgery 66(6): 1826-1835.E1
Holloway, K.L.; Mohebbi, M.; Betson, A.G.; Hans, D.; Hyde, N.K.; Brennan-Olsen, S.L.; Kotowicz, M.A.; Pasco, J.A. 2018: Prediction of major osteoporotic and hip fractures in Australian men using FRAX scores adjusted with trabecular bone score. Osteoporosis International: a Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the Usa 29(1): 101-108
Rahman, M.Saidur.; Kwon, W-Sung.; Pang, M-Geol. 2017: Prediction of male fertility using capacitation-associated proteins in spermatozoa. Molecular Reproduction and Development 84(9): 749-759
Bickelhaupt, S.; Paech, D.; Kickingereder, P.; Steudle, F.; Lederer, W.; Daniel, H.; Götz, M.; Gählert, N.; Tichy, D.; Wiesenfarth, M.; Laun, F.B.; Maier-Hein, K.H.; Schlemmer, H.-P.; Bonekamp, D. 2017: Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRi in suspicious breast lesions found on screening mammography. Journal of Magnetic Resonance Imaging: Jmri 46(2): 604-616
Jun Wang; Xia Liu; Di Dong; Jiangdian Song; Min Xu; Yali Zang; Jie Tian 2016: Prediction of malignant and benign of lung tumor using a quantitative radiomic method. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2016: 1272-1275
Nazari, F.; Whitten, J.L. 2017: Prediction of many-electron wavefunctions using atomic potentials. Journal of Chemical Physics 146(19): 194109
Dorey, L.; Pelligand, L.; Lees, P. 2017: Prediction of marbofloxacin dosage for the pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida by pharmacokinetic/pharmacodynamic modelling. Bmc Veterinary Research 13(1): 209
Gao, Y.; Qi, G.-X.; Jia, Z.-M.; Sun, Y.-X. 2017: Prediction of marker genes associated with hypertension by bioinformatics analyses. International Journal of Molecular Medicine 40(1): 137-145
Terceros-Almanza, L.J.; García-Fuentes, C.; Bermejo-Aznárez, S.; Prieto-Del Portillo, I.J.; Mudarra-Reche, C.; Sáez-de la Fuente, I.; Chico-Fernández, M. 2017: Prediction of massive bleeding. Shock index and modified shock index. Medicina Intensiva 41(9): 532-538
Mclennan, J.V.; Mackway-Jones, K.C.; Smith, J.E. 2018: Prediction of massive blood transfusion in battlefield trauma: Development and validation of the Military Acute Severe Haemorrhage (MASH) score. Injury 49(2): 184-190
Coskun, B.; Akkurt, I.; Dur, Rıza.; Akkurt, M.O.; Ergani, S.Y.; Turan, O.T.; Coskun, B. 2018: Prediction of maternal near-miss in placenta previa: a retrospective analysis from a tertiary center in Ankara, Turkey. Journal of Maternal-Fetal and Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine the Federation of Asia and Oceania Perinatal Societies the International Society of Perinatal Obstetricians 31(3): 370-375
Schmitt, F.él.; Do, K.-U. 2017: Prediction of membrane fouling using artificial neural networks for wastewater treated by membrane bioreactor technologies: bottlenecks and possibilities. Environmental Science and Pollution Research International 24(29): 22885-22913
Wang, X.; Shen, D.; Huang, H. 2016: Prediction of Memory Impairment with MRi Data: a Longitudinal Study of Alzheimer's Disease. Medical Image Computing and Computer-Assisted Intervention: Miccai . International Conference on Medical Image Computing and Computer-Assisted Intervention 9900: 273-281
Bugdol, M.D.; Bugdol, M.N.; Lipowicz, A.M.; Mitas, A.W.; Bienkowska, M.J.; Wijata, A.M. 2018: Prediction of menarcheal status of girls using voice features. Computers in Biology and Medicine 100: 296-304
Pelcová, P.ín.; Vičarová, P.; Ridošková, A.; Dočekalová, H.; Kopp, R.; Mareš, J.; Poštulková, E. 2017: Prediction of mercury bioavailability to common carp (Cyprinus carpio L.) using the diffusive gradient in thin film technique. Chemosphere 187: 181-187
Toodehzaeim, M.H.; Haerian, A.; Alesaeidi, A. 2016: Prediction of Mesiodistal Width of Unerupted Lateral Incisors, Canines and Premolars in Orthodontic Patients in Early Mixed Dentition Period. Journal of Dentistry 13(6): 383-387
Zhang, S.-W.; Gou, W.-L.; Li, Y. 2017: Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function. Molecular Biosystems 13(5): 901-909
Yu, K.-N.; Nadanaciva, S.; Rana, P.; Lee, D.W.; Ku, B.; Roth, A.D.; Dordick, J.S.; Will, Y.; Lee, M.-Y. 2018: Prediction of metabolism-induced hepatotoxicity on three-dimensional hepatic cell culture and enzyme microarrays. Archives of Toxicology 92(3): 1295-1310
Rudik, A.V.; Dmitriev, A.V.; Bezhentsev, V.M.; Lagunin, A.A.; Filimonov, D.A.; Poroikov, V.V. 2017: Prediction of metabolites of epoxidation reaction in MetaTox. Sar and Qsar in Environmental Research 28(10): 833-842
Fajín, J.é L.C.; Cordeiro, M.N.ál.D.S.; Gomes, J.é R.B. 2017: Prediction of metallic nanotube reactivity for H2O activation. Physical Chemistry Chemical Physics: Pccp 19(29): 19188-19195
Silva, J.B.d.; Panaino, T.R.; Tamm, M.A.; Lira, P.; Arêas, P.C.F.; Mancebo, A.C.A.; Souza, M.M.d.; Antunes, R.A.; Souza, M.d.C.B.d. 2016: Prediction of metaphase Ii oocytes according to different serum Anti-Müllerian hormone (AMH) levels in antagonist ICSi cycles. Jbra Assisted Reproduction 20(4): 222-226
Saghapour, E.; Sehhati, M. 2017: Prediction of metastasis in advanced colorectal carcinomas using CGH data. Journal of Theoretical Biology 429: 116-123
Huang, Y-An.; You, Z-Hong.; Chen, X.; Huang, Z-An.; Zhang, S.; Yan, G-Ying. 2017: Prediction of microbe-disease association from the integration of neighbor and graph with collaborative recommendation model. Journal of Translational Medicine 15(1): 209
Kang, M.; Gao, H.; Wang, J.; Ling, L.; Sun, B. 2013: Prediction of Microporosity in Complex Thin-Wall Castings with the Dimensionless Niyama Criterion. Materials 6(5): 1789-1802
Zhang, Y.-H.; Yang, Y.; Zhang, C.; Sun, Y.-F.; Zhu, W.; Ma, C.-L.; Zhou, X.-Y. 2016: Prediction of microRNA-296-5p target genes and its application in lung development. Zhongguo Dang Dai Er Ke Za Zhi 18(12): 1302-1307
Rehmsmeier, M. 2006: Prediction of microRNA targets. Methods in Molecular Biology 342: 87-99
Shoorangiz, R.; Weddell, S.J.; Jones, R.D. 2016: Prediction of microsleeps from EEG: Preliminary results. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2016: 4650-4653
Baseer, A.; Weddell, S.J.; Jones, R.D. 2017: Prediction of microsleeps using pairwise joint entropy and mutual information between EEG channels. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2017: 4495-4498
Zhao, J.; Li, X.; Zhang, K.; Yin, X.; Meng, X.; Han, L.; Zhang, X. 2017: Prediction of microvascular invasion of hepatocellular carcinoma with preoperative diffusion-weighted imaging: a comparison of mean and minimum apparent diffusion coefficient values. Medicine 96(33): E7754
Tang, B.; Song, Y.; Cui, H.; Ji, K.; Zhu, C.; Zhao, S.; Huang, X.; Yu, Q.; Hu, S.; Wang, S. 2017: Prediction of Mid-Term Outcomes in Adult Obstructive Hypertrophic Cardiomyopathy After Surgical Ventricular Septum Myectomy. Journal of the American College of Cardiology 70(16): 2092-2094
Aydin, S.; Arioğlu Aydin, Ça.ğr.ı; Ersan, F.ır. 2017: Prediction of Mid-Urethral Sling Failure with Clinical Findings and Urodynamics. Lower Urinary Tract Symptoms 9(2): 89-93
Liu, K.; Chen, K.; Yao, L.; Guo, X. 2017: Prediction of Mild Cognitive Impairment Conversion Using a Combination of Independent Component Analysis and the Cox Model. Frontiers in Human Neuroscience 11: 33
Fleming, A.; Schenkel, F.S.; Chen, J.; Malchiodi, F.; Bonfatti, V.; Ali, R.A.; Mallard, B.; Corredig, M.; Miglior, F. 2017: Prediction of milk fatty acid content with mid-infrared spectroscopy in Canadian dairy cattle using differently distributed model development sets. Journal of Dairy Science 100(6): 5073-5081
Kawashima, I.; Kumano, H. 2017: Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling. Frontiers in Human Neuroscience 11: 365
Andrés-León, E.; Gómez-López, G.; Pisano, D.G. 2017: Prediction of miRNA-mRNA Interactions Using miRGate. Methods in Molecular Biology 1580: 225-237
Meshulam-Derazon, S.; Nachumovsky, S.; Ad-El, D.; Sulkes, J.; Hauben, D.J. 2006: Prediction of morbidity and mortality on admission to a burn unit. Plastic and Reconstructive Surgery 118(1): 116-120
Bianchi, J.; Pinto, A.D.S.; Ignácio, J.; Obelenis Ryan, D.P.; Gonçalves, J.ão.R. 2017: Effect of temporomandibular joint articular disc repositioning on anterior open-bite malocclusion: An orthodontic-surgical approach. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists its Constituent Societies and the American Board of Orthodontics 152(6): 848-858
Rau, C-Shyuan.; Wu, S-Chun.; Chien, P-Chen.; Kuo, P-Jen.; Chen, Y-Chun.; Hsieh, H-Yun.; Hsieh, C-Hua. 2017: Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System. International Journal of Environmental Research and Public Health 14(11)
Gedeborg, R.; Svennblad, B.; Byberg, L.; Michaëlsson, K.; Thiblin, I. 2017: Prediction of mortality risk in victims of violent crimes. Forensic Science International 281: 92-97
Chang, W.C.; Kwong, V.W.Y.; Chan, G.H.K.; Jim, O.T.T.; Lau, E.S.K.; Hui, C.L.M.; Chan, S.K.W.; Lee, E.H.M.; Chen, E.Y.H. 2017: Prediction of motivational impairment: 12-month follow-up of the randomized-controlled trial on extended early intervention for first-episode psychosis. European Psychiatry: the Journal of the Association of European Psychiatrists 41: 37-41
NeamŢu, M.C.; NeamŢu, O.M.; Marin, M.I.; Enescu Bieru, D.; Rusu, L. 2016: Prediction of motor disorders in multiple sclerosis using muscle change structure assessment. Romanian Journal of Morphology and Embryology 57(4): 1331-1335
Jin, J-Fen.; Guo, Z-Ting.; Zhang, Y-Ping.; Chen, Y-Yuan. 2017: Prediction of motor recovery after ischemic stroke using diffusion tensor imaging: A meta-analysis. World Journal of Emergency Medicine 8(2): 99-105
Stinear, C.M. 2017: Prediction of motor recovery after stroke: advances in biomarkers. Lancet. Neurology 16(10): 826-836
Smedinga, H.; Steyerberg, E.W.; Beukers, W.; van Klaveren, D.; Zwarthoff, E.C.; Vergouwe, Y. 2017: Prediction of Multiple Recurrent Events: A Comparison of Extended Cox Models in Bladder Cancer. American Journal of Epidemiology 186(5): 612-623
Montesinos-López, O.A.; Montesinos-López, A.; Crossa, J.é; Montesinos-López, J.é C.; Mota-Sanchez, D.; Estrada-González, F.ín.; Gillberg, J.; Singh, R.; Mondal, S.; Juliana, P. 2018: Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems. G3 8(1): 131-147
Karami, A.; Eghtesad, M.; Haghpanah, S.A. 2017: Prediction of muscle activation for an eye movement with finite element modeling. Computers in Biology and Medicine 89: 368-378
Tanaka, A.; Yoshimura, Y.; Aoki, K.; Okamoto, M.; Kito, M.; Suzuki, S.; Takazawa, A.; Ishida, T.; Kato, H. 2017: Prediction of muscle strength and postoperative function after knee flexor muscle resection for soft tissue sarcoma of the lower limbs. Orthopaedics and Traumatology Surgery and Research: Otsr 103(7): 1081-1085
Pomerri, F.; Crimì, F.; Veronese, N.; Perin, A.; Lacognata, C.; Bergamo, F.; Boso, C.; Maretto, I. 2017: Prediction of N0 Irradiated Rectal Cancer Comparing MRi Before and After Preoperative Chemoradiotherapy. Diseases of the Colon and Rectum 60(11): 1184-1191
Shen, Y.; Roche, J.; Grishaev, A.; Bax, A. 2018: Prediction of nearest neighbor effects on backbone torsion angles and NMR scalar coupling constants in disordered proteins. Protein Science: a Publication of the Protein Society 27(1): 146-158
Girsen, A.I.; Hintz, S.R.; Sammour, R.; Naqvi, A.; El-Sayed, Y.Y.; Sherwin, K.; Davis, A.S.; Chock, V.Y.; Barth, R.A.; Rubesova, E.; Sylvester, K.G.; Chitkara, R.; Blumenfeld, Y.J. 2017: Prediction of neonatal respiratory distress in pregnancies complicated by fetal lung masses. Prenatal Diagnosis 37(3): 266-272
Palacio, M.; Bonet-Carne, E.; Cobo, T.; Perez-Moreno, A.; Sabrià, J.; Richter, J.; Kacerovsky, M.; Jacobsson, B.; García-Posada, R.úl.A.; Bugatto, F.; Santisteve, R.; Vives, Àn.; Parra-Cordero, M.; Hernandez-Andrade, E.; Bartha, J.é L.; Carretero-Lucena, P.; Tan, K.L.; Cruz-Martínez, R.; Burke, M.; Vavilala, S.; Iruretagoyena, I.; Delgado, J.L.; Schenone, M.; Vilanova, J.; Botet, F.; Yeo, G.S.H.; Hyett, J.; Deprest, J.; Romero, R.; Gratacos, E.; Palacio, M.; Cobo, T.; López, M.; Castro, D.; Piraquive, J.P.; Ramírez, J.C.; Migliorelli, F.; Martínez-Terrón, M.ón.; Botet, F.; Gratacós, E.; Sabrià, J.; Martínez, S.F.; Gómez Roig, D.; Bonet-Carné, E.; Pérez, Àl.; Domínguez, M.; Coronado, D.; Deprest, J.; Richter, J.; DeKoninck 2017: Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study. American Journal of Obstetrics and Gynecology 217(2): 196.E1-196.E14
Jain, S.V.; Mathur, A.; Srinivasakumar, P.; Wallendorf, M.; Culver, J.P.; Zempel, J.M. 2017: Prediction of Neonatal Seizures in Hypoxic-Ischemic Encephalopathy Using Electroencephalograph Power Analyses. Pediatric Neurology 67: 64-70.E2
Jørgensen, E.O.; Holm, S. 1999: Prediction of neurological outcome after cardiopulmonary resuscitation. Resuscitation 41(2): 145-152
Ayala-Peacock, D.N.; Attia, A.; Braunstein, S.E.; Ahluwalia, M.S.; Hepel, J.; Chung, C.; Contessa, J.; McTyre, E.; Peiffer, A.M.; Lucas, J.T.; Isom, S.; Pajewski, N.M.; Kotecha, R.; Stavas, M.J.; Page, B.R.; Kleinberg, L.; Shen, C.; Taylor, R.B.; Onyeuku, N.E.; Hyde, A.T.; Gorovets, D.; Chao, S.T.; Corso, C.; Ruiz, J.; Watabe, K.; Tatter, S.B.; Zadeh, G.; Chiang, V.L.S.; Fiveash, J.B.; Chan, M.D. 2017: Prediction of new brain metastases after radiosurgery: validation and analysis of performance of a multi-institutional nomogram. Journal of Neuro-Oncology 135(2): 403-411
Aryapour, H.; Dehdab, M.; Sohraby, F.; Bargahi, A. 2017: Prediction of new chromene-based inhibitors of tubulin using structure-based virtual screening and molecular dynamics simulation methods. Computational Biology and Chemistry 71: 89-97
Abbasi, M.; Sadeghi-Aliabadi, H.; Amanlou, M. 2017: Prediction of new Hsp90 inhibitors based on 3,4-isoxazolediamide scaffold using QSAR study, molecular docking and molecular dynamic simulation. Daru: Journal of Faculty of Pharmacy Tehran University of Medical Sciences 25(1): 17
Weymann, A.; Ali-Hasan-Al-Saegh, S.; Sabashnikov, A.; Popov, A-Frederik.; Mirhosseini, S.Jalil.; Liu, T.; Lotfaliani, M.; Sá, M.Pompeu.Barros.de.Oliveira.; Baker, W.L.L.; Yavuz, S.; Zeriouh, M.; Jang, J-Sik.; Dehghan, H.; Meng, L.; Testa, L.; D'Ascenzo, F.; Benedetto, U.; Tse, G.; Nombela-Franco, L.; Dohmen, P.M.; Deshmukh, A.J.; Linde, C.; Biondi-Zoccai, G.; Stone, G.W.; Calkins, H.; Surgery And Cardiology-Group Imcsc-Group, I.Meta-Analysis.Of.Cardiac. 2017: Prediction of New-Onset and Recurrent Atrial Fibrillation by Complete Blood Count Tests: A Comprehensive Systematic Review with Meta-Analysis. Medical Science Monitor Basic Research 23: 179-222
Wan, E.Yuk.Fai.; Fong, D.Yee.Tak.; Fung, C.Siu.Cheung.; Yu, E.Yee.Tak.; Chin, W.Yee.; Chan, A.Ka.Chun.; Lam, C.Lo.Kuen. 2017: Prediction of new onset of end stage renal disease in Chinese patients with type 2 diabetes mellitus - a population-based retrospective cohort study. Bmc Nephrology 18(1): 257
Xiao, Q.; Fan, X.; Ni, X.; Li, L.; Xu, X.; Yi, W. 2017: Prediction of nitrogen release from sigmoid-type controlled release fertilizers in greenhouse production of strawberry and cucumber. Science China. Life Sciences 60(9): 1051-1054
Akmal, M.A.; Rasool, N.; Khan, Y.D. 2017: Prediction of N-linked glycosylation sites using position relative features and statistical moments. Plos one 12(8): E0181966
Takahashi, H.; Nishimura, R.; Onda, Y.; Ando, K.; Tsujino, D.; Utsunomiya, K. 2017: Prediction of nocturnal hypoglycemia unawareness by fasting glucose levels or post-breakfast glucose fluctuations in patients with type 1 diabetes receiving insulin degludec: a pilot study. Plos one 12(7): E0177283
Choudhary, N.S.; Saraf, N.; Saigal, S.; Duseja, A.; Gautam, D.; Lipi, L.; Rastogi, A.; Goja, S.; Bhangui, P.; Ramchandra, S.K.; Babu, Y.R.; Soin, A.S. 2017: Prediction of nonalcoholic fatty liver in prospective liver donors. Clinical Transplantation 31(4)
Rossi, C.R.; Mocellin, S.; Campana, L.G.; Borgognoni, L.; Sestini, S.; Giudice, G.; Caracò, C.; Cordova, A.; Solari, N.; Piazzalunga, D.; Carcoforo, P.; Quaglino, P.; Caliendo, V.; Ribero, S. 2018: Prediction of Non-sentinel Node Status in Patients with Melanoma and Positive Sentinel Node Biopsy: An Italian Melanoma Intergroup (IMI) Study. Annals of Surgical Oncology 25(1): 271-279
Mauler, F.; Langguth, C.; Schweizer, A.; Vlachopoulos, L.; Gass, T.; Lüthi, M.; Fürnstahl, P. 2017: Prediction of normal bone anatomy for the planning of corrective osteotomies of malunited forearm bones using a three-dimensional statistical shape model. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society 35(12): 2630-2636
Zhang, C.; Sun, G.; Wang, J.; Lu, C.; Jin, Y.; Kuang, X.; Hermann, A. 2017: Prediction of Novel High-Pressure Structures of Magnesium Niobium Dihydride. Acs Applied Materials and Interfaces 9(31): 26169-26176
Makondi, P.Takondwa.; Chu, C-Ming.; Wei, P-Li.; Chang, Y-Jia. 2017: Prediction of novel target genes and pathways involved in irinotecan-resistant colorectal cancer. Plos one 12(7): E0180616
Al-Anni, R.; Hou, J.; Abdu-Aljabar, R.D.'a.; Xiang, Y. 2017: Prediction of NSCLC recurrence from microarray data with GEP. Iet Systems Biology 11(3): 77-85
Ferreyro, B.L.; Angriman, F.; Amaral, A.C.K.B.; Scales, D.C. 2017: Prediction of Occult Cancer Among Adult Patients With Acute Venous Thromboembolic Disease. Chest 151(3): 727-728
Yang, L.M.; Li, Q.; Zhao, B.W.; Lyu, J.G.; Xu, H.S.; Xu, L.L.; Li, S.Y.; Gao, L.; Zhu, J. 2017: Prediction of occult carcinoma in contralateral nodules based on the ultrasonic features of unilateral papillary thyroid carcinoma. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 52(4): 259-262
Gao, L.; Meng, F.; Cheng, J.; Li, H.; Han, J.; Zhang, W. 2017: Prediction of oesophageal varices in patients with primary biliary cirrhosis by non-invasive markers. Archives of Medical Science: Ams 13(2): 370-376
Engels, E.B.; Strik, M.; van Middendorp, L.B.; Kuiper, M.; Vernooy, K.; Prinzen, F.W. 2017: Prediction of optimal cardiac resynchronization by vectors extracted from electrograms in dyssynchronous canine hearts. Journal of Cardiovascular Electrophysiology 28(8): 944-951
Chen, X. 2017: Prediction of optimal gene functions for osteosarcoma using network-based- guilt by association method based on gene oncology and microarray profile. Journal of Bone Oncology 7: 18-22
Noble, J.S.; Taylor, G.R.; Stewart, A.D.; Mueller, R.F.; Murday, V.A. 1991: A rapid PCR-based method to distinguish between fetal and maternal cells in chorionic biopsies using microsatellite polymorphisms. Disease Markers 9(6): 301-306
Kourou, K.; Rigas, G.; Exarchos, K.P.; Papaloukas, C.; Fotiadis, D.I. 2016: Prediction of oral cancer recurrence using dynamic Bayesian networks. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2016: 5275-5278
Sisouane, M.; Cascant, M.M.; Tahiri, S.; Garrigues, S.; El Krati, M.; Boutchich, G.El.Kadiri.; Cervera, M.L.; de la Guardia, M. 2017: Prediction of organic carbon and total nitrogen contents in organic wastes and their composts by Infrared spectroscopy and partial least square regression. Talanta 167: 352-358
Coley, C.W.; Barzilay, R.; Jaakkola, T.S.; Green, W.H.; Jensen, K.F. 2017: Prediction of Organic Reaction Outcomes Using Machine Learning. Acs Central Science 3(5): 434-443
Chen, Z.; Xue, F.; Zhou, J.; Qu, X.; Zhou, X. 2017: Prediction of Orthokeratology Lens Decentration with Corneal Elevation. Optometry and Vision Science: Official Publication of the American Academy of Optometry 94(9): 903-907
Egenvall, M.; Mörner, M.; Martling, A.; Gunnarsson, U. 2018: Prediction of outcome after curative surgery for colorectal cancer: preoperative haemoglobin, C-reactive protein and albumin. Colorectal Disease: the Official Journal of the Association of Coloproctology of Great Britain and Ireland 20(1): 26-34
Nakashima, H.; Tetreault, L.; Kato, S.; Kryshtalskyj, M.T.; Nagoshi, N.; Nouri, A.; Singh, A.; Fehlings, M.G. 2017: Prediction of Outcome Following Surgical Treatment of Cervical Myelopathy Based on Features of Ossification of the Posterior Longitudinal Ligament: A Systematic Review. Jbjs Reviews 5(2)
Zhao, N.; Wei, H.; Wang, Y.; Lin, D.; Zhou, C.L.; Liu, B.C.; Liu, K.Q.; Zhang, G.J.; Wei, S.N.; Gong, B.F.; Gong, X.Y.; Li, W.; Li, Y.; Liu, Y.T.; Qiu, S.W.; Gu, R.X.; Mi, Y.C.; Wang, J.X. 2017: Prediction of outcome in acute myeloid leukemia by measurement of WT1 expression as a basic marker of minimal residual disease. Zhonghua Xue Ye Xue Za Zhi 38(8): 695-699
Numanoglu, A.; Morrison, C.; Rode, H. 1998: Prediction of outcome in congenital diaphragmatic hernia. Pediatric Surgery International 13(8): 564-568
Lenhard, F.; Sauer, S.; Andersson, E.; Månsson, K.N.; Mataix-Cols, D.; Rück, C.; Serlachius, E. 2018: Prediction of outcome in internet-delivered cognitive behaviour therapy for paediatric obsessive-compulsive disorder: a machine learning approach. International Journal of Methods in Psychiatric Research 27(1)
Goeral, K.; Urlesberger, B.; Giordano, V.; Kasprian, G.; Wagner, M.; Schmidt, L.; Berger, A.; Klebermass-Schrehof, K.; Olischar, M. 2017: Prediction of Outcome in Neonates with Hypoxic-Ischemic Encephalopathy II: Role of Amplitude-Integrated Electroencephalography and Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy. Neonatology 112(3): 193-202
Johnston, B.; Seshia, S.S. 1984: Prediction of outcome in non-traumatic coma in childhood. Acta Neurologica Scandinavica 69(6): 417-427
Isik, E.G.ök.; Kuyumcu, S.; Kebudi, R.; Sanli, Y.; Karakas, Z.; Cakir, F.B.; Unal, S.N.ün. 2017: Prediction of outcome in pediatric Hodgkin lymphoma based on interpretation of 18FDG-PET/CT according to ΔSUVmax, Deauville 5-point scale and IHP criteria. Annals of Nuclear Medicine 31(9): 660-668
Dienstmann, R.; Mason, M.J.; Sinicrope, F.A.; Phipps, A.I.; Tejpar, S.; Nesbakken, A.; Danielsen, S.A.; Sveen, A.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Bot, B.; Alberts, S.R.; Milburn Jessup, J.; Lothe, R.A.; Delorenzi, M.; Newcomb, P.A.; Sargent, D.; Guinney, J. 2017: Prediction of overall survival in stage II and III colon cancer beyond TNM system: a retrospective, pooled biomarker study. Annals of Oncology: Official Journal of the European Society for Medical Oncology 28(5): 1023-1031
Luethy, D.; Stefanovski, D.; Salber, R.; Sweeney, R.W. 2017: Prediction of Packed Cell Volume after Whole Blood Transfusion in Small Ruminants and South American Camelids: 80 Cases (2006-2016). Journal of veterinary internal medicine 31(6): 1900-1904
Chang, Y.Rim.; Kang, J.Seung.; Jang, J-Young.; Jung, W.Hyun.; Kang, M.Joo.; Lee, K.Bun.; Kim, S-Whe. 2017: Prediction of Pancreatic Fistula After Distal Pancreatectomy Based on Cross-Sectional Images. World Journal of Surgery 41(6): 1610-1617
Kang, J.-H.; Park, J.S.; Yu, J.-S.; Chung, J.-J.; Kim, J.H.; Cho, E.-S.; Yoon, D.S. 2017: Prediction of pancreatic fistula after pancreatoduodenectomy by preoperative dynamic CT and fecal elastase-1 levels. Plos one 12(5): E0177052
Canellas, R.; Burk, K.S.; Parakh, A.; Sahani, D.V. 2018: Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis. AJR. American Journal of Roentgenology 210(2): 341-346
Kalaiselvan, S.; Sankar, S.; Ramamurthy, M.; Ghosh, A.R.; Nandagopal, B.; Sridharan, G. 2017: Prediction of Pan-Specific B-Cell Epitopes from Nucleocapsid Protein of Hantaviruses Causing Hantavirus Cardiopulmonary Syndrome. Journal of Cellular Biochemistry 118(8): 2320-2324
Pigani, L.; Vasile Simone, G.; Foca, G.; Ulrici, A.; Masino, F.; Cubillana-Aguilera, L.; Calvini, R.; Seeber, R. 2018: Prediction of parameters related to grape ripening by multivariate calibration of voltammetric signals acquired by an electronic tongue. Talanta 178: 178-187
Oh, E.; Seo, S.W.; Yoon, Y.C.; Kim, D.W.; Kwon, S.; Yoon, S. 2017: Prediction of pathologic femoral fractures in patients with lung cancer using machine learning algorithms: Comparison of computed tomography-based radiological features with clinical features versus without clinical features. Journal of Orthopaedic Surgery 25(2): 2309499017716243
Li, Q.-W.; Qiu, B.; Wang, B.; Wang, D.-L.; Yin, S.-H.; Yang, H.; Liu, J.-L.; Fu, J.-H.; Liu, M.-Z.; Xie, C.-M.; Liu, H. 2018: Prediction of pathologic responders to neoadjuvant chemoradiotherapy by diffusion-weighted magnetic resonance imaging in locally advanced esophageal squamous cell carcinoma: a prospective study. Diseases of the Esophagus: Official Journal of the International Society for Diseases of the Esophagus 31(2)
Hu, Y.-J.; Ku, T.-H.; Yang, Y.-H.; Shen, J.-Y. 2018: Prediction of Patient-Controlled Analgesic Consumption: a Multimodel Regression Tree Approach. IEEE Journal of Biomedical and Health Informatics 22(1): 265-275
Asarnoj, A.; Hamsten, C.; Lupinek, C.; Melén, E.; Andersson, N.; Anto, J.M.; Bousquet, J.; Valenta, R.; van Hage, M.; Wickman, M. 2017: Prediction of peanut allergy in adolescence by early childhood storage protein-specific IgE signatures: the BAMSE population-based birth cohort. Journal of Allergy and Clinical Immunology 140(2): 587-590.E7
Aldaqadossi, H.A.; Khairy Salem, H.; Kotb, Y.; Hussein, H.A.; Shaker, H.; Dikaios, N. 2017: Prediction of Pediatric Percutaneous Nephrolithotomy Outcomes Using Contemporary Scoring Systems. Journal of Urology 198(5): 1146-1152
Schlapbach, L.J.; MacLaren, G.; Festa, M.; Alexander, J.; Erickson, S.; Beca, J.; Slater, A.; Schibler, A.; Pilcher, D.; Millar, J.; Straney, L. 2017: Prediction of pediatric sepsis mortality within 1 h of intensive care admission. Intensive Care Medicine 43(8): 1085-1096
Leite, F.áb.R.M.; Peres, K.G.; Do, L.G.; Demarco, F.áv.F.; Peres, M.A.A. 2017: Prediction of Periodontitis Occurrence: Influence of Classification and Sociodemographic and General Health Information. Journal of Periodontology 88(8): 731-743
Cebi, N.; Yilmaz, M.T.; Sagdic, O.; Yuce, H.; Yelboga, E. 2017: Prediction of peroxide value in omega-3 rich microalgae oil by ATR-FTIR spectroscopy combined with chemometrics. Food Chemistry 225: 188-196
Horn-Hofmann, C.; Scheel, J.; Dimova, V.; Parthum, A.; Carbon, R.; Griessinger, N.; Sittl, R.; Lautenbacher, S. 2018: Prediction of persistent post-operative pain: Pain-specific psychological variables compared with acute post-operative pain and general psychological variables. European Journal of Pain 22(1): 191-202
Lötsch, J.; Ultsch, A.; Kalso, E. 2017: Prediction of persistent post-surgery pain by preoperative cold pain sensitivity: biomarker development with machine-learning-derived analysis. British Journal of Anaesthesia 119(4): 821-829
Martin, T.M.; Lilavois, C.R.; Barron, M.G. 2017: Prediction of pesticide acute toxicity using two-dimensional chemical descriptors and target species classification. Sar and Qsar in Environmental Research 28(6): 525-539
Agatz, A.; Ashauer, R.; Sweeney, P.; Brown, C.D. 2017: Prediction of pest pressure on corn root nodes: the POPP-Corn model. Journal of Pest Science 90(1): 161-172
Park, M.-H.; Shin, S.-H.; Byeon, J.-J.; Lee, G.-H.; Yu, B.-Y.; Shin, Y.G. 2017: Prediction of pharmacokinetics and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach: a case study of caffeine and ciprofloxacin. Korean Journal of Physiology and Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology 21(1): 107-115
Zamora, W.J.; Curutchet, C.; Campanera, J.M.; Luque, F.J. 2017: Prediction of pH-Dependent Hydrophobic Profiles of Small Molecules from Miertus-Scrocco-Tomasi Continuum Solvation Calculations. Journal of Physical Chemistry. B 121(42): 9868-9880
Knottnerus, S.J.G.; Nijmeijer, S.C.M.; IJlst, L.; Te Brinke, H.; van Vlies, N.; Wijburg, F.A. 2017: Prediction of phenotypic severity in mucopolysaccharidosis type IIIA. Annals of Neurology 82(5): 686-696
Feng, Y.; Sun, H.; Sun, J.; Lu, Z.; You, Y. 2018: Prediction of phonon-mediated superconductivity in hole-doped black phosphorus. Journal of Physics. Condensed Matter: An Institute of Physics Journal 30(1): 015601
Wang, X.; Xu, M.L.; Li, B.Q.; Zhai, H.L.; Liu, J.J.; Li, S.Y. 2017: Prediction of phosphorylation sites based on Krawtchouk image moments. Proteins 85(12): 2231-2238
Han, R.Z.; Wang, D.; Chen, Y.H.; Dong, L.K.; Fan, Y.L. 2017: Prediction of phosphorylation sites based on the integration of multiple classifiers. Genetics and Molecular Research: Gmr 16(1)
Relun, A.; Grosbois, V.; Alexandrov, T.; Sánchez-Vizcaíno, J.M.; Waret-Szkuta, A.; Molia, S.; Etter, E.M.C.; Martínez-López, B. 2017: Prediction of Pig Trade Movements in Different European Production Systems Using Exponential Random Graph Models. Frontiers in Veterinary Science 4: 27
Jensen, J.H.; Swain, C.J.; Olsen, L. 2017: Prediction of pKa Values for Druglike Molecules Using Semiempirical Quantum Chemical Methods. Journal of Physical Chemistry. a 121(3): 699-707
Sekimura, A.; Yoshimatsu, T.; Yamashita, N.; Higa, H.; Miyata, T.; Kawano, D.; So, T.; Uramoto, H. 2017: Prediction of Pleural Adherence Area Used by Ultrasound Sonography. Kyobu Geka. Japanese Journal of Thoracic Surgery 70(10): 818-821
Dhyani, R.; Sharma, N.; Maity, A.K. 2017: Prediction of PM2.5 along urban highway corridor under mixed traffic conditions using CALINE4 model. Journal of Environmental Management 198(Part 1): 24-32
Uematsu, H.; Yamashita, K.; Kunisawa, S.; Otsubo, T.; Imanaka, Y. 2017: Prediction of pneumonia hospitalization in adults using health checkup data. Plos one 12(6): E0180159
Ardestani, M.M.; Amenábar Edwards, P.P.; Wimmer, M.A. 2017: Prediction of Polyethylene Wear Rates from Gait Biomechanics and Implant Positioning in Total Hip Replacement. Clinical Orthopaedics and Related Research 475(8): 2027-2042
Bonfert, T.; Friedel, C.C. 2017: Prediction of Poly(A) Sites by Poly(A) Read Mapping. Plos one 12(1): E0170914
Ichikawa, R.; Maeda, Y.; Shibuya, A.; Umesato, Y.; Kondo, Y.; Maeda, T.; Yoshino, A.; Takahashi, S. 2018: Prediction of Poor Prognosis After Severe Head Injury in Children Using Logistic Regression. Pediatric Emergency Care 34(12): 825-831
Neo, H.-Y.; Xu, H.-Y.; Wu, H.-Y.; Hum, A. 2017: Prediction of Poor Short-Term Prognosis and Unmet Needs in Advanced Chronic Obstructive Pulmonary Disease: use of the Two-Minute Walking Distance Extracted from a Six-Minute Walk Test. Journal of Palliative Medicine 20(8): 821-828
Kellner, T.A.; Gourley, G.G.; Wisdom, S.; Patience, J.F. 2016: Prediction of porcine carcass iodine value based on diet composition and fatty acid intake. Journal of Animal Science 94(12): 5248-5261
Caballero, D.; Pérez-Palacios, T.; Caro, A.és.; Amigo, J.é M.; Dahl, A.B.; ErsbØll, B.K.; Antequera, T. 2017: Prediction of pork quality parameters by applying fractals and data mining on MRi. Food Research International 99(Part 1): 739-747
Joardder, M.U.H.; Kumar, C.; Karim, M.A. 2018: Prediction of porosity of food materials during drying: Current challenges and directions. Critical Reviews in Food Science and Nutrition 58(17): 2896-2907
Chitrala, K.N.; Nagarkatti, P.; Nagarkatti, M. 2016: Prediction of Possible Biomarkers and Novel Pathways Conferring Risk to Post-Traumatic Stress Disorder. Plos one 11(12): E0168404
Lee, Y.K.; Yang, M.J.; Kim, S.S.; Noh, C.K.; Cho, H.J.; Lim, S.G.; Hwang, J.C.; Yoo, B.M.; Kim, J.H. 2017: Prediction of Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis Using 4-Hour Post-Endoscopic Retrograde Cholangiopancreatography Serum Amylase and Lipase Levels. Journal of Korean Medical Science 32(11): 1814-1819
Meesters, M.I.; Burtman, D.; van de Ven, P.M.; Boer, C. 2018: Prediction of Postoperative Blood Loss Using Thromboelastometry in Adult Cardiac Surgery: Cohort Study and Systematic Review. Journal of Cardiothoracic and Vascular Anesthesia 32(1): 141-150
Papasavas, P.K.; Keenan, R.J.; Yeaney, W.W.; Caushaj, P.F.; Gagné, D.J.; Landreneau, R.J. 2003: Prediction of postoperative gas bloating after laparoscopic antireflux procedures based on 24-h pH acid reflux pattern. Surgical Endoscopy 17(3): 381-385
Hirnschall, N.; Buehren, T.; Bajramovic, F.; Trost, M.; Teuber, T.; Findl, O. 2017: Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography. Journal of Cataract and Refractive Surgery 43(6): 732-736
Campos, J.H. 2018: Prediction of Postoperative Mechanical Ventilation After Thymectomy in Patients with Myasthenia Gravis: a Myth or Reality. Journal of Cardiothoracic and Vascular Anesthesia 32(1): 331-333
Boddaert, J.; Na, N.; Le Manach, Y.; Raux, M.; Cohen-Bittan, J.; Vallet, H.; Meziere, A.; Khiami, F.; Riou, B. 2017: Prediction of postoperative mortality in elderly patients with hip fracture: are specific and geriatric scores better than general scores?. British Journal of Anaesthesia 118(6): 952-954
Cochran, A.; Murphy, K.; Kirks, R.C.; Barnes, T.E.; Iannitti, D.A.; Martinie, J.B.; Vrochides, D. 2017: Prediction of postoperative outcomes after open major hepatectomy: Developing customised, procedure-specific predictive risk metrics. Clinical Nutrition Espen 12: E33-E33
Bier, S.; Aufderklamm, S.; Todenhöfer, T.; Kruck, S.; Schuster, K.; Rausch, S.; Othman, A.; Notohamiprodjo, M.; Nikolaou, K.; Schwentner, C.; Stenzl, A.; Bier, G.; Bedke, J. 2017: Prediction of Postoperative Risks in Laparoscopic Partial Nephrectomy Using RENAL, Mayo Adhesive Probability and Renal Pelvic Score. Anticancer Research 37(3): 1369-1373
Randolph, L.C.; Barone, J.; Angelats, J.; Dado, D.V.; Vandevender, D.K.; Shoup, M. 2005: Prediction of postoperative seroma after latissimus dorsi breast reconstruction. Plastic and Reconstructive Surgery 116(5): 1287-1290
Lazarus, J.H. 1998: Prediction of postpartum thyroiditis. European Journal of Endocrinology 139(1): 12-13
Hoole, S.P.; Hernández-Sánchez, J.; Brown, A.J.; Giblett, J.P.; Bennett, M.R.; West, N.E.J. 2018: Prediction of postpercutaneous coronary intervention myocardial infarction: insights from intravascular imaging, coronary flow, and biomarker evaluation. Coronary Artery Disease 29(3): 246-253
Lim, J.-S.; Oh, M.S.; Lee, J.-H.; Jung, S.; Kim, C.; Jang, M.U.; Lee, S.-H.; Kim, Y.J.; Kim, Y.; Park, J.; Kang, Y.; Yu, K.-H.; Lee, B.-C. 2017: Prediction of post-stroke dementia using NINDS-CSN 5-minute neuropsychology protocol in acute stroke. International Psychogeriatrics 29(5): 777-784
Lee, H.Haeng.; Jung, S.Hee. 2017: Prediction of Post-stroke Falls by Quantitative Assessment of Balance. Annals of Rehabilitation Medicine 41(3): 339-346
Park, J.; Lee, S.-U.; Jung, S.H. 2017: Prediction of post-stroke functional mobility from the initial assessment of cognitive function. Neurorehabilitation 41(1): 169-177
Wang, B.; Wang, M.; Li, A. 2017: Prediction of post-translational modification sites using multiple kernel support vector machine. Peerj 5: E3261
Murata, T.; Sakurada, K.; Tsuji, T.; Kurita, Y. 2016: Prediction of posture-dependent tremor by the calculation of the endpoint compliance. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2016: 2169-2172
Xu, G.; Guo, Z.; Liang, W.; Xin, E.; Liu, B.; Xu, Y.; Luan, Z.; Schroder, P.M.; Manyalich, M.í; Ko, D.S.-C.; He, X. 2018: Prediction of potential for organ donation after circulatory death in neurocritical patients. Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation 37(3): 358-364
Uhlmann, M.; Lécureux, E.; Griesser, A-Claude.; Duong, H.Dung.; Lamy, O. 2017: Prediction of potentially avoidable readmission risk in a division of general internal medicine. Swiss Medical Weekly 147: W14470
Gupta, N.; Gupta, T.; Asthana, D. 2017: Prediction of Preeclampsia in Early Pregnancy by Estimating the Spot Urinary Albumin/Creatinine Ratio. Journal of Obstetrics and Gynaecology of India 67(4): 258-262
Agarwal, R.; Chaudhary, S.; Kar, R.; Radhakrishnan, G.; Tandon, A. 2017: Prediction of preeclampsia in primigravida in late first trimester using serum placental growth factor alone and by combination model. Journal of Obstetrics and Gynaecology: the Journal of the Institute of Obstetrics and Gynaecology 37(7): 877-882
Vestgaard, M.; Sommer, M.Colstrup.; Ringholm, L.; Damm, P.; Mathiesen, E.R. 2018: Prediction of preeclampsia in type 1 diabetes in early pregnancy by clinical predictors: a systematic review. Journal of Maternal-Fetal and Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine the Federation of Asia and Oceania Perinatal Societies the International Society of Perinatal Obstetricians 31(14): 1933-1939
Sovio, U.; Gaccioli, F.; Cook, E.; Hund, M.; Charnock-Jones, D.S.; Smith, G.C.S. 2017: Prediction of Preeclampsia Using the Soluble fms-Like Tyrosine Kinase 1 to Placental Growth Factor Ratio: a Prospective Cohort Study of Unselected Nulliparous Women. Hypertension 69(4): 731-738
Vălenaş, S.P.; Szentágotai-Tătar, A.; Grafton, B.; Notebaert, L.; Miu, A.C.; MacLeod, C. 2017: Prediction of pre-exam state anxiety from ruminative disposition: the mediating role of impaired attentional disengagement from negative information. Behaviour Research and Therapy 91: 102-110
Lee, J.Y.; Kim, Y.L.; Jeong, J.E.; Ahn, J.W. 2017: Prediction of pregnancy complication occurrence using fetal cardiac output assessments made by ultrasonography at 20 to 24 weeks of gestation. Obstetrics and Gynecology Science 60(4): 336-342
Jansen, C.; Thiele, M.; Verlinden, W.; Krag, A.; Francque, S.; Trebicka, J. 2017: Prediction of presence of oesophageal varices just by shear-wave elastography of the liver and spleen. Liver International: Official Journal of the International Association for the Study of the Liver 37(9): 1406-1407
Sabour, S. 2018: Prediction of preterm births in twin pregnancies. Methodological issues. JournalofMaternal-FetalandNeonatalMedicine:theOfficialJournaloftheEuropeanAssociationofPerinatalMedicinetheFederationofAsiaandOceaniaPerinatalSocietiestheInternationalSocietyofPerinatalObstetricians 31(10): 1389
Benoist, G. 2016: Prediction of preterm delivery in symptomatic women (preterm labor). Journal de Gynecologie Obstetrique et Biologie de la Reproduction 45(10): 1346-1363
Fathi, Y.; Barati, M.; Zandiyeh, M.; Bashirian, S. 2017: Prediction of Preventive Behaviors of the Needlestick Injuries during Surgery among Operating Room Personnel: Application of the Health Belief Model. International Journal of Occupational and Environmental Medicine 8(4): 232-240
Angstman, K.B.; Garrison, G.M.; Gonzalez, C.A.; Cozine, D.W.; Cozine, E.W.; Katzelnick, D.J. 2017: Prediction of Primary Care Depression Outcomes at Six Months: Validation of DOC-6 ©. Journal of the American Board of Family Medicine: Jabfm 30(3): 281-287
Søndergaard, D.; Nielsen, S.; Pedersen, C.N.S.; Besenbacher, S.ør. 2017: Prediction of Primary Tumors in Cancers of Unknown Primary. Journal of Integrative Bioinformatics 14(2)
Yamamoto, M.; Watanabe, K.; Fukuda, T.; Miura, O. 2017: Prediction of Prognosis for Patients with Diffuse Large B-Cell Lymphoma Refractory to or in First Relapse After Initial R-CHOP Therapy: A Single-Institution Study. Anticancer Research 37(5): 2655-2662
Gleason, D.F.; Mellinger, G.T.; Arduino, L.J.; Bailar, J.C.; Becker, L.E.; Berman, H.I.; Bischoff, A.J.; Byar, D.P.; Blackard, C.E.; Doe, R.P.; Elliot, J.S.; Haltiwanger, E.; Higgins, R.B.; Jorgens, J.; Kramer, H.C.; Lee, L.E.; Malament, M.; Mostofi, F.K.; Parry, W.L.; Rogers, L.S.; Ulm, A.Hardy.; Quiambao, V.R. 2017: Prediction of Prognosis for Prostatic Adenocarcinoma by Combined Histological Grading and Clinical Staging. Journal of urology 197(2S): S134-S139
Nakashima, A.; Moriuchi, T.; Mitsunaga, W.; Yonezawa, T.; Kataoka, H.; Nakashima, R.; Koizumi, T.; Shimizu, T.; Ryu, N.; Higashi, T. 2017: Prediction of prognosis of upper-extremity function following stroke-related paralysis using brain imaging. Journal of Physical Therapy Science 29(8): 1438-1443
Wise, E.S.; Stonko, D.P.; Glaser, Z.A.; Garcia, K.L.; Huang, J.J.; Kim, J.S.; Kallos, J.A.; Starnes, J.R.; Fleming, J.W.; Hocking, K.M.; Brophy, C.M.; Eagle, S.S. 2017: Prediction of Prolonged Ventilation after Coronary Artery Bypass Grafting: Data from an Artificial Neural Network. Heart Surgery Forum 20(1): E007-E014
Waheed, Y.; Safi, S.Z.; Najmi, M.H.; Aziz, H.; Imran, M. 2017: Prediction of promiscuous T cell epitopes in RNA dependent RNA polymerase of Chikungunya virus. Asian Pacific Journal of Tropical Medicine 10(8): 760-764
Gayet, M.; Mannaerts, C.K.; Nieboer, D.; Beerlage, H.P.; Wijkstra, H.; Mulders, P.F.A.; Roobol, M.J. 2018: Prediction of Prostate Cancer: External Validation of the ERSPC Risk Calculator in a Contemporary Dutch Clinical Cohort. European Urology Focus 4(2): 228-234
Bjurlin, M.A.; Rosenkrantz, A.B.; Sarkar, S.; Lepor, H.; Huang, W.C.; Huang, R.; Venkataraman, R.; Taneja, S.S. 2018: Prediction of Prostate Cancer Risk Among Men Undergoing Combined MRI-targeted and Systematic Biopsy Using Novel Pre-biopsy Nomograms That Incorporate MRI Findings. Urology 112: 112-120
Casteleiro, M.A.; Stevens, R.; Klein, J. 2017: Prediction of Proteases Involved in Peptide Generation. Methods in Molecular Biology 1574: 205-213
Crozier, T.W.M.; Tinti, M.; Larance, M.; Lamond, A.I.; Ferguson, M.A.J. 2017: Prediction of Protein Complexes in Trypanosoma brucei by Protein Correlation Profiling Mass Spectrometry and Machine Learning. Molecular and Cellular Proteomics: Mcp 16(12): 2254-2267
Dosztányi, Z. 2018: Prediction of protein disorder based on IUPred. Protein Science: a Publication of the Protein Society 27(1): 331-340
Deng, M.; Zhang, K.; Mehta, S.; Chen, T.; Sun, F. 2003: Prediction of protein function using protein-protein interaction data. Journal of Computational Biology: a Journal of Computational Molecular Cell Biology 10(6): 947-960
Jiang, J.; Wang, N.; Chen, P.; Zheng, C.; Wang, B. 2017: Prediction of Protein Hotspots from Whole Protein Sequences by a Random Projection Ensemble System. International Journal of Molecular Sciences 18(7)
Tuncbag, N.; Keskin, O.; Nussinov, R.; Gursoy, A. 2017: Prediction of Protein Interactions by Structural Matching: Prediction of PPI Networks and the Effects of Mutations on PPIs that Combines Sequence and Structural Information. Methods in Molecular Biology 1558: 255-270
Bosc, N.; Wroblowski, B.; Meyer, C.; Bonnet, P. 2017: Prediction of Protein Kinase-Ligand Interactions through 2.5D Kinochemometrics. Journal of Chemical Information and Modeling 57(1): 93-101
Schomburg, K.T.; Nittinger, E.; Meyder, A.; Bietz, S.; Schneider, N.; Lange, G.; Klein, R.; Rarey, M. 2017: Prediction of protein mutation effects based on dehydration and hydrogen bonding - a large-scale study. Proteins 85(8): 1550-1566
Ju, Z.; Cao, J.-Z. 2017: Prediction of protein N-formylation using the composition of k-spaced amino acid pairs. Analytical Biochemistry 534: 40-45
Ma, S.; Song, Q.; Tao, H.; Harrison, A.; Wang, S.; Liu, W.; Lin, S.; Zhang, Z.; Ai, Y.; He, H. 2019: Prediction of protein-protein interactions between fungus (Magnaporthe grisea) and rice (Oryza sativa L.). Briefings in Bioinformatics 20(2): 448-456
Wen, Y.-T.; Lei, H.-J.; You, Z.-H.; Lei, B.-Y.; Chen, X.; Li, L.-P. 2017: Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network. Journal of Theoretical Biology 430: 9-20
Yu, B.; Lou, L.; Li, S.; Zhang, Y.; Qiu, W.; Wu, X.; Wang, M.; Tian, B. 2017: Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising. Journal of Molecular Graphics and Modelling 76: 260-273
Karczyńska, A.S.; Mozolewska, M.A.; Krupa, P.ł; Giełdoń, A.; Liwo, A.; Czaplewski, C. 2018: Prediction of protein structure with the coarse-grained UNRES force field assisted by small X-ray scattering data and knowledge-based information. Proteins 86(Suppl 1): 228-239
Zhang, S.; Duan, X. 2018: Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC. Journal of Theoretical Biology 437: 239-250
Xue, W.; Wang, X.; Zhao, N.; Yang, R.; Hong, X. 2017: Prediction of protein subcellular locations by ensemble of improved K-nearest neighbor. Sheng Wu Gong Cheng Xue Bao 33(4): 683-691
Grishin, D.V.; Pokrovskaya, M.V.; Podobed, O.V.; Gladilina, J.A.; Pokrovsky, V.S.; Aleksandrova, S.S.; Sokolov, N.N. 2017: Prediction of protein thermostability from their primary structure: the current state and development factors. Biomeditsinskaia Khimiia 63(2): 124-131
Dyer, F.J. 2018: Prediction of Psychiatric Hospitalization, Diagnoses, Arrests, and Violent Behavior Through Scored Drawings and Associations. Psychological Reports 121(1): 4-25
Culling, J.; Williams, R. 1988: Prediction of Psychosocial Sequelae in Families of Leukaemic Children. Bristol Medico-Chirurgical Journal 102(1a): 53-55
Yang, Q.; Wang, Y.; Ban, X.; Wu, J.; Rong, D.; Zhao, Q.; Xie, C.; Zhang, R. 2017: Prediction of pulmonary metastasis in pulmonary nodules (≤10 mm) detected in patients with primary extrapulmonary malignancy at thin-section staging CT. La Radiologia Medica 122(11): 837-849
Choo, C.C.; Chew, P.K.H.; Ho, C.S.; Ho, R.C. 2017: Prediction of Quality of Life in Asian Patients with Schizophrenia: A Cross-sectional Pilot Study. Frontiers in Psychiatry 8: 198
Bae, S.; Choi, S.; Kim, S.M.; Park, T. 2016: Prediction of Quantitative Traits Using Common Genetic Variants: Application to Body Mass Index. Genomics and Informatics 14(4): 149-159
Rozen, G.; Ptaszek, L.; Zilberman, I.; Cordaro, K.; Heist, E.Kevin.; Beeckler, C.; Altmann, A.; Ying, Z.; Liu, Z.; Ruskin, J.N.; Govari, A.; Mansour, M. 2017: Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter. Heart Rhythm 14(2): 248-254
Park, I.J.; An, S.; Kim, S.-Y.; Lim, H.M.; Hong, S.-M.; Kim, M.-J.; Kim, Y.J.; Yu, C.S. 2017: Prediction of radio-responsiveness with immune-profiling in patients with rectal cancer. Oncotarget 8(45): 79793-79802
Zhou, J.; Wu, X.; Li, G.; Gao, X.; Zhai, M.; Chen, W.; Hu, H.; Tang, Z. 2017: Prediction of radiosensitive patients with gastric cancer by developing gene signature. International Journal of Oncology 51(4): 1067-1076
Ng, M.Chun-Har.; Lau, T-Yan.; Fan, K.; Xu, Q-Song.; Poon, J.; Poon, S.K.; Lam, M.K.; Chau, F-Tim.; Sze, D.Man-Yuen. 2017: Prediction of Radix Astragali Immunomodulatory Effect of CD80 Expression from Chromatograms by Quantitative Pattern-Activity Relationship. Biomed Research International 2017: 3923865
Angelieri, F.; Franchi, L.; Cevidanes, L.H.S.; Bueno-Silva, B.; McNamara, J.A. 2016: Prediction of rapid maxillary expansion by assessing the maturation of the midpalatal suture on cone beam CT. Dental Press Journal of Orthodontics 21(6): 115-125
Rudik, A.V.; Dmitriev, A.V.; Lagunin, A.A.; Filimonov, D.A.; Poroikov, V.V. 2016: Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics. Journal of Cheminformatics 8: 68
Cerit, L. 2017: Prediction of Readmission for Congestive Heart Failure with or Without Left Bundle Branch Block. American Journal of Cardiology 120(2): 337
Cuervo, K.; Villanueva, L.ón. 2018: Prediction of Recidivism with the Youth Level of Service/Case Management Inventory (Reduced Version) in a Sample of Young Spanish Offenders. International Journal of Offender Therapy and Comparative Criminology 62(11): 3562-3580
Gerede, D.M.şe.; Candemir, B.şa.; Vurgun, V.K.; Aghdam, S.M.; Acıbuca, A.; Özcan, Öz.ür.U.ş; Göksülük, H.üs.; Kervancıoğlu, C.; Erol, Çe. 2015: Prediction of recurrence after cryoballoon ablation therapy in patients with paroxysmal atrial fibrillation. Anatolian Journal of Cardiology 2015
Kang, S.Young.; Cheon, G.Jeong.; Lee, M.; Kim, H.Seung.; Kim, J-Weon.; Park, N-Hyun.; Song, Y.Sang.; Chung, H.Hoon. 2017: Prediction of Recurrence by Preoperative Intratumoral FDG Uptake Heterogeneity in Endometrioid Endometrial Cancer. Translational Oncology 10(2): 178-183
Cobo, J.; Merino, E.; Martínez, C.; Cózar-Llistó, A.; Shaw, E.; Marrodán, T.; Calbo, E.; Bereciartúa, E.; Sánchez-Muñoz, L.A.; Salavert, M.; Pérez-Rodríguez, M.T.; García-Rosado, D.ác.; Bravo-Ferrer, J.M.ía.; Gálvez-Acebal, J.; Henríquez-Camacho, C.és.; Cuquet, J.; Pino-Calm, B.; Torres, L.; Sánchez-Porto, A.; Fernández-Félix, B.M.; Romero, J.é; Muriel, A.; Giner, L.; Boix, V.; Ramos-Martínez, A.; Martínez, R.ío.; Martos, P.ón.; Arch, O.; Sardiña, C.; Aguirre, E.; Badía, C.; Boix, L.ía.; Perales, I.; De Santos-Castro, P.A.; Bratos-Pérez, M.A.; Cuellar, S.; González, E.; Soto, A.; Sousa, A.án.; Llinares, P.; Castelo, L.; Morales, I.; Sojo, J.ús.; Delgado-Iribarren, A.; Martí, C.; Vázquez, R.; Mairal, P. 2018: Prediction of recurrent clostridium difficile infection at the bedside: the GEIH-Cdi score. International Journal of Antimicrobial Agents 51(3): 393-398
Escobar, G.J.; Baker, J.M.; Kipnis, P.; Greene, J.D.; Mast, T.C.; Gupta, S.B.; Cossrow, N.; Mehta, V.; Liu, V.; Dubberke, E.R. 2017: Prediction of Recurrent Clostridium Difficile Infection Using Comprehensive Electronic Medical Records in an Integrated Healthcare Delivery System. Infection Control and Hospital Epidemiology 38(10): 1196-1203
Zhang, C.; Wang, Y.; Zhao, X.; Liu, L.; Wang, C.; Pu, Y.; Zou, X.; Pan, Y.; Wong, K.Sing.; Wang, Y. 2017: Prediction of Recurrent Stroke or Transient Ischemic Attack After Noncardiogenic Posterior Circulation Ischemic Stroke. Stroke 48(7): 1835-1841
Fowler, N.J.; Blanford, C.F.; Warwicker, J.; de Visser, S.P. 2017: Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory. Chemistry 23(61): 15436-15445
Yamazoe, Y.; Yoshinari, K. 2017: Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 2: Solving substrate interactions of CYP1A2 with non-PAH substrates on the template system. Drug Metabolism and Pharmacokinetics 32(5): 229-247
Sabour, S. 2017: Prediction of rehabilitation needs after treatment of cervical cancer: a methodological mistake. Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer 25(7): 2041
Echeburúa, E.; Gómez, M.; Freixa, M. 2017: Prediction of Relapse After Cognitive-Behavioral Treatment of Gambling Disorder in Individuals with Chronic Schizophrenia: a Survival Analysis. Behavior Therapy 48(1): 69-75
Sletten, E.T.; Arnes, M.; Lysa, L.M.; Moe, B.T.; Straume, B.; Orbo, A. 2017: Prediction of Relapse After Therapy Withdrawal in Women with Endometrial Hyperplasia: a Long-term Follow-up Study. Anticancer Research 37(5): 2529-2536
Nakhjavani, M.; Abdollahi, S.; Farzanefar, S.; Abousaidi, M.; Esteghamati, A.; Naseri, M.; Eftekhari, M.; Abbasi, M. 2017: Prediction of Relapse from Hyperthyroidism following Antithyroid Medication Withdrawal using Technetium Thyroid Uptake Scanning. Endocrine Practice: Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists 23(4): 466-470
Moreno, Z.; Paster, A. 2017: Prediction of Remediation of a Heterogeneous Aquifer: a Case Study. Ground Water 55(3): 428-439
Lee, J.W.; Park, J.S.; Park, K.B.; Yoo, G.H.; Kim, S.S.; Lee, S.M. 2017: Prediction of renal cortical defect and scar using neutrophil-to-lymphocyte ratio in children with febrile urinary tract infection. NUKLEARMEDIZIN. Nuclear Medicine 56(3): 109-114
Ball, K.; Jamier, T.; Parmentier, Y.; Denizot, C.; Mallier, A.; Chenel, M. 2017: Prediction of renal transporter-mediated drug-drug interactions for a drug which is an OAT substrate and inhibitor using PBPK modelling. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 106: 122-132
Bar-Meir, M.; Kalisky, I.; Schwartz, A.; Somekh, E.; Tasher, D. 2018: Prediction of Resistance to Intravenous Immunoglobulin in Children with Kawasaki Disease. Journal of the Pediatric Infectious Diseases Society 7(1): 25-29
Kawaguchi, Y.; Saito, T.; Mitsunaga, T.; Terui, K.; Nakata, M.; Matsuura, G.; Kouchi, K.; Yoshida, H. 2018: Prediction of respiratory collapse among pediatric patients with mediastinal tumors during induction of general anesthesia. Journal of Pediatric Surgery 53(7): 1365-1368
Taraji, M.; Haddad, P.R.; Amos, R.I.J.; Talebi, M.; Szucs, R.; Dolan, J.W.; Pohl, C.A. 2017: Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures. Journal of Chromatography. a 1486: 59-67
Sun, M.-A.; Wang, Y.; Zhang, Q.; Xia, Y.; Ge, W.; Guo, D. 2017: Prediction of reversible disulfide based on features from local structural signatures. Bmc Genomics 18(1): 279
Bellavia, D.; Iacovoni, A.; Scardulla, C.; Moja, L.; Pilato, M.; Kushwaha, S.S.; Senni, M.; Clemenza, F.; Agnese, V.; Falletta, C.; Romano, G.; Maalouf, J.; Dandel, M. 2017: Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. European Journal of Heart Failure 19(7): 926-946
Islamova, S.N.; Islamov, R.S. 2017: Prediction of Risk for Boys' Involvement in Drug use Based on Levels of Self-evaluations in Russia. Indian Journal of Psychological Medicine 39(3): 281-286
Wang, W.; Song, X-Tao.; Chen, Y-Dai.; Yang, X-Sheng.; Xu, F.; Zhang, M.; Tan, K.; Yuan, F.; Li, D.; Lyu, S-Zheng. 2016: Prediction of risk of cardiovascular events in patients with mild to moderate coronary artery lesions using naïve Bayesian networks. Journal of Geriatric Cardiology: Jgc 13(11): 899-905
Zhu, X.-R.; Zhang, Y.-P.; Bai, L.; Zhang, X.-L.; Zhou, J.-B.; Yang, J.-K. 2017: Prediction of risk of diabetic retinopathy for all-cause mortality, stroke and heart failure: Evidence from epidemiological observational studies. Medicine 96(3): E5894
Sun, S.P.; Lu, W.; Lei, Y.B.; Men, X.M.; Zuo, B.; Ding, S.G. 2017: Prediction of round window visibility in cochlear implantation with temporal bone high resolution computed tomography. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 52(8): 561-565
Furmanchuk, A.'o.; Saal, J.E.; Doak, J.W.; Olson, G.B.; Choudhary, A.; Agrawal, A. 2018: Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: a machine learning approach. Journal of Computational Chemistry 39(4): 191-202
Fedele, T.; Ramantani, G.; Burnos, S.; Hilfiker, P.; Curio, G.; Grunwald, T.; Krayenbühl, N.; Sarnthein, J. 2017: Prediction of seizure outcome improved by fast ripples detected in low-noise intraoperative corticogram. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 128(7): 1220-1226
Mikurova, A.V.; Rybina, A.V.; Skvortsov, V.S. 2016: Prediction of selective inhibition of neuraminidase from various influenza virus strains by potential inhibitors. Biomeditsinskaia Khimiia 62(6): 691-703
Yang, C.; Shen, Z.; Wu, L.; Tang, H.; Zhao, L.; Cao, F.; Sun, H. 2017: Prediction of self-assemblies of sodium dodecyl sulfate and fragrance additives using coarse-grained force fields. Journal of Molecular Modeling 23(7): 211
Ho, R.W.H.; Chang, W.C.; Kwong, V.W.Y.; Lau, E.S.K.; Chan, G.H.K.; Jim, O.T.T.; Hui, C.L.M.; Chan, S.K.W.; Lee, E.H.M.; Chen, E.Y.H. 2018: Prediction of self-stigma in early psychosis: 3-Year follow-up of the randomized-controlled trial on extended early intervention. Schizophrenia Research 195: 463-468
Sohn, J.A.; Kim, H.-S.; Oh, J.; Cho, J.-Y.; Yu, K.-S.; Lee, J.; Shin, S.H.; Lee, J.A.; Choi, C.W.; Kim, E.-K.; Kim, B.I.; Park, E.A. 2017: Prediction of serum theophylline concentrations and cytochrome P450 1A2 activity by analyzing urinary metabolites in preterm infants. British Journal of Clinical Pharmacology 83(6): 1279-1286
Ramos-Fernández, J.é M.; Moreno-Pérez, D.; Gutiérrez-Bedmar, M.; Hernández-Yuste, A.; Cordón-Martínez, A.M.ía.; Milano-Manso, G.; Urda-Cardona, A. 2017: Prediction of Severe Course in Infants with RSV Bronchiolitis under 6 Months. Spain. Revista Espanola de Salud Publica 91
Lind Malte, A.; Uldbjerg, N.; Wright, D.; Tørring, N. 2018: Prediction of severe pre-eclampsia/HELLP syndrome by combination of sFlt-1, CT-pro-ET-1 and blood pressure: exploratory study. Ultrasound in Obstetrics and Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 51(6): 768-774
Vázquez, C.; Orlova, M.ía.; Angriman, F.; Minatta, J.é N.; Scibona, P.; Verzura, M.ía.A.; Jáuregui, E.G.; Díaz de Arce, H.; Pallotta, M.ía.G.; Belloso, W.H. 2017: Prediction of severe toxicity in adult patients under treatment with 5-fluorouracil: a prospective cohort study. Anti-Cancer Drugs 28(9): 1039-1046
Come, P.C.; Riley, M.F.; Ferguson, J.F.; Morgan, J.P.; McKay, R.G. 1988: Prediction of severity of aortic stenosis: accuracy of multiple noninvasive parameters. American Journal of Medicine 85(1): 29-37
Wen, L.; Bowen, C.R.; Hartman, G.L. 2017: Prediction of Short-Distance Aerial Movement of Phakopsora pachyrhizi Urediniospores Using Machine Learning. Phytopathology 107(10): 1187-1198
Pandey, A.K.; Rajput, Y.S.; Singh, D.; Sharma, R. 2018: Prediction of shorter oligonucleotide sequences recognizing aflatoxin M1. Biotechnology and Applied Biochemistry 65(3): 397-406
Tuomi, T.; Pasanen, A.; Leminen, A.; Bützow, R.; Loukovaara, M. 2017: Prediction of Site-Specific Tumor Relapses in Patients with Stage I-Ii Endometrioid Endometrial Cancer. International Journal of Gynecological Cancer: Official Journal of the International Gynecological Cancer Society 27(5): 923-930
Leng, X'zi.; Wang, J.; Ji, H.; Wang, Q'geng.; Li, H.; Qian, X.; Li, F.; Yang, M. 2017: Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses. Chemosphere 180: 513-522
Gorai, K.; Inoue, K.; Saegusa, N.; Shimamoto, R.; Takeishi, M.; Okazaki, M.; Nakagawa, M. 2017: Prediction of Skin Necrosis after Mastectomy for Breast Cancer Using Indocyanine Green Angiography Imaging. Plastic and Reconstructive Surgery. Global Open 5(4): E1321
Wareing, B.; Urbisch, D.; Kolle, S.N.; Honarvar, N.; Sauer, U.G.; Mehling, A.; Landsiedel, R. 2017: Prediction of skin sensitization potency sub-categories using peptide reactivity data. Toxicology in Vitro: An International Journal Published in Association with Bibra 45(Part 1): 134-145
Zang, Q.; Paris, M.; Lehmann, D.M.; Bell, S.; Kleinstreuer, N.; Allen, D.; Matheson, J.; Jacobs, A.; Casey, W.; Strickland, J. 2017: Prediction of skin sensitization potency using machine learning approaches. Journal of Applied Toxicology: Jat 37(7): 792-805
McCowan, L.M.E.; Thompson, J.M.D.; Taylor, R.S.; Baker, P.N.; North, R.A.; Poston, L.; Roberts, C.T.; Simpson, N.A.B.; Walker, J.J.; Myers, J.; Kenny, L.C. 2017: Prediction of Small for Gestational Age Infants in Healthy Nulliparous Women Using Clinical and Ultrasound Risk Factors Combined with Early Pregnancy Biomarkers. Plos one 12(1): E0169311
Zhang, H.; Wu, P.; Yin, A.; Yang, X.; Zhang, M.; Gao, C. 2017: Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: a comparison of multiple linear regressions and the random forest model. Science of the Total Environment 592: 704-713
Schmidtke, R.; Schröder, D.; Menth, J.; Staab, A.; Braun, M.; Wagner, K.G. 2017: Prediction of solid fraction from powder mixtures based on single component compression analysis. International Journal of Pharmaceutics 523(1): 366-375
Yang, Y.; Mace, B.R.; Kingan, M.J. 2017: Prediction of sound transmission through, and radiation from, panels using a wave and finite element method. Journal of the Acoustical Society of America 141(4): 2452
Kellermann, T.S.; Mueller, M.; Carter, E.G.; Brooks, B.; Smith, G.; Kopp, O.J.; Wagner, J.L. 2017: Prediction of specific depressive symptom clusters in youth with epilepsy: the NDDI-E-Y versus Neuro-QOL SF. Epilepsia 58(8): 1370-1379
Marquez-Chin, C.; Atwell, K.; Popovic, M.R. 2017: Prediction of specific hand movements using electroencephalographic signals. Journal of Spinal Cord Medicine 40(6): 696-705
Fox, N.S.; Rebarber, A.; Klauser, C.K.; Peress, D.; Gutierrez, C.V.; Saltzman, D.H. 2010: Prediction of spontaneous preterm birth in asymptomatic twin pregnancies using the change in cervical length over time. American Journal of Obstetrics and Gynecology 202(2): 155.E1-4
Tanaka, K.; Yamada, K.; Matsushima, M.; Izawa, T.; Furukawa, S.; Kobayashi, Y.; Iwashita, M. 2017: Prediction of spontaneous preterm delivery in asymptomatic twin pregnancies using cervical length and granulocyte elastase. Taiwanese Journal of Obstetrics and Gynecology 56(2): 188-191
Chen, Y.; Geng, H.Y.; Yan, X.; Sun, Y.; Wu, Q.; Chen, X. 2017: Prediction of Stable Ground-State Lithium Polyhydrides under High Pressures. Inorganic Chemistry 56(7): 3867-3874
Archer, S.C.; Bradley, A.J.; Cooper, S.; Davies, P.L.; Green, M.J. 2017: Prediction of Streptococcus uberis clinical mastitis risk using Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) in dairy herds. Preventive Veterinary Medicine 144: 1-6
Tanaka, A.; Node, K. 2018: Prediction of Stroke After Cardiac Catheterization: no Reason, no Stroke. Journal of Atherosclerosis and Thrombosis 25(3): 221-223
Kang, D.-W.; Jeong, H.-G.; Kim, D.Y.; Yang, W.; Lee, S.-H. 2017: Prediction of Stroke Subtype and Recanalization Using Susceptibility Vessel Sign on Susceptibility-Weighted Magnetic Resonance Imaging. Stroke 48(6): 1554-1559
Janjić, G.V.; Milosavljević, M.D.; Veljković, D.Ž; Zarić, S.D. 2017: Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes. Physical Chemistry Chemical Physics: Pccp 19(13): 8657-8660
Fritz, B.G.; Aalseth, C.E.; Back, H.O.; Hayes, J.C.; Humble, P.H.; Ivanusa, P.; Mace, E.K. 2018: Prediction of sub-surface 37Ar concentrations at locations in the Northwestern United States. Journal of Environmental Radioactivity 181: 1-7
Bouman, C.; van Herwaarden, N.; van den Hoogen, F.; van der Maas, A.; van den Bemt, B.; den Broeder, A.A. 2017: Prediction of successful dose reduction or discontinuation of adalimumab, etanercept, or infliximab in rheumatoid arthritis patients using serum drug levels and antidrug antibody measurement. Expert Opinion on Drug Metabolism and Toxicology 13(6): 597-604
Mannil, M.; von Spiczak, J.; Hermanns, T.; Alkadhi, H.; Fankhauser, C.D. 2018: Prediction of successful shock wave lithotripsy with CT: a phantom study using texture analysis. Abdominal Radiology 43(6): 1432-1438
Sutker, P.B.; Newberry, W.M.; Bradham, G.B. 1978: Prediction of success in medical school. Journal of the South Carolina Medical Association 74(5): 255-259
Rizas, K.D.; McNitt, S.; Hamm, W.; Massberg, S.; Kääb, S.; Zareba, W.; Couderc, J.-P.; Bauer, A. 2017: Prediction of sudden and non-sudden cardiac death in post-infarction patients with reduced left ventricular ejection fraction by periodic repolarization dynamics: MADIT-Ii substudy. European Heart Journal 38(27): 2110-2118
Yamamoto, H.; Yamada, T.; Tamaki, S.; Morita, T.; Furukawa, Y.; Iwasaki, Y.; Kawasaki, M.; Kikuchi, A.; Kondo, T.; Ozaki, T.; Seo, M.; Sato, Y.; Ikeda, I.; Fukuhara, E.; Abe, M.; Nakamura, J.; Fukunami, M. 2019: Prediction of sudden cardiac death in patients with chronic heart failure by regional washout rate in cardiac MIBG SPECT imaging. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology 26(1): 109-117
Hallgren, K.A.; Ries, R.K.; Atkins, D.C.; Bumgardner, K.; Roy-Byrne, P. 2017: Prediction of Suicide Ideation and Attempt Among Substance-Using Patients in Primary Care. Journal of the American Board of Family Medicine: Jabfm 30(2): 150-160
Sechter, D.; Bonin, B.; Bertschy, G.; Vandel, S.; Bizouard, P. 1991: Prediction of suicide risk. L'Encephale 17(Special Issue 3): 361-364
Chen, S.; Izgorodina, E.I. 2017: Prediction of 1H NMR chemical shifts for clusters of imidazolium-based ionic liquids. Physical Chemistry Chemical Physics: Pccp 19(26): 17411-17425
Ingrisch, M.; Schöppe, F.; Paprottka, K.; Fabritius, M.; Strobl, F.F.; De Toni, E.N.; Ilhan, H.; Todica, A.; Michl, M.; Paprottka, P.M. 2018: Prediction of 90Y Radioembolization Outcome from Pretherapeutic Factors with Random Survival Forests. Journal of Nuclear Medicine: Official Publication Society of Nuclear Medicine 59(5): 769-773
Amsler, M.; Naghavi, S.Shahab.; Wolverton, C. 2017: Prediction of superconducting iron-bismuth intermetallic compounds at high pressure. Chemical Science 8(3): 2226-2234
Ma, Y.; Duan, D.; Shao, Z.; Li, D.; Wang, L.; Yu, H.; Tian, F.; Xie, H.; Liu, B.; Cui, T. 2017: Prediction of superconducting ternary hydride MgGeH6: from divergent high-pressure formation routes. Physical Chemistry Chemical Physics: Pccp 19(40): 27406-27412
Periyasamy, M.; Cho, J.Young.; Ahn, S.; Han, H-Seong.; Yoon, Y-Seok.; Choi, Y.; Jang, J.Seong.; Kwon, S.Uk.; Kim, S.; Choi, J.Kyu.; Guro, H. 2017: Prediction of surgical outcomes of laparoscopic liver resections for hepatocellular carcinoma by defining surgical difficulty. Surgical Endoscopy 31(12): 5209-5218
Lee, S.M.; Seo, J.B.; Oh, S.Y.; Kim, T.H.; Song, J.W.; Lee, S.M.; Kim, N. 2018: Prediction of survival by texture-based automated quantitative assessment of regional disease patterns on CT in idiopathic pulmonary fibrosis. European Radiology 28(3): 1293-1300
Tuqan, W.'e.; Innabi, A.; Alawneh, A.; Farsakh, F.A.; Al-Khatib, M. 2017: Prediction of Survival Following Percutaneous Biliary Drainage for Malignant Biliary Obstruction. Journal of Translational Internal Medicine 5(2): 127-131
Tanaka, S.; Kanagawa, T.; Momma, K.; Hori, S.; Satoh, H.; Nagamatsu, T.; Fujii, T.; Kimura, T.; Sawada, Y. 2017: Prediction of sustained fetal toxicity induced by ketoprofen based on PK/PD analysis using human placental perfusion and rat toxicity data. British Journal of Clinical Pharmacology 83(11): 2503-2516
Aherrera, J.A.M.; Abola, M.T.B.; Balabagno, M.M.O.; Abrahan, L.L.; Magno, J.D.A.; Reganit, P.F.M.; Punzalan, F.E.R. 2016: Prediction of Symptomatic Embolism in Filipinos with Infective Endocarditis Using the Embolic Risk French Calculator. Cardiology Research 7(4): 130-139
Lokeskrawee, T.; Muengtaweepongsa, S.; Patumanond, J.; Tiamkao, S.; Thamangraksat, T.; Phankhian, P.; Pleumpanupat, P.; Sribussara, P.; Kitjavijit, T.; Supap, A.; Rattanaphibool, W.; Prisiri, J. 2017: Prediction of Symptomatic Intracranial Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke: the Symptomatic Intracranial Hemorrhage Score. Journal of Stroke and Cerebrovascular Diseases: the Official Journal of National Stroke Association 26(11): 2622-2629
Li, X.; Xu, Y.; Cui, H.; Huang, T.; Wang, D.; Lian, B.; Li, W.; Qin, G.; Chen, L.; Xie, L. 2017: Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artificial Intelligence in Medicine 83: 35-43
Fauchier, L.; Pericart, L.; Bourguignon, T.; Bernard, L.; Clementy, N.; Angoulvant, D.; Babuty, D.; Bernard, A. 2017: Prediction of Systemic Septic Embolism in Patients with Left-Sided Infective Endocarditis. Journal of the American College of Cardiology 69(15): 1992-1993
Chen, C.; Ji, X.; Xu, K.; Zhang, B.; Miao, L.; Jiang, J. 2017: Prediction of T- and H-Phase Two-Dimensional Transition-Metal Carbides/Nitrides and their Semiconducting-Metallic Phase Transition. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry 18(14): 1897-1902
Nayak, T.; Tinghe Zhang; Zijing Mao; Xiaojing Xu; Pack, D.J.; Bing Dong; Yufei Huang 2017: Prediction of temperature induced office worker's performance during typing task using EEG. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2017: 1684-1687
Kramer, T.; Huijgen, B.C.H.; Elferink-Gemser, M.T.; Visscher, C. 2017: Prediction of Tennis Performance in Junior Elite Tennis Players. Journal of Sports Science and Medicine 16(1): 14-21
Bunmahotama, W.; Hung, W.-N.; Lin, T.-F. 2017: Prediction of the adsorption capacities for four typical organic pollutants on activated carbons in natural waters. Water Research 111: 28-40
Messad, F.; Létourneau-Montminy, M.P.; Charbonneau, E.; Sauvant, D.; Guay, F. 2018: Prediction of the amino acid digestibility of legume seeds in growing pigs: a meta-analysis approach. Animal: An International Journal of Animal Bioscience 12(5): 940-949
Su, Q.; Lu, W.; Du, D.; Chen, F.; Niu, B.; Chou, K.-C. 2017: Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Oncotarget 8(30): 49359-49369
Sierra, J.; Roig, N.; Giménez Papiol, G.; Pérez-Gallego, E.; Schuhmacher, M. 2017: Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers. Science of the Total Environment 605-606: 211-218
Poudel, K.K.; Huang, Z.; Neupane, P.R.; Steel, R. 2017: Prediction of the Cancer Incidence in Nepal. Asian Pacific Journal of Cancer Prevention: Apjcp 18(1): 165-168
Berndt, A.; Lanna, D.P.D.; da Cruz, G.M.; Tullio, R.R.; Sakamoto, L.S.; de Alencar, M.M. 2017: Prediction of the chemical body composition of Nellore and crossbreed bulls. Journal of Animal Science 95(9): 3932-3939
Marks, M.ł; Glinicki, M.ł A.; Gibas, K. 2015: Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning. Materials 8(12): 8714-8727
Arakawa, Y.; Nai, Y.; Shidahara, M.; Furumoto, S.; Seki, C.; Okamura, N.; Tashiro, M.; Kudo, Y.; Yanai, K.; Gonda, K.; Watabe, H. 2017: Prediction of the Clinical SUV Ratio in Amyloid PET Imaging Using a Biomathematic Modeling Approach Toward the Efficient Development of a Radioligand. Journal of Nuclear Medicine: Official Publication Society of Nuclear Medicine 58(8): 1285-1292
Nagase, T.; Miyajima, N.; Tanaka, A.; Sazuka, T.; Seki, N.; Sato, S.; Tabata, S.; Ishikawa, K.; Kawarabayasi, Y.; Kotani, H. 1995: Prediction of the coding sequences of unidentified human genes. III. The coding sequences of 40 new genes (KIAA0081-KIAA0120) deduced by analysis of cDNA clones from human cell line KG-1 (supplement). Dna Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 2(1): 51-59
Nomura, N.; Nagase, T.; Miyajima, N.; Sazuka, T.; Tanaka, A.; Sato, S.; Seki, N.; Kawarabayasi, Y.; Ishikawa, K.; Tabata, S. 1994: Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1 (supplement). Dna Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 1(5): 251-262
Nomura, N.; Miyajima, N.; Sazuka, T.; Tanaka, A.; Kawarabayasi, Y.; Sato, S.; Nagase, T.; Seki, N.; Ishikawa, K.; Tabata, S. 1994: Prediction of the coding sequences of unidentified human genes. I. the coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. Dna Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 1(1): 27-35
Nagase, T.; Seki, N.; Ishikawa, K.; Tanaka, A.; Nomura, N. 1996: Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1 (supplement). Dna Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 3(1): 43-53
Nagase, T.; Ishikawa, K.; Suyama, M.; Kikuno, R.; Hirosawa, M.; Miyajima, N.; Tanaka, A.; Kotani, H.; Nomura, N.; Ohara, O. 1999: Prediction of the coding sequences of unidentified human genes. XIII. the complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. Dna Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 6(1): 63-70
Kikuno, R.; Nagase, T.; Ishikawa, K.; Hirosawa, M.; Miyajima, N.; Tanaka, A.; Kotani, H.; Nomura, N.; Ohara, O. 1999: Prediction of the coding sequences of unidentified human genes. XIV. the complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. Dna Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 6(3): 197-205
Nagase, T.; Kikuno, R.; Nakayama, M.; Hirosawa, M.; Ohara, O. 2000: Prediction of the coding sequences of unidentified human genes. XVIII. the complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. Dna Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 7(4): 273-281
Nagase, T.; Ishikawa, K.; Kikuno, R.; Hirosawa, M.; Nomura, N.; Ohara, O. 1999: Prediction of the coding sequences of unidentified human genes. XV. the complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. Dna Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 6(5): 337-345
Kwiecińska, K.; Kosicka-Gębska, Młgorzata.; Gębski, J.; Gutkowska, K. 2017: Prediction of the conditions for the consumption of game by Polish consumers. Meat Science 131: 28-33
Anelone, A.J.N.; Spurgeon, S.K. 2017: Prediction of the containment of HIV infection by antiretroviral therapy - a variable structure control approach. Iet Systems Biology 11(1): 44-53
Bibby, C.; Hodgson, M. 2017: Prediction of the diffuse-field transmission loss of interior natural-ventilation openings and silencers. Journal of the Acoustical Society of America 141(1): 277
Yamashita, M.; Endo, Y. 1995: Prediction of the distance from the skin to the lumbar epidural space in ex-premature infants. Journal of Anesthesia 9(3): 297-298
Cao, H.; Zhang, Y.; Zhao, J.; Zhu, L.; Wang, Y.; Li, J.; Feng, Y.-M.; Zhang, N. 2017: Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network. Combinatorial Chemistry and High Throughput Screening 20(7): 638-646
Mistry, P.; Neagu, D.; Sanchez-Ruiz, A.; Trundle, P.R.; Vessey, J.D.; Gosling, J.P. 2017: Prediction of the effect of formulation on the toxicity of chemicals. Toxicology Research 6(1): 42-53
Borella, E.; Poggesi, I.; Magni, P. 2018: Prediction of the Effect of Renal Impairment on the Pharmacokinetics of new Drugs. Clinical Pharmacokinetics 57(4): 505-514
Avanesov, M.; Münch, J.; Weinrich, J.; Well, L.; Säring, D.; Stehning, C.; Tahir, E.; Bohnen, S.; Radunski, U.K.; Muellerleile, K.; Adam, G.; Patten, M.; Lund, G. 2017: Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. European Radiology 27(12): 5136-5145
Battut, I.B.; Kempfer, A.; Lemasson, N.; Chevrier, L.; Camugli, S. 2017: Prediction of the fertility of stallion frozen-thawed semen using a combination of computer-assisted motility analysis, microscopical observation and flow cytometry. Theriogenology 97: 186-200
Salminen, M.; Eloranta, S.; Vire, J.; Viikari, P.; Viikari, L.; Vahlberg, T.; Lehtonen, A.; Arve, S.; Wuorela, M.; Viitanen, M. 2018: Prediction of the Future Need for Institutional Care in Finnish Older People: A Comparison of Two Birth Cohorts. Gerontology 64(1): 19-27
Ryu, M.S.; Kim, H.G.; Kim, H.Y.; Min, K.-S.; Kim, H.J.; Lee, H.M. 2017: Prediction of the glass transition temperature and design of phase diagrams of butadiene rubber and styrene-butadiene rubber via molecular dynamics simulations. Physical Chemistry Chemical Physics: Pccp 19(25): 16498-16506
Kazsoki, A.; Szabó, P.ét.; Zelkó, R.án. 2017: Prediction of the hydroxypropyl cellulose-poly(vinyl alcohol) ratio in aqueous solution containing papaverine hydrochloride in terms of drug loaded electrospun fiber formation. Journal of Pharmaceutical and Biomedical Analysis 138: 357-362
Buckinx, F.; Croisier, J-Louis.; Reginster, J-Yves.; Lenaerts, Céline.; Brunois, Téo.; Rygaert, X.; Petermans, J.; Bruyère, O. 2018: Prediction of the Incidence of Falls and Deaths Among Elderly Nursing Home Residents: The SENIOR Study. Journal of the American Medical Directors Association 19(1): 18-24
Sciortino, G.; Rodríguez-Guerra Pedregal, J.; Lledós, Aí.; Garribba, E.; Maréchal, J-Didier. 2018: Prediction of the interaction of metallic moieties with proteins: An update for protein-ligand docking techniques. Journal of Computational Chemistry 39(1): 42-51
Oyama, T.; Inoue, H.; Arima, M.; Momma, K.; Omori, T.; Ishihara, R.; Hirasawa, D.; Takeuchi, M.; Tomori, A.; Goda, K. 2017: Prediction of the invasion depth of superficial squamous cell carcinoma based on microvessel morphology: magnifying endoscopic classification of the Japan Esophageal Society. Esophagus: official journal of the Japan Esophageal Society 14(2): 105-112
Ding, L.-P.; Shao, P.; Lu, C.; Zhang, F.-H.; Liu, Y.; Mu, Q. 2017: Prediction of the Iron-Based Polynuclear Magnetic Superhalogens with Pseudohalogen CN as Ligands. Inorganic Chemistry 56(14): 7928-7935
Simmonds, M.J.; Meiselman, H.J. 2016: Prediction of the level and duration of shear stress exposure that induces subhemolytic damage to erythrocytes. Biorheology 53(5-6): 237-249
Hui, L.; Hui, L.; Tong, H. 2016: Prediction of the Long-term Efficacy of STA-MCA Bypass by DSC-Pi. Translational Neuroscience 7(1): 110-115
Hales, I.; Stiel, J.; Reeve, T.; Heap, T.; Myhill, J. 1969: Prediction of the long-term results of antithyroid drug therapy for thyrotoxicosis. Journal of Clinical Endocrinology and Metabolism 29(7): 998-1001
Zheng, S.; Xiao, M.; Tian, Y.; Chen, X. 2017: Prediction of the lowest charge-transfer excited-state energy at the donor-acceptor interface in a condensed phase using ground-state DFT calculations with generalized Kohn-Sham functionals. Journal of Molecular Modeling 23(8): 235
García-Ramos, A.; Torrejón, A.; Feriche, B.én.; Morales-Artacho, A.J.; Pérez-Castilla, A.; Padial, P.; Haff, G.G. 2018: Prediction of the Maximum Number of Repetitions and Repetitions in Reserve from Barbell Velocity. International Journal of Sports Physiology and Performance 13(3): 353-359
Rioland, G.; Dutournié, P.; Faye, D.; Daou, T.J.; Patarin, J.ël. 2016: Prediction of the mechanical properties of zeolite pellets for aerospace molecular decontamination applications. Beilstein Journal of Nanotechnology 7: 1761-1771
Jang, Y.-E.; Kim, E.-H.; Song, I.-K.; Lee, J.-H.; Ryu, H.-G.; Kim, H.-S.; Kim, J.-T. 2017: Prediction of the mid-tracheal level using surface anatomical landmarks in adults: Clinical implication of endotracheal tube insertion depth. Medicine 96(12): E6319
Ginzburg, I. 2017: Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme. Physical Review e 95(1-1): 013305
Ginzburg, I. 2017: Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis. Physical Review e 95(1-1): 013304
Chin, J.-H.; Lee, E.-H.; Kim, J.-I.; Choi, I.-C. 2017: Prediction of the optimal depth for superior vena cava cannulae with cardiac computed tomography during minimally invasive cardiac surgery: a prospective observational cohort study. Bmc Anesthesiology 17(1): 56
Moshirvaziri, H.; Ramezan-Arab, N.; Asgari, S. 2016: Prediction of the outcome in cardiac arrest patients undergoing hypothermia using EEG wavelet entropy. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2016: 3777-3780
Lee, D.Gyu.; Kwak, S.Gyu.; Chang, M.Cheol. 2017: Prediction of the outcome of bladder dysfunction based on electrically induced reflex findings in patients with cauda equina syndrome: A retrospective study. Medicine 96(21): E7014
Sylvestre, A.; Desmarais, C.; Meyer, Fçois.; Bairati, I.; Leblond, J. 2018: Prediction of the outcome of children who had a language delay at age 2 when they are aged 4: Still a challenge. International Journal of Speech-Language Pathology 20(7): 731-744
Fudalej, P.; Dragan, M.; Wedrychowska-Szulc, B. 2011: Prediction of the outcome of orthodontic treatment of Class IIi malocclusions--a systematic review. European Journal of Orthodontics 33(2): 190-197
Lin, L.; Jin, L.; Wang, Z.-H.; Cui, Z.-J.; Ma, Y. 2017: Prediction of the potential distribution of Tibetan medicinal Lycium ruthenicum in context of climate change. Zhongguo Zhong Yao Za Zhi 42(14): 2659-2669
Ito, K.; Kobayashi, K. 2017: Prediction of the potential risk of idiosyncratic drug toxicity. Drug Metabolism and Pharmacokinetics 32(1): 1
Poltaretskyi, S.; Chaoui, J.; Mayya, M.; Hamitouche, C.; Bercik, M.J.; Boileau, P.; Walch, G. 2017: Prediction of the pre-morbid 3D anatomy of the proximal humerus based on statistical shape modelling. Bone and Joint Journal 99-B(7): 927-933
Yabuuchi, H.; Kawanami, S.; Iwama, E.; Okamoto, I.; Kamitani, T.; Sagiyama, K.; Yamasaki, Y.; Honda, H. 2018: Prediction of Therapeutic Effect of Chemotherapy for NSCLC Using Dual-Input Perfusion CT Analysis: Comparison among Bevacizumab Treatment, Two-Agent Platinum-based Therapy without Bevacizumab, and other Non-Bevacizumab Treatment Groups. Radiology 286(2): 685-695
Liang, G.; DeYonker, N.J.; Zhao, X.; Webster, C.E. 2017: Prediction of the reduction potential in transition-metal containing complexes: how expensive? for what accuracy?. Journal of Computational Chemistry 38(28): 2430-2438
Vandenplas, J.ér.ém.; Windig, J.J.; Calus, M.P.L. 2017: Prediction of the reliability of genomic breeding values for crossbred performance. Genetics Selection Evolution: Gse 49(1): 43
Alassaf, N. 2018: Prediction of the requirement of open reduction for developmental dysplasia of the hip. Journal of International Medical Research 46(1): 54-61
Khan, W.S.; Hamadneh, N.N.; Khan, W.A. 2017: Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm. Plos one 12(9): E0183920
Wang, D-Hui.; Zhou, H-Ying.; Hu, C-Hao.; Zhong, Y.; Oganov, A.R.; Rao, G-Hui. 2017: Prediction of thermodynamically stable Li-B compounds at ambient pressure. Physical Chemistry Chemical Physics: Pccp 19(12): 8471-8477
Ahn, S.; Jo, S.; Jun, S.Beom.; Lee, H.Woon.; Lee, S. 2017: Prediction of the Seizure Suppression Effect by Electrical Stimulation via a Computational Modeling Approach. Frontiers in Computational Neuroscience 11: 39
Liu, W.-T.; Wu, H.-T.; Juang, J.-N.; Wisniewski, A.; Lee, H.-C.; Wu, D.; Lo, Y.-L. 2017: Prediction of the severity of obstructive sleep apnea by anthropometric features via support vector machine. Plos one 12(5): E0176991
Allard, M.-A.; Baillié, G.ël.; Castro-Benitez, C.; Faron, M.; Blandin, F.éd.ér.; Cherqui, D.; Castaing, D.; Cunha, A.S.; Adam, R.é; Vibert, Ér. 2017: Prediction of the Total Liver Weight using anthropological clinical parameters: does complexity result in better accuracy?. Hpb: the Official Journal of the International Hepato Pancreato Biliary Association 19(4): 338-344
Ellens, H.; Johnson, M.; Lawrence, S.K.; Watson, C.; Chen, L.; Richards-Peterson, L.E. 2017: Prediction of the Transporter-Mediated Drug-Drug Interaction Potential of Dabrafenib and its Major Circulating Metabolites. Drug Metabolism and Disposition: the Biological Fate of Chemicals 45(6): 646-656
Norrby, S.; Bergman, R.; Hirnschall, N.; Nishi, Y.; Findl, O. 2017: Prediction of the true IOL position. British Journal of Ophthalmology 101(10): 1440-1446
De Filippis, L.A.C.; Serio, L.M.; Facchini, F.; Mummolo, G.; Ludovico, A.D. 2016: Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network. Materials 9(11)
Bhowmik, R.; Berry, R.J.; Durstock, M.F.; Leever, B.J. 2017: Prediction of the Wetting Behavior of Active and Hole-Transport Layers for Printed Flexible Electronic Devices Using Molecular Dynamics Simulations. Acs Applied Materials and Interfaces 9(22): 19269-19277
Zhao, K.; Zhou, X-Dong.; Liu, X-Qiang.; Lu, L.; Wu, Z-Bo.; Peng, F.; Ju, X-Yu.; Yang, L-Zhong. 2016: Prediction of Three-Dimensional Downward Flame Spread Characteristics over Poly(methyl methacrylate) Slabs in Different Pressure Environments. Materials 9(11)
Blasi, A.; Molina, V.; Sanchez-Cabús, S.; Balust, J.; Garcia-Valdecasas, J.Carlos.; Taura, P. 2018: Prediction of thromboembolic complications after liver resection for cholangiocarcinoma: is there a place for thromboelastometry?. Blood Coagulation and Fibrinolysis: An International Journal in Haemostasis and Thrombosis 29(1): 61-66
Hai, J-Jo.; Chan, P-Hei.; Chan, Y-Hang.; Fong, C-Ho-Yi.; Huang, D.; Li, W-Hua.; Yin, L-Xue.; Lau, C-Pak.; Tse, H-Fat.; Siu, C-Wah. 2016: Prediction of Thromboembolic Events in Heart Failure Patients in Sinus Rhythm: The Hong Kong Heart Failure Registry. Plos one 11(12): E0169095
Wang, T.; Kang, X.; He, L.; Liu, Z.; Xu, H.; Zhao, A. 2017: Prediction of thrombophilia in patients with unexplained recurrent pregnancy loss using a statistical model. International Journal of Gynaecology and Obstetrics: the Official Organ of the International Federation of Gynaecology and Obstetrics 138(3): 283-287
Hosseinzadegan, H.; Tafti, D.K. 2017: Prediction of Thrombus Growth: Effect of Stenosis and Reynolds Number. Cardiovascular Engineering and Technology 8(2): 164-181
Zhang, R.; Zhang, G.; Wang, R.; Tan, J.; He, Y.; Meng, Z. 2017: Prediction of thyroidal 131i effective half-life in patients with Graves' disease. Oncotarget 8(46): 80934-80940
van den Brink, W.; Emerenciana, A.; Bellanti, F.; Della Pasqua, O.; van der Laan, J.Willem. 2017: Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents. Toxicology and Applied Pharmacology 320: 51-59
Hardiansyah, D.; Attarwala, A.A.; Kletting, P.; Mottaghy, F.M.; Glatting, G. 2017: Prediction of time-integrated activity coefficients in PRRT using simulated dynamic PET and a pharmacokinetic model. Physica Medica: Pm: An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics 42: 298-304
Miyoshi, Y.; Yoneyama, S.; Kawahara, T.; Hattori, Y.; Teranishi, J.-I.; Ohta, J.-I.; Takebayashi, S.; Yokomizo, Y.; Hayashi, N.; Uemura, H. 2017: Prediction of time to Castration-Resistant Prostate Cancer Using Bone Scan Index in Men with Metastatic Hormone-Sensitive Prostate Cancer. Urologia Internationalis 99(4): 400-405
Apfel, R.E. 1986: Prediction of tissue composition from ultrasonic measurements and mixture rules. Journal of the Acoustical Society of America 79(1): 148-152
Nigade, P.B.; Gundu, J.; Sreedhara Pai, K.; Nemmani, K.V.S. 2017: Prediction of Tissue-to-Plasma Ratios of Basic Compounds in Mice. European Journal of Drug Metabolism and Pharmacokinetics 42(5): 835-847
Jia, Y.-Z.; Ji, W.-X.; Zhang, C.-W.; Li, P.; Zhang, S.-F.; Wang, P.-J.; Li, S.-S.; Yan, S.-S. 2017: Prediction of topological crystalline insulators and topological phase transitions in two-dimensional PbTe films. Physical Chemistry Chemical Physics: Pccp 19(43): 29647-29652
Kashiwazaki, H.; Dejima, Y.; Orias-Rivera, J.; Coward, W.A. 1996: Prediction of total body water and fatness from anthropometry: Importance of skinfold measurements. American Journal of Human Biology: the Official Journal of the Human Biology Council 8(3): 331-340
Damasceno, Év.P.; de Figuerêdo, L.ív.P.; Pimentel, M.íl.F.; Loureiro, S.; Costa-Lotufo, L.íc.V. 2017: Prediction of toxicity of zinc and nickel mixtures to Artemia sp. at various salinities: from additivity to antagonism. Ecotoxicology and Environmental Safety 142: 322-329
Briones-Orta, M.A.; Avendaño-Vázquez, S.E.én.; Ivette Aparicio-Bautista, D.; Coombes, J.D.; Weber, G.F.; Syn, W.-K. 2017: Prediction of transcription factor bindings sites affected by SNPs located at the osteopontin promoter. Data in Brief 14: 538-542
Studerus, E.; Ramyead, A.; Riecher-Rössler, A. 2017: Prediction of transition to psychosis in patients with a clinical high risk for psychosis: a systematic review of methodology and reporting. Psychological Medicine 47(7): 1163-1178
Posada, M.M.; Cannady, E.A.; Payne, C.D.; Zhang, X.; Bacon, J.A.; Pak, Y.A.; Higgins, J.W.; Shahri, N.; Hall, S.D.; Hillgren, K.M. 2017: Prediction of Transporter-Mediated Drug-Drug Interactions for Baricitinib. Clinical and Translational Science 10(6): 509-519
Shiozawa, S.; Usui, T.; Kuhara, K.; Tsuchiya, A.; Miyauchi, T.; Kono, T.; Asaka, S.; Yamaguchi, K.; Yokomizo, H.; Shimakawa, T.; Yoshimatsu, K.; Katsube, T.; Naritaka, Y. 2016: Prediction of Treatment Effect of Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma Using Computed Tomography(CT)-Attenuation Value. Gan to Kagaku Ryoho. Cancer and ChemoTherapy 43(12): 1487-1489
Rethorst, C.D.; South, C.C.; Rush, A.J.; Greer, T.L.; Trivedi, M.H. 2017: Prediction of treatment outcomes to exercise in patients with nonremitted major depressive disorder. Depression and Anxiety 34(12): 1116-1122
Çakıroğlu, Y.ği.; Doğer, E.; Yıldırım Kopuk, Şu.; Özcan, C.; Nalbant, B.ül.; Çorakçı, A.ın.; Yücesoy, İz. 2014: Prediction of tumor grade and stage in endometrial carcinoma by preoperative assessment of sonographic endometrial thickness: Is it possible?. Turkish Journal of Obstetrics and Gynecology 11(4): 211-214
Cui, Z.-H.; Jimenez-Izal, E.; Alexandrova, A.N. 2017: Prediction of Two-Dimensional Phase of Boron with Anisotropic Electric Conductivity. Journal of Physical Chemistry Letters 8(6): 1224-1228
Seidel, D.; Ziegler, A.G. 1996: Prediction of type 1 diabetes. Hormone Research 45(Suppl 1): 36-39
Frohnert, B.I.; Laimighofer, M.; Krumsiek, J.; Theis, F.J.; Winkler, C.; Norris, J.M.; Ziegler, A.-G.; Rewers, M.J.; Steck, A.K. 2018: Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young. Pediatric Diabetes 19(2): 277-283
Leong, A.; Daya, N.; Porneala, B.; Devlin, J.J.; Shiffman, D.; McPhaul, M.J.; Selvin, E.; Meigs, J.B. 2018: Prediction of Type 2 Diabetes by Hemoglobin A 1c in Two Community-Based Cohorts. Diabetes Care 41(1): 60-68
Vieira, M.C.; White, S.L.; Patel, N.; Seed, P.T.; Briley, A.L.; Sandall, J.; Welsh, P.; Sattar, N.; Nelson, S.M.; Lawlor, D.A.; Poston, L.; Pasupathy, D.; Poston, L.; Shennan, A.; Briley, A.; Singh, C.; Seed, P.; Sandall, J.; Sanders, T.; Patel, N.; Flynn, A.; Badger, S.; Barr, S.; Holmes, B.; Goff, L.; Hunt, C.; Filmer, J.; Fetherstone, J.; Scholtz, L.; Tarft, H.; Lucas, A.; Tekletdadik, T.; Ricketts, D.; Gill, C.; Ignatian, A.S.; Boylen, C.; Adegoke, F.; Lawley, E.; Butler, J.; Maitland, R.; Vieira, M.; Pasupathy, D.; Oteng-Ntim, E.; Khazaezadeh, N.; Demilew, J.; O'Connor, S.; Evans, Y.; O'Donnell, S.; de la Llera, A.; Gutzwiller, G.; Hagg, L.; Robson, S.; Bell, R.; Hayes, L.; Kinnunen, T.; McParlin, C.; Miller, N.; Kimber, A.; 2017: Prediction of uncomplicated pregnancies in obese women: a prospective multicentre study. Bmc Medicine 15(1): 194
André, E.; Lufungulo Bahati, Y.; Mulume Musafiri, E.; Bahati Rusumba, O.; Van der Linden, D.; Zech, F. 2017: Prediction of Under-Detection of Paediatric Tuberculosis in the Democratic Republic of Congo: Experience of Six Years in the South-Kivu Province. Plos one 12(1): E0169014
Bryk, A.H.; Plens, K.; Undas, A. 2017: Prediction of unstable anticoagulation with acenocoumarol versus warfarin in atrial fibrillation. Cardiology Journal 24(5): 477-483
Erdogan, A.; Argall, B.D. 2017: Prediction of user preference over shared-control paradigms for a robotic wheelchair. IEEE .. International Conference on Rehabilitation Robotics: 2017: 1106-1111
Rashid, M.I.; Naz, A.; Ali, A.; Andleeb, S. 2017: Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach. Genomics 109(3-4): 274-283
Mizrachi, Y.; Barber, E.; Kovo, M.; Bar, J.; Lurie, S. 2018: Prediction of vaginal birth after one ceasarean delivery for non-progressive labor. Archives of Gynecology and Obstetrics 297(1): 85-91
van Vuuren, T.Maj.; Van Zandvoort, C.; Doganci, S.; Zwiers, I.; tenCate-Hoek, A.J.; Kurstjens, R.Lm.; Wittens, C.Ha. 2017: Prediction of venous wound healing with laser speckle imaging. Phlebology 32(10): 658-664
Wolf, A.; Fanshawe, T.R.; Sariaslan, A.; Cornish, R.; Larsson, H.; Fazel, S. 2018: Prediction of violent crime on discharge from secure psychiatric hospitals: a clinical prediction rule (FoVOx). European Psychiatry: the Journal of the Association of European Psychiatrists 47: 88-93
Zhang, M.; Yang, L.; Ren, J.; Ahlgren, N.A.; Fuhrman, J.A.; Sun, F. 2017: Prediction of virus-host infectious association by supervised learning methods. Bmc Bioinformatics 18(Suppl. 3): 60
Becerra, A.és.; Bucheli, V.A.; Moreno, P.A. 2017: Prediction of virus-host protein-protein interactions mediated by short linear motifs. Bmc Bioinformatics 18(1): 163
Cairns, A.J.; Kavanagh, D.J.; Dark, F.; McPhail, S.M. 2017: Prediction of vocational participation and global role functioning in help-seeking young adults, from neurocognitive, demographic and clinical variables. Journal of Affective Disorders 221: 158-164
Wu, M.-J.; Mwangi, B.; Passos, I.C.; Bauer, I.E.; Cao, B.; Frazier, T.W.; Zunta-Soares, G.B.; Soares, J.C. 2017: Prediction of vulnerability to bipolar disorder using multivariate neurocognitive patterns: a pilot study. International Journal of Bipolar Disorders 5(1): 32
Jasseron, C.; Legeai, C.; Jacquelinet, C.; Leprince, P.; Cantrelle, C.; Audry, B.ît.; Porcher, R.; Bastien, O.; Dorent, R. 2017: Prediction of Waitlist Mortality in Adult Heart Transplant Candidates: the Candidate Risk Score. Transplantation 101(9): 2175-2182
Hansen, E.A.; Nielsen, A.M.øl.; Kristensen, L.A.R.; Madeleine, P.; Voigt, M. 2018: Prediction of walk-to-run transition using stride frequency: a test-retest reliability study. Gait and Posture 60: 71-75
Swainson, M.G.; Batterham, A.M.; Tsakirides, C.; Rutherford, Z.H.; Hind, K. 2017: Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. Plos one 12(5): E0177175
Weigel, K.A.; Pralle, R.S.; Adams, H.; Cho, K.; Do, C.; White, H.M. 2017: Prediction of whole-genome risk for selection and management of hyperketonemia in Holstein dairy cattle. Journal of Animal Breeding and Genetics 134(3): 275-285
De Koning, M.E.; Scheenen, M.E.; van der Horn, H.J.; Timmerman, M.E.; Hageman, G.; Roks, G.; Spikman, J.M.; van der Naalt, J. 2017: Prediction of work resumption and sustainability up to 1 year after mild traumatic brain injury. Neurology 89(18): 1908-1914
Soewondo, P.; Suyono, S.; Sastrosuwignyo, M.K.; Harahap, A.R.; Sutrisna, B.; Makmun, L.H. 2017: Prediction of Wound Healing in Diabetic Foot Ulcers: an Observational Study in Tertiary Hospital in Indonesia. Acta Medica Indonesiana 49(1): 41-51
Yu, X.; Hou, H.; Wang, B. 2017: Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6. Journal of Computational Chemistry 38(10): 721-729
Zhao, J.; Liu, C.; Guo, W.; Ma, J. 2017: Prediction on the light-assisted exfoliation of multilayered arsenene by the photo-isomerization of azobenzene. Nanoscale 9(21): 7006-7011
Kim, S.; Baladandayuthapani, V.; Lee, J.Jack. 2017: Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression. Statistics in Biosciences 9(1): 217-245
Nguimdo, R.Modeste.; Lacot, E.; Jacquin, O.; Hugon, O.; Van der Sande, G.; Guillet de Chatellus, H. 2017: Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback. Optics Letters 42(3): 375-378
Bašová, P.; Pešta, M.; Sochor, M.; Stopka, T.áš 2017: Prediction Potential of Serum miR-155 and miR-24 for Relapsing Early Breast Cancer. International Journal of Molecular Sciences 18(10)
Shuang Li; Shiji Song; Gao Huang 2017: Prediction Reweighting for Domain Adaptation. IEEE Transactions on Neural Networks and Learning Systems 28(7): 1682-1695
Obaro, S. 2007: Prediction rule for bacterial meningitis in children. JAMA 297(15): 1653-4; author reply 1654-5
Volpicelli, G.; Vanni, S.; Becattini, C.; Sferrazza Papa, G.Francesco.; Gigli, C.; Grifoni, S.; Nazerian, P. 2017: Prediction Rule for Diagnosis of Pulmonary Embolism Enhanced by Lung and Venous Ultrasound: Making Confusion or Increasing Efficiency?. Academic emergency medicine: official journal of the Society for Academic Emergency Medicine 24(4): 498-499
Vukmirović, M.; Bošković, A.; Tomašević Vukmirović, I.; Vujadinovic, R.; Fatić, N.; Bukumirić, Z.; Vukmirović, F. 2017: Predictions and Outcomes of Atrial Fibrillation in the Patients with Acute Myocardial Infarction. Open Medicine 12: 115-124
Miyares, M.A. 2016: Predictions and presumptive treatment of heparin-induced thrombocytopenia. American Journal of Health-System Pharmacy: Ajhp: Official Journal of the American Society of Health-System Pharmacists 73(10): 612-614
Darmon, M.; Ostermann, M.; Joannidis, M. 2017: Predictions are difficult…especially about AKi. Intensive Care Medicine 43(6): 932-934
Lin, K.J.; Singer, D.E.; Glynn, R.J.; Blackley, S.; Zhou, L.; Liu, J.; Dube, G.; Oertel, L.B.; Schneeweiss, S. 2017: Prediction Score for Anticoagulation Control Quality Among Older Adults. Journal of the American Heart Association 6(10)
Rogers, J.R.; McHugh, S.M.; Lin, Y.-S. 2017: Predictions for α-Helical Glycopeptide Design from Structural Bioinformatics Analysis. Journal of Chemical Information and Modeling 57(10): 2598-2611
Hessel, E.T.; Loeb, E.L.; Szwedo, D.E.; Allen, J.P. 2016: Predictions from Early Adolescent Emotional Repair Abilities to Functioning in Future Relationships. Journal of Research on Adolescence: the Official Journal of the Society for Research on Adolescence 26(4): 776-789
Chen, W.-H.; Hsu, H.-J.; Kumar, G.; Budzianowski, W.M.; Ong, H.C. 2017: Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis. Bioresource Technology 246: 12-19
Bounakta, S.; Bteich, M.; Mantha, M.; Poulin, P.; Haddad, S. 2018: Predictions of bisphenol A hepatic clearance in the isolated perfused rat liver (IPRL): impact of albumin binding and of co-administration with naproxen. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 48(2): 135-147
Chang, C.-L.; Li, M.-Y. 2017: Predictions of Diffuse Pollution by the HSPF Model and the Back-Propagation Neural Network Model. Water Environment Research: a Research Publication of the Water Environment Federation 89(8): 732-738
Gross, K.L. 1981: Predictions of fate from rosette size in four "biennial" plant species: Verbascum thapsus, Oenothera biennis, Daucus carota, and Tragopogon dubius. Oecologia 48(2): 209-213
Werner, P.A. 1975: Predictions of fate from rosette size in teasel (Dipsacus fullonum L.). Oecologia 20(3): 197-201
Planková, B.; Vinš, V.ác.; Hrubý, J. 2017: Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves. Journal of Chemical Physics 147(16): 164702
Aldeghi, M.; Heifetz, A.; Bodkin, M.J.; Knapp, S.; Biggin, P.C. 2017: Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations. Journal of the American Chemical Society 139(2): 946-957
Castro-Montoya, J.M.; Peiren, N.; Veneman, J.; De Baets, B.; De Campeneere, S.; Fievez, V. 2017: Predictions of methane emission levels and categories based on milk fatty acid profiles from dairy cows. Animal: An International Journal of Animal Bioscience 11(7): 1153-1162
Wang, X.; Fisher, L.K.; Milea, D.; Jonas, J.B.; Girard, M.ël.J.A. 2017: Predictions of Optic Nerve Traction Forces and Peripapillary Tissue Stresses Following Horizontal Eye Movements. Investigative Ophthalmology and Visual Science 58(4): 2044-2053
Yang, X.; Zheng, J.-H.; Mu, C.; Lin, J. 2017: Predictions of potential geographical distribution of Alhagi sparsifolia under climate change. Zhongguo Zhong Yao Za Zhi 42(3): 450-455
Cucinotta, F.A.; To, K.; Cacao, E. 2017: Predictions of space radiation fatality risk for exploration missions. Life Sciences in Space Research 13: 1-11
Ritchie, M.E.; Tilman, D. 1993: Predictions of species interactions from consumer-resource theory: experimental tests with grasshoppers and plants. Oecologia 94(4): 516-527
Wirtzfeld, M.R.; Ibrahim, R.A.; Bruce, I.C. 2017: Predictions of Speech Chimaera Intelligibility Using Auditory Nerve Mean-Rate and Spike-Timing Neural Cues. Journal of the Association for Research in Otolaryngology: Jaro 18(5): 687-710
Selvaratnam, C.; Thevarajoo, S.; Goh, K.M.; Chan, K.-G.; Chong, C.S. 2016: Proposal to reclassify Roseivirga ehrenbergii (Nedashkovskaya et al., 2008) as Roseivirga seohaensis comb. nov., description of Roseivirga seohaensis subsp. aquiponti subsp. nov. and emendation of the genus Roseivirga. International Journal of Systematic and Evolutionary Microbiology 66(12): 5537-5543
Clark, A. 2017: Predictions, precision, and agentive attention. Consciousness and Cognition 56: 115-119
Ramachandran, S.; Meyer, T.; Olson, C.R. 2017: Prediction suppression and surprise enhancement in monkey inferotemporal cortex. Journal of Neurophysiology 118(1): 374-382
Huang, J.-C.; Chang, H.; Kuo, C.-G.; Li, J.-F.; You, Y.-C. 2015: Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology. Materials 8(12): 8437-8451
McCall, A.; Fanchini, M.; Coutts, A.J. 2017: Prediction: the Modern-Day Sport-Science and Sports-Medicine "Quest for the Holy Grail". International Journal of Sports Physiology and Performance 12(5): 704-706
Choi, S.C.; Muizelaar, J.P.; Barnes, T.Y.; Marmarou, A.; Brooks, D.M.; Young, H.F. 1991: Prediction tree for severely head-injured patients. Journal of Neurosurgery 75(2): 251-255
Hoogendoorn, M.; El Hassouni, A.; Mok, K.; Ghassemi, M.; Szolovits, P. 2016: Prediction using patient comparison vs. modeling: a case study for mortality prediction. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2016: 2464-2467
Bas-Lando, M.; Rabinowitz, R.; Farkash, R.; Algur, N.; Rubinstein, E.; Schonberger, O.; Eldar-Geva, T. 2017: Prediction value of anti-Mullerian hormone (AMH) serum levels and antral follicle count (AFC) in hormonal contraceptive (HC) users and non-HC users undergoing IVF-PGD treatment. Gynecological Endocrinology: the Official Journal of the International Society of Gynecological Endocrinology 33(10): 797-800
Xu, T.; Yang, Y.; Zhao, L.; Zhou, D.-D.; Zhang, Y. 2017: Prediction Value of TWEAK/Fn14 in Crohn's Disease with Intestinal Fibrosis. Sichuan da Xue Xue Bao. Yi Xue Ban 48(5): 721-726
Van Diepen, M.; Ramspek, C.L.; Jager, K.J.; Zoccali, C.; Dekker, F.W. 2017: Prediction versus aetiology: common pitfalls and how to avoid them. Nephrology Dialysis Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 32(Suppl_2): Ii1-Ii5
Kaplan, A.; Lock, E.F. 2017: Prediction with Dimension Reduction of Multiple Molecular Data Sources for Patient Survival. Cancer Informatics 16: 1176935117718517
Siriopol, I.; Siriopol, D.; Voroneanu, L.; Covic, A. 2017: Predictive abilities of baseline measurements of fluid overload, assessed by bioimpedance spectroscopy and serum N-terminal pro-B-type natriuretic peptide, for mortality in hemodialysis patients. Archives of Medical Science: Ams 13(5): 1121-1129
Fu, S.; Liu, C.; Luo, L.; Ye, P. 2017: Predictive abilities of cardiovascular biomarkers to rapid decline of renal function in Chinese community-dwelling population: a 5-year prospective analysis. Bmc Nephrology 18(1): 331
Yoshikawa, S.; Shiraishi, A.; Kishino, M.; Honda, M.; Urushibata, N.; Sekiya, K.; Shoko, T.; Otomo, Y. 2018: Predictive ability and interobserver reliability of computed tomography findings for angioembolization in patients with pelvic fracture. Journal of Trauma and Acute Care Surgery 84(2): 319-324
Schaalan, M.; Mohamed, W. 2017: Predictive ability of circulating osteoprotegerin as a novel biomarker for early detection of acute kidney injury induced by sepsis. European Cytokine Network 28(2): 52-62
Smith, W.R.; McClish, D.K.; Levenson, J.; Aisiku, I.; Dahman, B.; Bovbjerg, V.E.; Roseff, S.; Roberts, J. 2018: Predictive Ability of Intermittent Daily Sickle Cell Pain Assessment: the PiSCES Project. Pain Medicine 19(10): 1972-1981
Montejano Lozoya, R.; Martínez-Alzamora, N.; Clemente Marín, G.; Guirao-Goris, S.J.A.; Ferrer-Diego, R.María. 2017: Predictive ability of the Mini Nutritional Assessment Short Form (MNA-SF) in a free-living elderly population: a cross-sectional study. Peerj 5: E3345
Chen, Z.; Rui, Y.; Xu, Y.; Zhang, Q.; Sun, Z.; Zhou, J.; Chen, X. 2018: Effect of tendon hydrogel on healing of tendon injury. Experimental and Therapeutic Medicine 15(6): 5154
Riis, A.; Rathleff, M.S.; Jensen, C.E.; Jensen, M.B. 2017: Predictive ability of the start back tool: an ancillary analysis of a low back pain trial from Danish general practice. Bmc Musculoskeletal Disorders 18(1): 360
Babajanpour, M.; Asghari Jafarabadi, M.; Sadeghi Bazargani, H. 2017: Predictive ability of underlying factors of motorcycle rider behavior: an application of logistic quantile regression for bounded outcomes. Health Promotion Perspectives 7(4): 230-237
Takao, T.; Suka, M.; Yanagisawa, H.; Matsuyama, Y.; Iwamoto, Y. 2017: Predictive ability of visit-to-visit variability in HbA1c and systolic blood pressure for the development of microalbuminuria and retinopathy in people with type 2 diabetes. Diabetes Research and Clinical Practice 128: 15-23
Edner, B.J.; Glaser, B.A.; Calhoun, G.B. 2017: Predictive accuracy and factor structure of the Child Report of Posttraumatic Symptoms (CROPS) among adjudicated youth. Psychological Trauma: Theory Research Practice and Policy 9(6): 706-713
Jamil, Z.; Perveen, K.; Malik, R.; Avesi, L. 2017: Predictive accuracy of anti mullerian hormone as indicator of ovarian follicle loss in cyclophosphamide treated mice. Jpma. Journal of the Pakistan Medical Association 67(10): 1470-1475
Maeda, K.; Koga, T.; Nasu, T.; Takaki, M.; Akagi, J. 2017: Predictive Accuracy of Calf Circumference Measurements to Detect Decreased Skeletal Muscle Mass and European Society for Clinical Nutrition and Metabolism-Defined Malnutrition in Hospitalized Older Patients. Annals of Nutrition and Metabolism 71(1-2): 10-15
Caldiroli, D.; Iezzoni, C. 2017: Predictive accuracy of difficult mask ventilation assessment methods. Anaesthesia 72(6): 786-787
Jayarajah, U.; Samarasekera, D.N. 2017: Predictive accuracy of Goodsall’s rule for fistula-in-ano. Ceylon Medical Journal 62(2): 97-99
Safarishahrbijari, A.; Teyhouee, A.; Waldner, C.; Liu, J.; Osgood, N.D. 2017: Predictive accuracy of particle filtering in dynamic models supporting outbreak projections. Bmc Infectious Diseases 17(1): 648
Geurts, M.; de Kort, F.A.S.; de Kort, P.L.M.; van Tuijl, J.H.; Kappelle, L.J.; van der Worp, H.B. 2017: Predictive accuracy of physicians' estimates of outcome after severe stroke. Plos one 12(9): E0184894
Quinlivan, L.; Cooper, J.; Meehan, D.; Longson, D.; Potokar, J.; Hulme, T.; Marsden, J.; Brand, F.; Lange, K.; Riseborough, E.; Page, L.; Metcalfe, C.; Davies, L.; O'Connor, R.; Hawton, K.; Gunnell, D.; Kapur, N. 2017: Predictive accuracy of risk scales following self-harm: multicentre, prospective cohort study. British Journal of Psychiatry: the Journal of Mental Science 210(6): 429-436
Esplin, M.S.; Elovitz, M.A.; Iams, J.D.; Parker, C.B.; Wapner, R.J.; Grobman, W.A.; Simhan, H.N.; Wing, D.A.; Haas, D.M.; Silver, R.M.; Hoffman, M.K.; Peaceman, A.M.; Caritis, S.N.; Parry, S.; Wadhwa, P.; Foroud, T.; Mercer, B.M.; Hunter, S.M.; Saade, G.R.; Reddy, U.M. 2017: Predictive Accuracy of Serial Transvaginal Cervical Lengths and Quantitative Vaginal Fetal Fibronectin Levels for Spontaneous Preterm Birth Among Nulliparous Women. JAMA 317(10): 1047-1056
Langella, F.; Villafañe, J.H.; Damilano, M.; Cecchinato, R.; Pejrona, M.; Ismael, M.; Berjano, P. 2017: Predictive Accuracy of Surgimap Surgical Planning for Sagittal Imbalance: a Cohort Study. Spine 42(22): E1297-E1304
Newman, M.; Britt, R.B.; Lauchner, K.A. 2000: Predictive accuracy of the HESi Exit Exam. a follow-up study. Computers in Nursing 18(3): 132-136
Zhu, D.; Fang, C.; Li, X.; Geng, Y.; Li, R.; Wu, C.; Jiang, J.; Wu, C. 2017: Predictive analysis of long non-coding RNA expression profiles in diffuse large B-cell lymphoma. Oncotarget 8(14): 23228-23236
Shroff, R. 2017: Predictive Analytics for City Agencies: Lessons from Children's Services. Big Data 5(3): 189-196
Syed-Abdul, S.; Iqbal, U.; Jack Li, Y.-C. 2017: Predictive Analytics through Machine Learning in the clinical settings. Computer Methods and Programs in Biomedicine 144: A1-A2
Lessard, L.; Michalowski, W.; Chen Li, W.; Amyot, D.; Halwani, F.; Banerjee, D. 2016: Predictive Analytics to Support Real-Time Management in Pathology Facilities. AMIA . Annual Symposium Proceedings. AMIA Symposium 2016: 772-778
Maslehaty, H.; Capone, C.; Frantsev, R.; Fischer, I.; Jabbarli, R.; Cornelius, J.F.; Kamp, M.A.; Cappabianca, P.; Sure, U.; Steiger, H.-J.; Petridis, A.K. 2018: Predictive anatomical factors for rupture in middle cerebral artery mirror bifurcation aneurysms. Journal of Neurosurgery 128(6): 1799-1807
Wirth, W.; Hunter, D.J.; Nevitt, M.C.; Sharma, L.; Kwoh, C.K.; Ladel, C.; Eckstein, F. 2017: Predictive and concurrent validity of cartilage thickness change as a marker of knee osteoarthritis progression: data from the Osteoarthritis Initiative. Osteoarthritis and Cartilage 25(12): 2063-2071
Mitchell, P.B.; Meiser, B.; Wilde, A.; Fullerton, J.; Donald, J.; Wilhelm, K.; Schofield, P.R. 2010: Predictive and diagnostic genetic testing in psychiatry. Psychiatric Clinics of North America 33(1): 225-243
Abdel-Haie, O.M.; Behiry, E.G.; Abd Almonaem, E.R.; Ahmad, E.S.; Assar, E.H. 2017: Predictive and diagnostic value of serum intestinal fatty acid binding protein in neonatal necrotizing enterocolitis (case series). Annals of Medicine and Surgery 21: 9-13
Maucort-Boulch, D.; Djeridane, M.; Roy, P.; Riche, B.; Colonna, P.; Andrieu, J.-M. 2007: Predictive and discriminating three-risk-group prognostic scoring system for staging Hodgkin lymphomas. Cancer 109(2): 256-264
Hashemi Madani, N.; Ismail-Beigi, F.; Khamseh, M.E.; Malek, M.; Ebrahimi Valojerdi, A. 2017: Predictive and explanatory factors of cardiovascular disease in people with adequately controlled type 2 diabetes. European Journal of Preventive Cardiology 24(11): 1181-1189
Das, V.; Kalita, J.; Pal, M. 2017: Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomedicine and PharmacoTherapy 87: 8-19
Verdaguer, H.; Saurí, T.; Macarulla, T. 2017: Predictive and prognostic biomarkers in personalized gastrointestinal cancer treatment. Journal of Gastrointestinal Oncology 8(3): 405-417
Kim, H.J.; Choi, M.G.; Park, M.K.; Seo, Y.R. 2017: Predictive and Prognostic Biomarkers of Respiratory Diseases due to Particulate Matter Exposure. Journal of Cancer Prevention 22(1): 6-15
Pirone, C.; Mendoza-Pinto, C.; van der Windt, D.ël.A.; Parker, B.; O Sullivan, M.; Bruce, I.N. 2017: Predictive and prognostic factors influencing outcomes of rituximab therapy in systemic lupus erythematosus (SLE): a systematic review. Seminars in Arthritis and Rheumatism 47(3): 384-396
Herrero-Vicent, C.; Guerrero, A.; Gavilá, J.; Gozalbo, F.; Hernández, A.; Sandiego, S.; Algarra, M.A.ón.; Calatrava, A.; Guillem-Porta, V.; Ruiz-Simón, A. 2017: Predictive and prognostic impact of tumour-infiltrating lymphocytes in triple-negative breast cancer treated with neoadjuvant chemotherapy. Ecancermedicalscience 11: 759
Wilson, P.M.; Ladner, R.D.; Lenz, H.-J. 2007: Predictive and prognostic markers in colorectal cancer. Gastrointestinal Cancer Research: Gcr 1(6): 237-246
Garcia-Vicente, A.M.; Pérez-Beteta, J.; Amo-Salas, M.; Molina, D.; Jimenez-Londoño, G.A.; Soriano-Castrejón, A.M.; Pena Pardo, F.J.; Martínez-González, A. 2018: Predictive and prognostic potential of volume-based metabolic variables obtained by a baseline 18 F-FDG PET/CT in breast cancer with neoadjuvant chemotherapy indication. Revista Espanola de Medicina Nuclear e Imagen Molecular 37(2): 73-79
Lok, U.; Gulacti, U.; Ekmekci, B.; Bulut, T.; Celik, M. 2017: Predictive and prognostic role of mean platelet volume in patients with first-ever acute ischemic stroke. Neurosciences 22(2): 119-126
Pichler, R.; Fritz, J.; Heidegger, I.; Steiner, E.; Culig, Z.; Klocker, H.; Fuchs, D. 2017: Predictive and prognostic role of serum neopterin and tryptophan breakdown in prostate cancer. Cancer Science 108(4): 663-670
Al-Saleh, K.; Abd El-Aziz, N.; Ali, A.; Abozeed, W.; Abd El-Warith, A.; Ibraheem, A.; Ansari, J.; Al-Rikabi, A.; Husain, S.; Nabholtz, J.-M. 2017: Predictive and prognostic significance of CD8+ tumor-infiltrating lymphocytes in patients with luminal B/HER 2 negative breast cancer treated with neoadjuvant chemotherapy. Oncology Letters 14(1): 337-344
Cui, Y.; Li, J.; Cao, Y.H.; Liu, M.Y.; Shi, Z.X.; Gao, T.H. 2017: Predictive and Prognostic significance of high-sensitivity modified Glasgow Prognostic Score (HS-mGPS) in advanced gastric cancer patients treated with neoadjuvant chemotherapy. Zhonghua Zhong Liu Za Zhi 39(3): 195-200
Caobelli, F.; Chiaravalloti, A.; Evangelista, L.; Saladini, G.; Schillaci, O.; Vadrucci, M.; Scalorbi, F.; Donner, D.; Alongi, P. 2018: Predictive and prognostic value of 18F-DOPA PET/CT in patients affected by recurrent medullary carcinoma of the thyroid. Annals of Nuclear Medicine 32(1): 7-15
Ou, D.; Blanchard, P.; Rosellini, S.; Levy, A.; Nguyen, F.; Leijenaar, R.T.H.; Garberis, I.; Gorphe, P.; Bidault, F.ço.; Ferté, C.; Robert, C.; Casiraghi, O.; Scoazec, J.-Y.; Lambin, P.; Temam, S.; Deutsch, E.; Tao, Y. 2017: Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to Human Papillomavirus status. Oral Oncology 71: 150-155
Takeuchi, A.; Oguri, T.; Sone, K.; Ito, K.; Kitamura, Y.; Inoue, Y.; Asano, T.; Fukuda, S.; Kanemitsu, Y.; Takakuwa, O.; Ohkubo, H.; Takemura, M.; Maeno, K.; Ito, Y.; Niimi, A. 2017: Predictive and Prognostic Value of CYFRA 21-1 for Advanced Non-small Cell Lung Cancer Treated with EGFR-TKIs. Anticancer Research 37(10): 5771-5776
Shen, J.; Zhao, J.; Jiang, T.; Li, X.; Zhao, C.; Su, C.; Zhou, C. 2017: Predictive and prognostic value of folate receptor-positive circulating tumor cells in small cell lung cancer patients treated with first-line chemotherapy. Oncotarget 8(30): 49044-49052
Li, Z.; Huang, J.; Li, N. 2017: Predictive and Prognostic Value of High-density Lipoprotein Cholesterol in Young Male Patients with Acute Myocardial Infarction. Chinese Medical Journal 130(1): 77-82
Foerster, B.; Moschini, M.; Abufaraj, M.; Soria, F.; Gust, K.M.; Rouprêt, M.; Karakiewicz, P.I.; Briganti, A.; Rink, M.; Kluth, L.; Mathieu, R.; Margulis, V.; Lotan, Y.; Aziz, A.; John, H.; Shariat, S.F. 2017: Predictive and Prognostic Value of Preoperative Thrombocytosis in Upper Tract Urothelial Carcinoma. Clinical Genitourinary Cancer 15(6): E1039-E1045
Zhang, Y.; Yuan, D.; Yao, Y.; Sun, W.; Shi, Y.; Su, X. 2017: Predictive and prognostic value of serum periostin in advanced non-small cell lung cancer patients receiving chemotherapy. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine 39(5): 1010428317698367
Käsmann, L.; Niyazi, M.; Blanck, O.; Baues, C.; Baumann, R.é; Dobiasch, S.; Eze, C.; Fleischmann, D.; Gauer, T.; Giordano, F.A.; Goy, Y.; Hausmann, J.; Henkenberens, C.; Kaul, D.; Klook, L.; Krug, D.; Mäurer, M.; Panje, C.éd.M.; Rosenbrock, J.; Sautter, L.; Schmitt, D.; Süß, C.; Thieme, A.H.; Trommer-Nestler, M.; Ziegler, S.; Ebert, N.; Medenwald, D.; Ostheimer, C. 2018: Predictive and prognostic value of tumor volume and its changes during radical radiotherapy of stage IIi non-small cell lung cancer : A systematic review. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft . 194(2): 79-90
Jiang, C.; Liu, J.; Li, L.; Kosik, R.O.; Su, M.; Zou, L.; Tian, R. 2017: Predictive approaches for post-therapy PET/CT in patients with extranodal natural killer/T-cell lymphoma: a retrospective study. Nuclear Medicine Communications 38(11): 937-947
Raman, R.N.; Pivetti, C.D.; Ramsamooj, R.; Troppmann, C.; Demos, S.G. 2017: Predictive assessment of kidney functional recovery following ischemic injury using optical spectroscopy. Journal of Biomedical Optics 22(5): 56001
Hetland, B.; Lindquist, R.; Weinert, C.R.; Peden-McAlpine, C.; Savik, K.; Chlan, L. 2017: Predictive Associations of Music, Anxiety, and Sedative Exposure on Mechanical Ventilation Weaning Trials. American Journal of Critical Care: An Official Publication American Association of Critical-Care Nurses 26(3): 210-220
Pérez, D.; Gilburd, B.; Cabrera-Marante, Ós.; Martínez-Flores, J.A.; Serrano, M.; Naranjo, L.; Pleguezuelo, D.; Morillas, L.; Shovman, O.; Paz-Artal, E.; Shoenfeld, Y.; Serrano, A. 2018: Predictive autoimmunity using autoantibodies: screening for anti-nuclear antibodies. Clinical Chemistry and Laboratory Medicine 56(10): 1771-1777
Chande, R.D.; Hargraves, R.H.; Ortiz-Robinson, N.; Wayne, J.S. 2017: Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks. Computational and Mathematical Methods in Medicine 2017: 3602928
Gensous, Némie.; Marti, Aélie.; Barnetche, T.; Blanco, P.; Lazaro, E.; Seneschal, J.; Truchetet, M-Elise.; Duffau, P.; Richez, C. 2017: Predictive biological markers of systemic lupus erythematosus flares: a systematic literature review. Arthritis Research and Therapy 19(1): 238
Panarese, I.; De Vita, F.; Ronchi, A.; Romano, M.; Alfano, R.; Di Martino, N.; Zito Marino, F.; Ferraraccio, F.; Franco, R. 2017: Predictive biomarkers along gastric cancer pathogenetic pathways. Expert Review of Anticancer Therapy 17(5): 417-425
Teramoto, K.; Ozaki, Y.; Hanaoka, J.; Sawai, S.; Tezuka, N.; Fujino, S.; Daigo, Y.; Kontani, K. 2017: Predictive biomarkers and effectiveness of MUC1-targeted dendritic-cell-based vaccine in patients with refractory non-small cell lung cancer. Therapeutic Advances in Medical Oncology 9(3): 147-157
Medrek, S.K.; Parulekar, A.D.; Hanania, N.A. 2017: Predictive Biomarkers for Asthma Therapy. Current Allergy and Asthma Reports 17(10): 69
Shindo, Y.; Hazama, S.; Suzuki, N.; Iguchi, H.; Uesugi, K.; Tanaka, H.; Aruga, A.; Hatori, T.; Ishizaki, H.; Umeda, Y.; Fujiwara, T.; Ikemoto, T.; Shimada, M.; Yoshimatsu, K.; Takenouchi, H.; Matsui, H.; Kanekiyo, S.; Iida, M.; Koki, Y.; Arima, H.; Furukawa, H.; Ueno, T.; Yoshino, S.; Fujita, T.; Kawakami, Y.; Nakamura, Y.; Oka, M.; Nagano, H. 2017: Predictive biomarkers for the efficacy of peptide vaccine treatment: based on the results of a phase Ii study on advanced pancreatic cancer. Journal of Experimental and Clinical Cancer Research: Cr 36(1): 36
Jin, J.; Zhang, W.; Ji, W.; Yang, F.; Guan, X. 2017: Predictive biomarkers for triple negative breast cancer treated with platinum-based chemotherapy. Cancer Biology and Therapy 18(6): 369-378
Barber, D.; Escribese, M.M. 2017: Predictive biomarkers in allergen specific immunotherapy. Allergologia et Immunopathologia 45(Suppl 1): 12-14
Duruisseaux, M.ël.; Lize-Dufranc, C.éc.; Badoual, C.él.; Bibeau, F.éd.ér. 2017: Predictive biomarkers of efficacy of checkpoint blockade inhibitors in cancer treatment. Annales de Pathologie 37(1): 46-54
Biau, J.; Chautard, E.; De Koning, L.; Court, F.; Pereira, B.; Verrelle, P.; Dutreix, M. 2017: Predictive biomarkers of resistance to hypofractionated radiotherapy in high grade glioma. Radiation Oncology 12(1): 123
Hichert, V.; Scholl, C.; Steffens, M.; Paul, T.; Schumann, C.; Rüdiger, S.; Boeck, S.; Heinemann, V.; Kächele, V.; Seufferlein, T.; Stingl, J. 2017: Predictive blood plasma biomarkers for EGFR inhibitor-induced skin rash. Oncotarget 8(21): 35193-35204
Jeffs, S.; Duka, T. 2017: Predictive but not emotional value of Pavlovian stimuli leads to pavlovian-to-instrumental transfer. Behavioural Brain Research 321: 214-222
Romero-Saldaña, M.; Fuentes-Jiménez, F.J.; Vaquero-Abellán, M.; Álvarez-Fernández, C.; Aguilera-López, M.ía.D.; Molina-Recio, G. 2019: Predictive Capacity and Cutoff Value of Waist-to-Height Ratio in the Incidence of Metabolic Syndrome. Clinical Nursing Research 28(6): 676-691
Herrero-Puente, P.; Prieto-García, Bén.; García-García, Mía.; Jacob, J.; Martín-Sánchez, F.Javier.; Pascual-Figal, D.; Bueno, Héctor.; Gil, V.; Llorens, P.; Vázquez-Alvarez, J.; Romero-Pareja, R.; Sanchez-Gonzalez, M.; Miró, Òscar. 2017: Predictive capacity of a multimarker strategy to determine short-term mortality in patients attending a hospital emergency Department for acute heart failure. BIO-EAHFE study. Clinica Chimica Acta; International Journal of Clinical Chemistry 466: 22-30
Barajas, A.; Pelaez, T.; González, O.; Usall, J.; Iniesta, R.; Arteaga, M.; Jackson, C.; Baños, I.; Sánchez, B.; Dolz, M.; Obiols, J.E.; Haro, J.M.; Ochoa, S.; Araya, S.; Arranz, B.; Arteaga, M.; Asensio, R.; Autonell, J.; Baños, I.; Bañuelos, M.; Barajas, A.; Barceló, M.; Blanc, M.; Borrás, M.; Busquets, E.; Carlson, J.; Carral, V.; Castro, M.; Corbacho, C.; Coromina, M.; Dachs, I.; De Miquel, L.; Dolz, M.; Domenech, M.D.; Elias, M.; Espezel, I.; Falo, E.; Fargas, A.; Foix, A.; Fusté, M.; Godrid, M.; Gómez, D.; González, O.; Granell, L.; Gumà, L.; Haro, J.M.; Herrera, S.; Huerta, E.; Lacasa, F.; Mas, N.; Martí, L.; Martínez, R.; Matalí, J.; Miñambres, A.; Muñoz, D.; Muñoz, V.; Nogueroles, R.; Ochoa, S.; Ortiz, J.; Pardo, M 2019: Predictive capacity of prodromal symptoms in first-episode psychosis of recent onset. Early Intervention in Psychiatry 13(3): 414-424
Baskin, I.I.; Solov'ev, V.P.; Bagatur'yants, A.A.; Varnek, A. 2017: Predictive cartography of metal binders using generative topographic mapping. Journal of Computer-Aided Molecular Design 31(8): 701-714
School, K.; Marklevitz, J.; K Schram, W.; K Harris, L. 2016: Predictive characterization of hypothetical proteins in Staphylococcus aureus NCTC 8325. Bioinformation 12(3): 209-220
Mehmood, S.; Dale, C.; Parry, M.; Snead, C.; Valiante, T.A. 2017: Predictive coding: a contemporary view on the burden of normality and forced normalization in individuals undergoing epilepsy surgery. Epilepsy and Behavior: E&b 75: 110-113
Fletcher, P.C. 2017: Predictive coding and hallucinations: a question of balance. Cognitive Neuropsychiatry 22(6): 453-460
Choi, M.; Tani, J. 2018: Predictive Coding for Dynamic Visual Processing: Development of Functional Hierarchy in a Multiple Spatiotemporal Scales RNN Model. Neural Computation 30(1): 237-270
Costalago-Meruelo, A.; Simpson, D.M.; Veres, S.M.; Newland, P.L. 2017: Predictive control of intersegmental tarsal movements in an insect. Journal of Computational Neuroscience 43(1): 5-15
Guo-Ping Liu 2017: Predictive Control of Networked Multiagent Systems via Cloud Computing. IEEE Transactions on Cybernetics 47(8): 1852-1859
Esna-Ashari, M.; Zekri, M.; Askari, M.; Khalili, N. 2017: Predictive Control of the Blood Glucose Level in Type i Diabetic Patient Using Delay Differential Equation Wang Model. Journal of Medical Signals and Sensors 7(1): 8-20
Mohamed, O.; Wang, J.; Khalil, A.; Limhabrash, M. 2016: Predictive control strategy of a gas turbine for improvement of combined cycle power plant dynamic performance and efficiency. Springerplus 5(1): 980
Ahn, S.Y.; Park, C.M.; Jeon, Y.K.; Kim, H.; Lee, J.H.; Hwang, E.J.; Goo, J.M. 2017: Predictive CT Features of Visceral Pleural Invasion by T1-Sized Peripheral Pulmonary Adenocarcinomas Manifesting as Subsolid Nodules. AJR. American Journal of Roentgenology 209(3): 561-566
Makizako, H.; Shimada, H.; Doi, T.; Tsutsumimoto, K.; Nakakubo, S.; Hotta, R.; Suzuki, T. 2017: Predictive Cutoff Values of the Five-Times Sit-to-Stand Test and the Timed "Up and Go" Test for Disability Incidence in Older people Dwelling in the Community. Physical Therapy 97(4): 417-424
Tanaka, A.; Yamada, A.; Umeda, T.; Kaneko, C.; Shimizu, T.; Naka, S.; Tani, T.; Tani, M. 2017: Predictive detection areas for identifying additional MRI-detected breast lesions on second-look ultrasonography. Surgery Today 47(11): 1321-1330
Ebrahimi, V.; Hamdami, E.; Moemenbellah-Fard, M.D.; Ezzatzadegan Jahromi, S. 2017: Predictive determinants of scorpion stings in a tropical zone of south Iran: use of mixed seasonal autoregressive moving average model. Journal of Venomous Animals and Toxins Including Tropical Diseases 23: 39
Wiktor, J.; Rothlisberger, U.; Pasquarello, A. 2017: Predictive Determination of Band Gaps of Inorganic Halide Perovskites. Journal of Physical Chemistry Letters 8(22): 5507-5512
Rao, Y.B.; Yang, J.; Cao, B.; Chen, D.M.; Gao, P.M.; Zhong, Q.; Li, M.X.; Gao, J.H.; Chen, Y.J.; Zhong, X.M.; Ren, Z.X. 2017: Predictive effect of neonatal morbidities on the poor outcomes at 12 months corrected age in very low birth weight premature infants. Zhonghua Er Ke Za Zhi 55(8): 608-612
Jia, Q.-W.; Chen, Z.-H.; Ding, X.-Q.; Liu, J.-Y.; Ge, P.-C.; An, F.-H.; Li, L.-H.; Wang, L.-S.; Ma, W.-Z.; Yang, Z.-J.; Jia, E.-Z. 2017: Predictive Effects of Circulating miR-221, miR-130a and miR-155 for Coronary Heart Disease: a Multi-Ethnic Study in China. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology Biochemistry and Pharmacology 42(2): 808-823
da Rosa, G.J.; Morcillo, Aé.M.; de Assumpção, Míra.S.; Schivinski, C.I.S. 2017: Predictive equations for maximal respiratory pressures of children aged 7-10. Brazilian Journal of Physical Therapy 21(1): 30-36
Ji, G.J.; Huang, C.; Song, G.; Li, X.S.; Song, Y.; Zhou, L.Q. 2017: Predictive factor analysis of time to progression of castration-resistant prostate cancer after androgen deprivation therapy. Beijing da Xue Xue Bao. Yi Xue Ban 49(4): 657-662
Kongseang, C.; Attawettayanon, W.; Kanchanawanichkul, W.; Pripatnanont, C. 2017: Predictive factor of androgen deprivation therapy for patients with advanced stage prostate cancer. Prostate International 5(1): 35-38
Igarashi, T.; Tanji, M.; Takahashi, K.; Ishida, K.; Sasaki, S.; Yokoyama, H. 2017: Predictive factor of secondary tricuspid regurgitation after aortic valve replacement for aortic stenosis: the importance of myocardial hypertrophy and diastolic dysfunction. General Thoracic and Cardiovascular Surgery 65(5): 259-266
Zhang, H.; Chen, J.; Wang, Y.; Deng, C.; Li, L.; Guo, C. 2017: Predictive factors and clinical practice profile for strictures post-necrotising enterocolitis. Medicine 96(10): E6273
Epperla, N.; Hamadani, M.; Cashen, A.F.; Ahn, K.W.; Oak, E.; Kanate, A.S.; Calzada, O.; Cohen, J.B.; Farmer, L.; Ghosh, N.; Tallarico, M.; Nabhan, C.; Costa, L.J.; Kenkre, V.P.; Hari, P.N.; Fenske, T.S. 2017: Predictive factors and outcomes for ibrutinib therapy in relapsed/refractory mantle cell lymphoma-a "real world" study. Hematological Oncology 35(4): 528-535
Falasca, K.; Di Nicola, M.; Porfilio, I.; Ucciferri, C.; Schiaroli, E.; Gabrielli, C.; Francisci, D.; Vecchiet, J. 2017: Predictive factors and prevalence of microalbuminuria in HIV-infected patients: a cross-sectional analysis. Bmc Nephrology 18(1): 255
Chen, W.; Lei, J.; You, J.; Lei, Y.; Li, Z.; Gong, R.; Tang, H.; Zhu, J. 2017: Predictive factors and prognosis for recurrent laryngeal nerve invasion in papillary thyroid carcinoma. Oncotargets and Therapy 10: 4485-4491
Lee, J.; Lee, Y.D.; Lim, J.K.; Lee, D.H.; Yoo, S.S.; Lee, S.Y.; Cha, S.I.; Park, J.Y.; Kim, C.H. 2017: Predictive Factors and Treatment Outcomes of Tuberculous Pleural Effusion in Patients with Cancer and Pleural Effusion. American Journal of the Medical Sciences 354(2): 125-130
Cai, B.; Broder, M.S.; Chang, E.; Yan, T.; Metz, D.C. 2017: Predictive factors associated with carcinoid syndrome in patients with gastrointestinal neuroendocrine tumors. World Journal of Gastroenterology 23(40): 7283-7291
Kong, L.; Tian, W.; Cao, P.; Wang, H.; Zhang, B.; Shen, Y. 2017: Predictive factors associated with neck pain in patients with cervical disc degeneration: A cross-sectional study focusing on Modic changes. Medicine 96(43): E8447
Nakayama, E.; Tohara, H.; Sakai, K.; Hayata, M.; Ohnishi, S.; Sekino, J.; Tsuzuki, H.; Hirai, T.; Hayashi, A.; Ueda, K. 2017: Predictive Factors Associated with Oral Intake Ability in Gastrostomy Patients Under Long-Term Care. Journal of Nutrition Health and Aging 21(6): 715-720
Shikimoto, R.; Sado, M.; Ninomiya, A.; Yoshimura, K.; Ikeda, B.; Baba, T.; Mimura, M. 2018: Predictive factors associated with psychological distress of caregivers of people with dementia in Japan: a cross-sectional study. International Psychogeriatrics 30(8): 1089-1098
Kang, M.; Gong, I.-H.; Park, H.J.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Jeon, S.S.; Lee, H.M.; Choi, H.Y.; Il Seo, S. 2017: Predictive Factors for Achieving Superior Pentafecta Outcomes Following Robot-Assisted Partial Nephrectomy in Patients with Localized Renal Cell Carcinoma. Journal of Endourology 31(12): 1231-1236
Gweon, H.M.; Son, E.J.; Kim, J.-A.; Youk, J.H. 2017: Predictive Factors for Active Surveillance of Subcentimeter Thyroid Nodules with Highly Suspicious US Features. Annals of Surgical Oncology 24(6): 1540-1545
Tachibana, T.; Maruo, K.; Arizumi, F.; Kusuyama, K.; Kishima, K.; Yoshiya, S. 2018: Predictive factors for acute exacerbation of cervical compression myelopathy. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia 48: 160-162
Lin, S.-Y.; Lyu, S.-Y.; Su, T.-W.; Chu, S.-Y.; Chen, C.-M.; Hung, C.-F.; Chang, C.-J.; Ko, P.-J. 2017: Predictive Factors for Additional ProGlide Deployment in Percutaneous Endovascular Aortic Repair. Journal of Vascular and Interventional Radiology: Jvir 28(4): 570-575
Ko-Iam, W.; Sandhu, T.; Paiboonworachat, S.; Pongchairerks, P.; Chotirosniramit, A.; Chotirosniramit, N.; Chandacham, K.; Jirapongcharoenlap, T.; Junrungsee, S. 2017: Predictive Factors for a Long Hospital Stay in Patients Undergoing Laparoscopic Cholecystectomy. International Journal of Hepatology 2017: 5497936
Grimoud, A.-M.; Gibbon, V.E.; Ribot, I. 2017: Predictive factors for alveolar fenestration and dehiscence. Homo: Internationale Zeitschrift für die Vergleichende Forschung Am Menschen 68(3): 167-175
Cadelis, G.; Ducrot, R.; Bourdin, A.; Rastogi, N. 2017: Predictive factors for a one-year improvement in nontuberculous mycobacterial pulmonary disease: An 11-year retrospective and multicenter study. Plos Neglected Tropical Diseases 11(8): E0005841
Nakai, T.; Matsumoto, Y.; Suzuk, F.; Tsuchida, T.; Izumo, T. 2017: Predictive factors for a successful diagnostic bronchoscopy of ground-glass nodules. Annals of Thoracic Medicine 12(3): 171-176
Nakagawa, K.; Tanaka, K.; Nojiri, K.; Sawada, Y.; Kumamoto, T.; Ueda, M.; Minami, Y.; Mochizuki, Y.; Morioka, D.; Kubota, T.; Kamiya, N.; Yoshida, K.; Yonemoto, N.; Endo, I. 2017: Predictive factors for bile leakage after hepatectomy for hepatic tumors: a retrospective multicenter study with 631 cases at Yokohama Clinical Oncology Group (YCOG). Journal of Hepato-Biliary-Pancreatic Sciences 24(1): 33-41
Tanabe, K.; Takahashi, M.; Urushihara, T.; Nakamura, Y.; Yamada, M.; Lee, S.-W.; Tanaka, S.; Miki, A.; Ikeda, M.; Nakada, K. 2017: Predictive factors for body weight loss and its impact on quality of life following gastrectomy. World Journal of Gastroenterology 23(26): 4823-4830
Bildstein, C.ém.; Melchior, C.é; Gourcerol, G.; Boueyre, E.; Bridoux, V.ér.; Vérin, E.; Leroi, A.-M. 2017: Predictive factors for compliance with transanal irrigation for the treatment of defecation disorders. World Journal of Gastroenterology 23(11): 2029-2036
Alponat, A.; Kum, C.K.; Koh, B.C.; Rajnakova, A.; Goh, P.M. 1997: Predictive factors for conversion of laparoscopic cholecystectomy. World Journal of Surgery 21(6): 629-633
Davies, E.; Jurkunas, U.; Pineda, R. 2018: Predictive Factors for Corneal Clearance After Descemetorhexis Without Endothelial Keratoplasty. Cornea 37(2): 137-140
Miyata, M.; Shibata, K.; Hamasaki, I.; Hata, M.; Muraoka, Y.; Yoshikawa, M.; Hasebe, S.; Ohtsuki, H. 2018: Predictive factors for corrective effect of inferior rectus recession for congenital superior oblique palsy. Graefe's Archive for Clinical and Experimental Ophthalmology 256(2): 403-409
Chen, L-Yu.; Wu, Y-Hui.; Huang, C-Yu.; Liu, L-Kuo.; Hwang, A-Chun.; Peng, L-Ning.; Lin, M-Hsieh.; Chen, L-Kung. 2017: Predictive factors for dementia and cognitive impairment among residents living in the veterans' retirement communities in Taiwan: Implications for cognitive health promotion activities. Geriatrics and Gerontology International 17 Suppl. 1: 7-13
Heidegger, I.; Porres, D.; Veek, N.; Heidenreich, A.; Pfister, D. 2017: Predictive Factors for Developing Venous Thrombosis during Cisplatin-Based Chemotherapy in Testicular Cancer. Urologia Internationalis 99(1): 104-109
Fragiotta, S.; Rossi, T.; Cutini, A.; Grenga, P.L.; Vingolo, E.M. 2018: Predictive Factors for Development of Neovascular Age-Related Macular Degeneration: a Spectral-Domain Optical Coherence Tomography Study. Retina 38(2): 245-252
Sofu, H.; Üçpunar, H.; Çamurcu, Y.ın.; Duman, S.; Konya, M.N.; Gürsu, S.; Şahin, V. 2017: Predictive factors for early hospital readmission and 1-year mortality in elder patients following surgical treatment of a hip fracture. Ulusal Travma Ve Acil Cerrahi Dergisi 23(3): 245-250
Sonoda, A.; Kondo, Y.; Tsuneyoshi, Y.; Iwashita, Y.; Nakao, S.; Ishida, K.; Oniki, K.; Saruwatari, J.; Irie, T.; Ishitsuka, Y. 2017: Predictive factors for effectiveness and safety of enoxaparin for total knee arthroplasty in aged Japanese patients: a retrospective review. Journal of Pharmaceutical Health Care and Sciences 3: 6
Chang, G-Chen.; Tseng, C-Hua.; Hsu, K-Hsuan.; Yu, C-Jen.; Yang, C-Ta.; Chen, K-Chieh.; Yang, T-Ying.; Tseng, J-Sen.; Liu, C-Ying.; Liao, W-Yu.; Hsia, T-Chun.; Tu, C-Yen.; Lin, M-Chih.; Tsai, Y-Huang.; Hsieh, M-Jer.; Wu, W-Shuo.; Chen, Y-Min. 2017: Predictive factors for EGFR-tyrosine kinase inhibitor retreatment in patients with EGFR-mutated non-small-cell lung cancer - A multicenter retrospective SEQUENCE study. Lung Cancer 104: 58-64
Matsuyama, R.; Tsuchiya, A.; Nishii, O. 2018: Predictive factors for emergent surgical intervention in patients with ovarian endometrioma hospitalized for pelvic inflammatory disease: A retrospective observational study. Journal of Obstetrics and Gynaecology Research 44(2): 286-291
Akpınar, H. 2017: Predictive factors for endoscopic recurrence after ileocolic resection for Crohn's disease. Turkish Journal of Gastroenterology: the Official Journal of Turkish Society of Gastroenterology 28(4): 241-242
De Oliveira, S.V.; Willemann, M.C.A.; Gazeta, G.S.; Angerami, R.N.; Gurgel-Gonçalves, R. 2017: Predictive Factors for Fatal Tick-Borne Spotted Fever in Brazil. Zoonoses and Public Health 64(7): E44-E50
Bansal, S.S.; Pawar, P.W.; Sawant, A.S.; Tamhankar, A.S.; Patil, S.R.; Kasat, G.V. 2017: Predictive factors for fever and sepsis following percutaneous nephrolithotomy: a review of 580 patients. Urology Annals 9(3): 230-233
Masson-Lecomte, A.; Francois, T.; Vordos, D.; Cordonnier, C.; Allory, Y.; Desgrandchamps, F.; de la Taille, A.; Saint, F. 2017: Predictive factors for final pathologic ureteral sections on 700 radical cystectomy specimens: Implications for intraoperative frozen section decision-making. Urologic Oncology 35(11): 659.E1-659.E6
Szurman, G.B.; Meyer, C.H.; Feltgen, N.; Pielen, A.; Spitzer, B.; Rehak, M.; Spital, G.; Dimopoulos, S.; Szurman, P.; Januschowski, K. 2017: Predictive factors for functional improvement following intravitreal bevacizumab injections after central retinal vein occlusion. Graefe's Archive for Clinical and Experimental Ophthalmology 255(5): 1045-1046
Yoon, W.; Kim, S.K.; Park, M.S.; Baek, B.H.; Lee, Y.Y. 2017: Predictive Factors for Good Outcome and Mortality After Stent-Retriever Thrombectomy in Patients with Acute Anterior Circulation Stroke. Journal of Stroke 19(1): 97-103
Ahn, J.; Baek, S.Y.; Kim, K.; Cho, Y.-S. 2017: Predictive Factors for Hearing Outcomes After Canaloplasty in Patients with Congenital Aural Atresia. Otology and Neurotology: Official Publication of the American Otological Society American Neurotology Society and European Academy of Otology and Neurotology 38(8): 1140-1144
Çetin, C.; Büyükkurt, S.; Cömert, E.; Özlü, F.; Bahar, N.ün.; Demir, C. 2015: Predictive factors for latency period in viable pregnancies complicated by preterm premature rupture of the membranes. Turkish Journal of Obstetrics and Gynecology 12(1): 30-33
Lo, C.K.; Lee, Q.J.; Wong, Y.C. 2017: Predictive factors for length of hospital stay following primary total knee replacement in a total joint replacement centre in Hong Kong. Hong Kong Medical Journal 23(5): 435-440
Tannus, S.; Hatirnaz, S.; Tan, J.; Ata, B.; Tan, S.-L.; Hatirnaz, E.; Kenat-Pektas, M.; Dahan, M.-H. 2018: Predictive factors for live birth after in vitro maturation of oocytes in women with polycystic ovary syndrome. Archives of Gynecology and Obstetrics 297(1): 199-204
Pereira, N.; Kligman, I. 2017: Predictive factors for live birth in donor oocyte-recipient cycles. Fertility and Sterility 108(2): 235
Albersen, M.; Parnham, A.; Joniau, S.; Sahdev, V.; Christodoulidou, M.; Castiglione, F.; Nigam, R.; Malone, P.; Freeman, A.; Jameson, C.; Minhas, S.; Ralph, D.J.; Muneer, A. 2018: Predictive factors for local recurrence after glansectomy and neoglans reconstruction for penile squamous cell carcinoma. Urologic Oncology 36(4): 141-146
Lee, R.; Ha, H.; Han, Y.S.; Jung, M.K.; Chun, J.M. 2017: Predictive Factors for Long Operative Duration in Patients Undergoing Laparoscopic Cholecystectomy After Endoscopic Retrograde Cholangiography for Combined Choledochocystolithiasis. Surgical Laparoscopy Endoscopy and Percutaneous Techniques 27(6): 491-496
Fujisawa, T.; Hozumi, H.; Kono, M.; Enomoto, N.; Nakamura, Y.; Inui, N.; Nakashima, R.; Imura, Y.; Mimori, T.; Suda, T. 2017: Predictive factors for long-term outcome in polymyositis/dermatomyositis-associated interstitial lung diseases. Respiratory Investigation 55(2): 130-137
Fukaya, C.; Watanabe, M.; Kobayashi, K.; Oshima, H.; Yoshino, A.; Yamamoto, T. 2017: Predictive Factors for Long-term Outcome of Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease. Neurologia Medico-Chirurgica 57(4): 166-171
Sohn, B.; Kwon, Y.; Ryoo, S.-B.; Song, I.; Kwon, Y.-H.; Lee, D.W.; Moon, S.H.; Park, J.W.; Jeong, S.-Y.; Park, K.J. 2017: Predictive Factors for Lymph Node Metastasis and Prognostic Factors for Survival in Rectal Neuroendocrine Tumors. Journal of Gastrointestinal Surgery: Official Journal of the Society for Surgery of the Alimentary Tract 21(12): 2066-2074
Park, J.Won.; Ahn, S.; Lee, H.; Min, B-Hoon.; Lee, J.Haeng.; Rhee, P-Lyul.; Kim, K-Mee.; Kim, J.J. 2017: Predictive factors for lymph node metastasis in early gastric cancer with lymphatic invasion after endoscopic resection. Surgical Endoscopy 31(11): 4419-4424
Zhao, X.; Cai, A.; Xi, H.; Song, Y.; Wang, Y.; Li, H.; Li, P.; Chen, L. 2017: Predictive factors for lymph node metastasis in early gastric cancer with signet ring cell histology: a meta-analysis. ANZ Journal of Surgery 87(12): 981-986
Zhao, X.; Cai, A.; Xi, H.; Chen, L.; Peng, Z.; Li, P.; Liu, N.; Cui, J.; Li, H. 2017: Predictive Factors for Lymph Node Metastasis in Undifferentiated Early Gastric Cancer: a Systematic Review and Meta-analysis. Journal of Gastrointestinal Surgery: Official Journal of the Society for Surgery of the Alimentary Tract 21(4): 700-711
Sonika, U.; Saha, S.; Kedia, S.; Dash, N.R.; Pal, S.; Das, P.; Ahuja, V.; Sahni, P. 2017: Predictive factors for malignancy in undiagnosed isolated small bowel strictures. Intestinal Research 15(4): 518-523
Gutiérrez, F.J.Ál.; Galván, M.F.; Gallardo, J.F.M.; Mancera, M.B.; Romero, B.R.; Falcón, A.R. 2017: Predictive factors for moderate or severe exacerbations in asthma patients receiving outpatient care. Bmc Pulmonary Medicine 17(1): 77
Tang, C.Y.K.; Cheung, J.P.Y.; Samartzis, D.; Leung, K.H.; Wong, Y.W.; Luk, K.D.K.; Cheung, K.M.C. 2017: Predictive factors for neurological deterioration after surgical decompression for thoracic ossified yellow ligament. European Spine Journal: Official Publication of the European Spine Society the European Spinal Deformity Society and the European Section of the Cervical Spine Research Society 26(10): 2598-2605
Ryu, J.M.; Lee, S.K.; Kim, J.Y.; Yu, J.; Kim, S.W.; Lee, J.E.; Han, S.H.; Jung, Y.S.; Nam, S.J. 2017: Predictive Factors for Nonsentinel Lymph Node Metastasis in Patients with Positive Sentinel Lymph Nodes After Neoadjuvant Chemotherapy: Nomogram for Predicting Nonsentinel Lymph Node Metastasis. Clinical Breast Cancer 17(7): 550-558
Oliveira, A.C.M.d.; Friche, A.él.A.d.L.; Salomão, M.S.; Bougo, G.C.; Vicente, L.él.C.C. 2018: Predictive factors for oropharyngeal dysphagia after prolonged orotracheal intubation. Brazilian Journal of Otorhinolaryngology 84(6): 722-728
Takigami, J.; Hashimoto, Y.; Tomihara, T.; Yamasaki, S.; Tamai, K.; Kondo, K.; Nakamura, H. 2018: Predictive factors for osteochondritis dissecans of the lateral femoral condyle concurrent with a discoid lateral meniscus. Knee Surgery Sports Traumatology Arthroscopy: Official Journal of the Esska 26(3): 799-805
Sathasivam, H.P.; Davies, G.R.; Boyd, N.M. 2018: Predictive factors for osteoradionecrosis of the jaws: A retrospective study. Head and Neck 40(1): 46-54
Yabe, S.; Kato, H.; Mizukawa, S.; Akimoto, Y.; Uchida, D.; Seki, H.; Tomoda, T.; Matsumoto, K.; Yamamoto, N.; Horiguchi, S.; Tsutsumi, K.; Okada, H. 2017: Predictive factors for outcomes of patients undergoing endoscopic therapy for bile leak after hepatobiliary surgery. Digestive Endoscopy: Official Journal of the Japan Gastroenterological Endoscopy Society 29(3): 353-361
Mulukutla, V.; Qureshi, A.M.; Pignatelli, R.; Ing, F.F. 2018: Predictive Factors for Patients Undergoing ASD Device Occlusion who "Crossover" to Surgery. Pediatric Cardiology 39(3): 445-449
Tchah, H.; Nam, K.; Yoo, A. 2017: Predictive factors for photic phenomena after refractive, rotationally asymmetric, multifocal intraocular lens implantation. International Journal of Ophthalmology 10(2): 241-245
Taniguchi, Y.; Tamiya, A.; Isa, S.-I.; Nakahama, K.; Okishio, K.; Shiroyama, T.; Suzuki, H.; Inoue, T.; Tamiya, M.; Hirashima, T.; Imamura, F.; Atagi, S. 2017: Predictive Factors for Poor Progression-free Survival in Patients with Non-small Cell Lung Cancer Treated with Nivolumab. Anticancer Research 37(10): 5857-5862
Biere, S.S.; van Berge Henegouwen, M.I.; Bonavina, L.; Rosman, C.; Roig Garcia, J.; Gisbertz, S.S.; van der Peet, D.L.; Cuesta, M.A. 2017: Predictive factors for post-operative respiratory infections after esophagectomy for esophageal cancer: outcome of randomized trial. Journal of Thoracic Disease 9(Suppl 8): S861-S867
Yildirim, G.; Turkgeldi, L.S.; Koroglu, N. 2017: Predictive factors for pregnancy outcome following controlled ovarian stimulation and intrauterine insemination. JPMA. Journal of the Pakistan Medical Association 67(3): 422-427
Chiari, P.; Forni, C.; Guberti, M.; Gazineo, D.; Ronzoni, S.; D'Alessandro, F. 2017: Predictive Factors for Pressure Ulcers in an Older Adult Population Hospitalized for Hip Fractures: A Prognostic Cohort Study. Plos one 12(1): E0169909
Mori, H.; Fukumori, T.; Daizumoto, K.; Tsuda, M.; Kusuhara, Y.; Fukawa, T.; Yamamoto, Y.; Yamaguchi, K.; Takahashi, M.; Kubo, A.; Kawanaka, T.; Furutani, S.; Ikushima, H.; Kanayama, H.-O. 2017: Predictive Factors for Prolonged Urination Disorder After Permanent 125i Brachytherapy for Localized Prostate Cancer. In Vivo 31(4): 755-761
Bochkezanian, V.; Newton, R.U.; Trajano, G.S.; Vieira, A.; Pulverenti, T.S.; Blazevich, A.J. 2018: Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI). Bmc Neurology 18(1): 17
Kim, S.U.; Lee, D.H.; Kim, Y.I.; Yang, S.H.; Sung, J.H.; Cho, C.B. 2017: Predictive Factors for Recurrence after Burr-Hole Craniostomy of Chronic Subdural Hematoma. Journal of Korean Neurosurgical Society 60(6): 701-709
Han, M-Hoon.; Ryu, J.Il.; Kim, C.Hyun.; Kim, J.Min.; Cheong, J.Hwan.; Yi, H-Joong. 2017: Predictive factors for recurrence and clinical outcomes in patients with chronic subdural hematoma. Journal of Neurosurgery 127(5): 1117-1125
Emile, S.H.; Elfeki, H.; Thabet, W.; Sakr, A.; Magdy, A.; El-Hamed, T.M.A.; Omar, W.; Khafagy, W. 2017: Predictive factors for recurrence of high transsphincteric anal fistula after placement of seton. Journal of Surgical Research 213: 261-268
Gorrell, L.M.; Brown, B.; Lystad, R.P.; Engel, R.M. 2017: Predictive factors for reporting adverse events following spinal manipulation in randomized clinical trials - secondary analysis of a systematic review. Musculoskeletal Science and Practice 30: 34-41
Cuminetti, F.; Boutin, F.ço.; Frapier, L. 2017: Predictive factors for resorption of teeth adjacent to impacted maxillary canines. International Orthodontics 15(1): 54-68
Eggers, H.; Ivanyi, P.; Hornig, M.; Grünwald, V. 2017: Predictive Factors for Second-Line Therapy in Metastatic Renal Cell Carcinoma: A Retrospective Analysis. Journal of Kidney Cancer and Vhl 4(1): 8-15
Wanna, G.B.; O'Connell, B.P.; Francis, D.O.; Gifford, R.H.; Hunter, J.B.; Holder, J.T.; Bennett, M.L.; Rivas, A.; Labadie, R.F.; Haynes, D.S. 2018: Predictive factors for short- and long-term hearing preservation in cochlear implantation with conventional-length electrodes. Laryngoscope 128(2): 482-489
Türk, H.; Ün, S.ıt.ı 2017: Predictive factors for stone disease in patients with renal colic. Archivio Italiano di Urologia Andrologia: Organo Ufficiale di Societa Italiana di Ecografia Urologica e Nefrologica 89(2): 143-145
Barber-Chamoux, N.; Esler, M.D. 2017: Predictive factors for successful renal denervation: should we use them in clinical trials?. European Journal of Clinical Investigation 47(11): 860-867
Kim, J.-H.; Jang, W.-Y.; Jung, T.-Y.; Kim, I.-Y.; Lee, K.-H.; Kang, W.D.; Kim, S.-K.; Moon, K.-S.; Jung, S. 2017: Predictive factors for surgical outcome in anterior clinoidal meningiomas: Analysis of 59 consecutive surgically treated cases. Medicine 96(15): E6594
Reig Castillejo, A.; Membrive, I.; Foro, P.; Quera, J.; Sanz, X.; Rodriguez, N.; Fernández-Velilla, E.; Pera, O.; Ortiz, A.; Algara, M. 2017: Predictive factors for survival in neoadjuvant radiochemotherapy for advanced rectal cancer. Clinical and Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 19(7): 853-857
Kwon, B.S.; Park, J.H.; Kim, W.S.; Song, J.S.; Choi, C.-M.; Rho, J.K.; Lee, J.C. 2017: Predictive Factors for Switched EGFR-TKi Retreatment in Patients with EGFR-Mutant Non-Small Cell Lung Cancer. Tuberculosis and Respiratory Diseases 80(2): 187-193
Sorbye, H.; Mauer, M.; Gruenberger, T.; Glimelius, B.; Poston, G.J.; Schlag, P.M.; Rougier, P.; Bechstein, W.O.; Primrose, J.N.; Walpole, E.T.; Finch-Jones, M.; Jaeck, D.; Mirza, D.; Parks, R.W.; Collette, L.; Van Cutsem, E.; Scheithauer, W.; Lutz, M.P.; Nordlinger, B. 2012: Predictive factors for the benefit of perioperative FOLFOX for resectable liver metastasis in colorectal cancer patients (EORTC Intergroup Trial 40983). Annals of Surgery 255(3): 534-539
Sato, M.; Narukawa, M. 2017: Predictive factors for the effect of acid-reducing agents on drug exposure. International Journal of Clinical Pharmacology and Therapeutics 55(10): 798-806
Banicioiu-Covei, S.; Vreju, F.A.; Ciurea, P. 2015: Predictive Factors for the Evolution of Reactive Arthritis to Ankylosing Spondylitis. Current Health Sciences Journal 41(2): 104-108
Sugimoto, M.; Takagi, T.; Suzuki, R.; Konno, N.; Asama, H.; Watanabe, K.; Nakamura, J.; Kikuchi, H.; Waragai, Y.; Takasumi, M.; Sato, Y.; Hikichi, T.; Ohira, H. 2017: Predictive factors for the failure of endoscopic stent-in-stent self-expandable metallic stent placement to treat malignant hilar biliary obstruction. World Journal of Gastroenterology 23(34): 6273-6280
Singer, J.L.; Aryaie, A.H.; Fayezizadeh, M.; Lash, J.; Marks, J.M. 2017: Predictive Factors for the Migration of Endoscopic Self-Expanding Metal Stents Placed in the Foregut. Surgical Innovation 24(4): 353-357
Kamit Can, F.; Anil, A.şe.B.; Anil, M.; Zengin, N.; Durak, F.; Alparslan, C.; Goc, Z. 2018: Predictive factors for the outcome of high flow nasal cannula therapy in a pediatric intensive care unit: Is the SpO2/FiO2 ratio useful?. Journal of Critical Care 44: 436-444
Imanaka, T.; Sato, I.; Tanaka, S.; Kawakami, K. 2017: Predictive factors for the placebo effect in clinical trials for dry eye: a pooled analysis of three clinical trials. British Journal of Ophthalmology 101(11): 1471-1474
Hong, Y.R.; Song, B.J.; Jung, S.S.; Kang, B.J.; Kim, S.H.; Chae, B.J. 2016: Predictive Factors for Upgrading Patients with Benign Breast Papillary Lesions Using a Core Needle Biopsy. Journal of Breast Cancer 19(4): 410-416
Thijssen, A.; Creemers, A.; Van der Elst, W.; Creemers, E.; Vandormael, E.; Dhont, N.; Ombelet, W. 2017: Predictive factors influencing pregnancy rates after intrauterine insemination with frozen donor semen: a prospective cohort study. Reproductive Biomedicine Online 34(6): 590-597
Nishikawa, H.; Nishijima, N.; Enomoto, H.; Sakamoto, A.; Nasu, A.; Komekado, H.; Nishimura, T.; Kita, R.; Kimura, T.; Iijima, H.; Nishiguchi, S.; Osaki, Y. 2017: Predictive factors in patients with hepatocellular carcinoma receiving sorafenib therapy using time-dependent receiver operating characteristic analysis. Journal of Cancer 8(3): 378-387
Achim, C.; Zgura, A.; Voiculescu, M. 2016: Predictive Factors of Abnormal Circadian Blood Pressure Profile in Recipients of Kidney Transplantation. Maedica 11(2): 167-173
Takakusagi, Y.; Saitoh, J.-I.; Kiyohara, H.; Oike, T.; Noda, S.-E.; Ohno, T.; Nakano, T. 2017: Predictive factors of acute skin reactions to carbon ion radiotherapy for the treatment of malignant bone and soft tissue tumors. Radiation Oncology 12(1): 185
Folla, C.d.O.; Melo, C.C.d.S.; Silva, R.d.C.G.E. 2016: Predictive factors of atrial fibrillation after coronary artery bypass grafting. Einstein 14(4): 480-485
Costa, O.ív.F.; Castro, R.B.; Oliveira, C.V.; Feitosa, T.V.N.; Alves, J.J.; Cavalcante, F.P.; Lima, M.V.íc.A. 2017: Predictive factors of axillary metastasis in patients with breast cancer and positive sentinel lymph node biopsy. Revista do Colegio Brasileiro de Cirurgioes 44(4): 391-396
Sato, S.; Shinoda, H.; Nagai, N.; Suzuki, M.; Uchida, A.; Kurihara, T.; Kamoshita, M.; Tomita, Y.; Iyama, C.; Minami, S.; Yuki, K.; Tsubota, K.; Ozawa, Y. 2017: Predictive factors of better outcomes by monotherapy of an antivascular endothelial growth factor drug, ranibizumab, for diabetic macular edema in clinical practice. Medicine 96(16): E6459
Senocak, C.; Ozbek, R.; Bozkurt, O.F.; Unsal, A. 2018: Predictive factors of bleeding among pediatric patients undergoing percutaneous nephrolithotomy. Urolithiasis 46(4): 383-389
Zouari, M.; Abid, I.; Sallami, S.; Guitouni, A.; Ben Dhaou, M.; Jallouli, M.; Mhiri, R. 2017: Predictive factors of complicated appendicitis in children. American Journal of Emergency Medicine 35(12): 1982-1983
Fontaine-Delaruelle, C.; Souquet, P.-J.; Gamondes, D.; Pradat, E.; de Leusse, A.; Ferretti, G.R.; Couraud, S. 2017: Predictive factors of complications during CT-guided transthoracic biopsy. Revue de Pneumologie Clinique 73(2): 61-67
Pilloy, J.; Fleurier, C.; Chas, M.; Bédouet, L.; Jourdan, M.L.; Arbion, F.; Body, G.; Ouldamer, L. 2017: Predictive factors of conservative breast surgery after neoadjuvant chemotherapy for breast cancer. Gynecologie Obstetrique Fertilite and Senologie 45(9): 466-471
Ko, K.J.; Lee, C.U.; Kim, T.H.; Suh, Y.S.; Lee, K.-S. 2018: Predictive Factors of de Novo Overactive Bladder After Artificial Urinary Sphincter Implantation in Men with Postprostatectomy Incontinence. Urology 113: 215-219
Safa, A.; Masoudi Alavi, N.; Abedzadeh-Kalahroudi, M. 2016: Predictive Factors of Dependency in Activities of Daily Living Following Limb Trauma in the Elderly. Trauma Monthly 21(5): E25091
Chui, C.H.K.; Ran, M-Sheng.; Li, R-Hui.; Fan, M.; Zhang, Z.; Li, Y-Hao.; Ou, G.Jing.; Jiang, Z.; Tong, Y-Zhen.; Fang, D-Zhi. 2017: Predictive factors of depression symptoms among adolescents in the 18-month follow-up after Wenchuan earthquake in China. Journal of Mental Health 26(1): 36-42
Chia, D.B.; Wong, L.Y.; Liu, D.Y.K.; Toh, M.P.H.S. 2017: Predictive factors of developing type 2 diabetes mellitus, Acute Myocardial Infarction and stroke in a cohort with Impaired Fasting Glucose in Singapore. Diabetes Research and Clinical Practice 132: 59-67
Yildiz, E.Pembegul.; Gunes, D.; Bektas, G.; Aksu Uzunhan, T.; Tatli, B.; Caliskan, M.; Aydinli, N.; Ozmen, M. 2018: Predictive factors of drug-resistant epilepsy in children presenting under 2 years of age: experience of a tertiary center in Turkey. Acta neurologica Belgica 118(1): 71-75
Na, Y.C.; Jung, H.H.; Kim, H.R.; Cho, B.C.; Chang, J.W.; Park, Y.G.; Chang, W.S. 2017: Predictive factors of early distant brain failure after gamma knife radiosurgery alone in patients with brain metastases of non-small-cell lung cancer. Journal of Neuro-Oncology 132(2): 333-340
Barbosa, M.; Magalhaes, J.; Marinho, C.; Cotter, J. 2016: Predictive factors of early mortality after percutaneous endoscopic gastrostomy placement: the importance of C-reactive protein. Clinical Nutrition Espen 14: 19-23
Julien-Marsollier, F.; Salis, P.; Abdat, R.; Diallo, T.; Van Den Abbelle, T.; Dahmani, S. 2018: Predictive factors of early postoperative respiratory complications after tonsillectomy in children with unidentified risks for this complication. Anaesthesia Critical Care and Pain Medicine 37(5): 439-445
Gazzola, S.éb.; Delmont, E.; Franques, J.ér.ôm.; Boucraut, J.é; Salort-Campana, E.; Verschueren, A.; Sagui, E.; Hubert, A.-M.èl.; Pouget, J.; Attarian, S. 2017: Predictive factors of efficacy of rituximab in patients with anti-MAG neuropathy. Journal of the Neurological Sciences 377: 144-148
Ugarte-Gil, M.F.; Wojdyla, D.; Pastor-Asurza, C.A.; Gamboa-Cárdenas, R.V.; Acevedo-Vásquez, E.M.; Catoggio, L.J.; García, M.A.; Bonfá, E.; Sato, E.I.; Massardo, L.; Pascual-Ramos, V.; Barile, L.A.; Reyes-Llerena, G.; Iglesias-Gamarra, A.; Molina-Restrepo, J.F.; Chacón-Díaz, R.; Alarcón, G.S.; Pons-Estel, B.A. 2018: Predictive factors of flares in systemic lupus erythematosus patients: data from a multiethnic Latin American cohort. Lupus 27(4): 536-544
Condorhuamán-Alvarado, P.Y.; Menéndez-Colino, R.ío.; Mauleón-Ladrero, C.; Díez-Sebastián, J.ús.; Alarcón, T.; González-Montalvo, J.I. 2017: Predictive factors of functional decline at hospital discharge in elderly patients hospitalised due to acute illness. Revista Espanola de Geriatria y Gerontologia 52(5): 253-256
Lee, J.; Lim, D.H.; Park, H.C.; Yu, J.I.; Choi, D.W.; Choi, S.H.; Heo, J.S. 2017: Predictive factors of gastroduodenal bleeding after postoperative radiotherapy in biliary tract cancer. Japanese Journal of Clinical Oncology 47(4): 328-333
Grangeon, L.; Puy, L.; Gilard, V.; Hebant, B.; Langlois, O.; Derrey, S.; Gerardin, E.; Maltete, D.; Guegan-Massardier, E.; Magne, N. 2018: Predictive Factors of Headache Resolution After Chiari Type 1 Malformation Surgery. World Neurosurgery 110: E60-E66
Pareja Sierra, T.; Bartolomé Martín, I.; Rodríguez Solís, J.; Bárcena Goitiandia, L.; Torralba González de Suso, M.; Morales Sanz, M.D.; Hornillos Calvo, M. 2017: Predictive factors of hospital stay, mortality and functional recovery after surgery for hip fracture in elderly patients. Revista Espanola de Cirugia Ortopedica y Traumatologia 61(6): 427-435
García Martínez, T.; Montañes Pauls, B.én.; Vicedo Cabrera, A.M.ía.; Liñana Granell, C.; Ferrando Piqueres, R. 2017: Predictive factors of hyperglycemia in hospitalized adults receiving total parenteral nutrition. Farmacia Hospitalaria: Organo Oficial de Expresion Cientifica de la Sociedad Espanola de Farmacia Hospitalaria 41(6): 667-673
Ocón Bretón, M.J.; Ilundain Gonzalez, A.I.; Altemir Trallero, J.; Agudo Tabuenca, A.; Gimeno Orna, J.é A. 2017: Predictive factors of hypertriglyceridemia in inhospital patients during total parenteral nutrition. Nutricion Hospitalaria 34(3): 505-511
Liu, D.; Ye, Y.; Xie, Q.; Yin, M.; Yang, X.; Liang, B.; Wang, S. 2017: Predictive factors of intestinal necrosis in acute mesenteric vascular occlusive diseases. Zhonghua Wei Chang Wai Ke Za Zhi 20(7): 787-791
Michelet, D.é; Julien-Marsollier, F.; Hilly, J.; Diallo, T.; Vidal, C.; Dahmani, S. 2018: Predictive factors of intraoperative cell salvage during pediatric scoliosis surgery. Cell saver during scoliosis surgery in children. Anaesthesia Critical Care and Pain Medicine 37(2): 141-146
Ippolito, E.; Guido, A.; Macchia, G.; Deodato, F.; Giaccherini, L.; Farioli, A.; Arcelli, A.; Cuicchi, D.; Frazzoni, L.; Cilla, S.; Buwenge, M.; Mantini, G.; Alitto, A.R.; Nuzzo, M.; Valentini, V.; Ingrosso, M.; Morganti, A.G.; Fuccio, L. 2017: Predictive Factors of Late-onset Rectal Mucosal Changes After Radiotherapy of Prostate Cancer. In Vivo 31(5): 961-966
Hernández-Socorro, C.R.; Saavedra, P.; Ramírez Felipe, J.é; Bohn Sarmiento, U.; Ruiz-Santana, S. 2017: Predictive factors of long-term colorectal cancer survival after ultrasound-controlled ablation of hepatic metastases. Medicina Clinica 148(8): 345-350
Mathon, B.; Bielle, F.; Samson, S.év.; Plaisant, O.; Dupont, S.; Bertrand, A.; Miles, R.; Nguyen-Michel, V.-H.; Lambrecq, V.; Calderon-Garcidueñas, A.L.; Duyckaerts, C.; Carpentier, A.; Baulac, M.; Cornu, P.; Adam, C.; Clemenceau, S.ép.; Navarro, V. 2017: Predictive factors of long-term outcomes of surgery for mesial temporal lobe epilepsy associated with hippocampal sclerosis. Epilepsia 58(8): 1473-1485
Bemba, E.L.P.; Bopaka, R.G.; Ossibi-Ibara, R.; Toungou, S.N.; Ossale-Abacka, B.K.; Okemba-Okombi, F.H.; Mboussa, J. 2017: Predictive factors of lost to follow-up status during tuberculosis treatment in Brazzaville. Revue de Pneumologie Clinique 73(2): 81-89
Kim, S.K.; Kwon, A.-Y.; Back, K.; Park, I.; Hur, N.; Lee, J.H.; Choe, J.-H.; Kim, J.-H.; Oh, Y.L.; Kim, J.S. 2017: Predictive Factors of Lymph Node Metastasis in Follicular Variant of Papillary Thyroid Carcinoma. Annals of Surgical Oncology 24(9): 2617-2623
Desgranges, F.ço.-P.; Bapteste, L.; Riffard, C.él.; Pop, M.; Cogniat, B.ér.èr.; Gagey, A.-C.; Boucher, P.; Bonnard, C.; Paturel, B.; Mullet, C.; Chassard, D.; Bouvet, L. 2017: Predictive factors of maternal hypothermia during Cesarean delivery: a prospective cohort study. Canadian Journal of Anaesthesia 64(9): 919-927
Ragbaoui, Y.; Nouamou, I.; Hammiri, A.E.; Habbal, R. 2017: Predictive factors of medication adherence in patients with chronic heart failure: Morocco's experience. Pan African Medical Journal 26: 115
Aihara, M.; Naito, I.; Shimizu, T.; Matsumoto, M.; Asakura, K.; Miyamoto, N.; Yoshimoto, Y. 2018: Predictive factors of medullary infarction after endovascular internal trapping using coils for vertebral artery dissecting aneurysms. Journal of Neurosurgery 129(1): 107-113
Jwa, H.; Beom, J.W.; Lee, J.H. 2017: Predictive Factors of Methicillin-Resistant Staphylococcus aureus Infection in Elderly Patients with Community-Onset Pneumonia. Tuberculosis and Respiratory Diseases 80(2): 201-209
Harzallah, A.; Kaaroud, H.; Hajji, M.; Mami, I.; Goucha, R.; Hamida, F.B.; Barbouch, S.; Abdallah, T.B. 2017: Predictive factors of mortality in a tunisian cohort with systemic lupus erythematosus. Saudi Journal of Kidney Diseases and Transplantation: An Official Publication of the Saudi Center for Organ Transplantation Saudi Arabia 28(4): 792-798
Zouari, M.; Abid, I.; Ben Dhaou, M.; Louati, H.; Jallouli, M.; Mhiri, R. 2018: Predictive factors of negative appendectomy in children. American Journal of Emergency Medicine 36(2): 335-336
Terzioğlu, S.G.ök.; Kılıç, M.Öz.ür.; Sapmaz, A.; Karaca, A.S. 2017: Predictive factors of neoplastic gallbladder polyps: Outcomes of 278 patients. Turkish Journal of Gastroenterology: the Official Journal of Turkish Society of Gastroenterology 28(3): 202-206
Alluri, R.K.; Pannell, W.; Heckmann, N.; Sivasundaram, L.; Stevanovic, M.; Ghiassi, A. 2016: Predictive Factors of Neurovascular and Tendon Injuries Following Dog Bites to the Upper Extremity. Hand 11(4): 469-474
Maekura, T.; Naito, M.; Tahara, M.; Ikegami, N.; Kimura, Y.; Sonobe, S.; Kobayashi, T.; Tsuji, T.; Minomo, S.; Tamiya, A.; Atagi, S. 2017: Predictive Factors of Nivolumab-induced Hypothyroidism in Patients with Non-small Cell Lung Cancer. In Vivo 31(5): 1035-1039
Magalhães, L.P.; Dos Reis, L.M.; Graciolli, F.G.; Pereira, B.J.; de Oliveira, R.B.; de Souza, A.A.L.; Moyses, R.M.; Elias, R.M.; Jorgetti, V. 2017: Predictive Factors of One-Year Mortality in a Cohort of Patients Undergoing Urgent-Start Hemodialysis. Plos one 12(1): E0167895
He, Z.-X.; Shi, H.-H.; Fan, Q.-B.; Zhu, L.; Leng, J.-H.; Sun, D.-W.; Li, Z.-F.; Shen, K.; Wang, S.; Lang, J.-H. 2017: Predictive factors of ovarian carcinoma for women with ovarian endometrioma aged 45 years and older in China. Journal of Ovarian Research 10(1): 45
Cao, X.; Cao, F.; Li, A.; Gao, X.; Wang, X.-H.; Liu, D.-G.; Fang, Y.; Guo, D.-H.; Li, F. 2017: Predictive factors of pancreatic necrosectomy following percutaneous catheter drainage as a primary treatment of patients with infected necrotizing pancreatitis. Experimental and Therapeutic Medicine 14(5): 4397-4404
Han, X.; Wen, H.; Ju, X.; Chen, X.; Ke, G.; Zhou, Y.; Li, J.; Xia, L.; Tang, J.; Liang, S.; Wu, X. 2017: Predictive factors of para-aortic lymph nodes metastasis in cervical cancer patients: a retrospective analysis based on 723 para-aortic lymphadenectomy cases. Oncotarget 8(31): 51840-51847
Hatamabadi, H.Reza.; Shojaee, M.; Kashani, P.; Forouzanfar, M.Mehdi.; Aghajani Nargesi, D.; Amini Esfahani, M.Reza. 2017: Predictive factors of poor outcome in road traffic injures; a retrospective cohort study. Emergency 5(1): E21
Yang, H.; Deng, Z.; Yang, W.; Liu, K.; Yao, H.; Tong, X.; Wu, J.; Zhao, Y.; Cao, Y.; Wang, S. 2017: Predictive Factors of Postoperative Seizure for Pediatric Patients with Unruptured Arteriovenous Malformations. World Neurosurgery 105: 37-46
Li, K.-K.; Qian, K.; Feng, Y.-G.; Guo, W.; Tan, Q.-Y.; Deng, B. 2017: Predictive factors of prolonged mechanical ventilation, overall survival, and quality of life in patients with post-thymectomy myasthenic crisis. World Journal of Surgical Oncology 15(1): 150
Barbe, C.; Morrone, I.; Novella, J.L.; Dramé, M.; Wolak-Thierry, A.; Aquino, J.-P.; Ankri, J.ël.; Jolly, D.; Mahmoudi, R. 2016: Predictive Factors of Rapid Cognitive Decline in Patients with Alzheimer Disease. Dementia and Geriatric Cognitive Disorders Extra 6(3): 549-558
Ferreira, F.G.ça.; Saliture Neto, F.T.; Santos, M.d.F.át.; Assef, J.é C.; Szutan, L.A.; De Capua Junior, A. 2005: Predictive factors of rebleeding in cirrhotic patients submitted to Warren's surgery. Revista da Associacao Medica Brasileira 51(5): 261-264
Hamada, T.; Kubo, T.; Yamasaki, N.; Kitaoka, H. 2018: Predictive factors of rehospitalization for worsening heart failure and cardiac death within 1 year in octogenarians hospitalized for heart failure. Geriatrics and Gerontology International 18(1): 101-107
Kwon, H.J.; Kim, D.H.; Jang, H.R.; Jung, S.-H.; Han, D.H.; Sung, H.H.; Park, J.B.; Lee, J.E.; Huh, W.; Kim, S.J.; Kim, Y.-G.; Kim, D.J.; Oh, H.Y. 2017: Predictive Factors of Renal Adaptation After Nephrectomy in Kidney Donors. Transplantation Proceedings 49(9): 1999-2006
Lee, H.Y.; Song, M.S. 2016: Predictive factors of resistance to intravenous immunoglobulin and coronary artery lesions in Kawasaki disease. Korean Journal of Pediatrics 59(12): 477-482
Shin, Y.K.; Ryu, K.N.; Park, J.S.; Jin, W.; Park, S.Y.; Yoon, Y.C. 2018: Predictive Factors of Retear in Patients with Repaired Rotator Cuff Tear on Shoulder MRi. AJR. American Journal of Roentgenology 210(1): 134-141
Park, Y.M.; Lee, S.M.; Kim, D.W.; Shin, S.-C.; Lee, B.-J. 2017: Predictive factors of right paraesophageal lymph node metastasis in papillary thyroid carcinoma: Single center experience and meta-analysis. Plos one 12(5): E0177956
Peixoto, A.; Silva, M.; Gaspar, R.; Morais, R.; Pereira, P.; Macedo, G. 2017: Predictive factors of short-term mortality in ischaemic colitis and development of a new prognostic scoring model of in-hospital mortality. United European Gastroenterology Journal 5(3): 432-439
Okumura, Y.; Kita, Y.; Omori, M.; Suzuki, K.; Yasumura, A.; Fukuda, A.; Inagaki, M. 2019: Predictive factors of success in neurofeedback training for children with ADHD. Developmental Neurorehabilitation 22(1): 3-12
Bonini, F.; McGonigal, A.; Scavarda, D.; Carron, R.; Régis, J.; Dufour, H.; Péragut, J.-C.; Laguitton, V.; Villeneuve, N.; Chauvel, P.; Giusiano, B.; Trébuchon, A.ès.; Bartolomei, F. 2018: Predictive Factors of Surgical Outcome in Frontal Lobe Epilepsy Explored with Stereoelectroencephalography. Neurosurgery 83(2): 217-225
Hattori, K.; Kataoka, K.; Takeuchi, J.; Ito, Y.; Terasaki, H. 2018: Predictive Factors of Surgical Outcomes in Vitrectomy for Myopic Traction Maculopathy. Retina 38(Suppl 1): S23-S30
Vathanalaoha, K.; Oearsakul, T.; Tunthanathip, T. 2017: Predictive Factors of Survival and 6-Month Favorable Outcome of very Severe Head Trauma Patients; a Historical Cohort Study. Emergency 5(1): E24
Kim, K.; Lee, J.; Cho, Y.; Chung, S.Y.; Lee, J.J.B.; Lee, C.G.; Cho, J. 2017: Predictive factors of symptomatic radiation pneumonitis in primary and metastatic lung tumors treated with stereotactic ablative body radiotherapy. Radiation Oncology Journal 35(2): 163-171
Muinelo-Lorenzo, J.; Fernández-Alonso, A.; Smyth-Chamosa, E.; Suárez-Quintanilla, J.A.; Varela-Mallou, J.ús.; Suárez-Cunqueiro, M.ía.M. 2017: Predictive factors of the dimensions and location of mental foramen using cone beam computed tomography. Plos one 12(8): E0179704
Takamatsu, K.; Nakajima, Y.; Ishida, M.; Ohara, R.; Kosugi, M.; Kitano, M.; Yoshii, H. 2016: Predictive Factors of the Initial Treatment for 207 Blunt Renal Trauma Cases Based on the Classification for Renal Injury of Japanese Association for the Surgery of Trauma 2008's Version. Nihon Hinyokika Gakkai Zasshi. Japanese Journal of Urology 107(1): 13-20
Bragagnini, P.; Estors, B.; Delgado, R.; Rihuete, M.Án.; Gracia, J.ús. 2016: Predictive factors of the outcomes of prenatal hydronephrosis. Archivos Espanoles de Urologia 69(10): 680-690
Badawi, A.E.; Abou Samra, W.A.; El Ghafar, A.A. 2017: Predictive Factors of the Standard Cross-linking Outcomes in Adult Keratoconus: One-Year Follow-Up. Journal of Ophthalmology 2017: 4109208
Prajs, I.; Kuliczkowski, K. 2017: Predictive factors of thrombosis for patients with essential thrombocythaemia: a single center study. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University 26(1): 115-121
Li, Q.; Li, H.; Jiang, H.; Feng, Y.; Cui, Y.; Wang, Y.; Ji, Y.; Yu, Y.; Li, W.; Xu, C.; Yu, S.; Zhuang, R.; Liu, T. 2018: Predictive factors of trastuzumab-based chemotherapy in HER2 positive advanced gastric cancer: a single-center prospective observational study. Clinical and Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 20(6): 695-702
Kim, J.Hee.; Jung, H.Ho.; Chang, J.Hee.; Chang, J.Woo.; Park, Y.Gou.; Chang, W.Seok. 2017: Predictive Factors of Unfavorable Events After Gamma Knife Radiosurgery for Vestibular Schwannoma. World Neurosurgery 107: 175-184
Yang, C.-S.; Hsieh, M.-H.; Chang, Y.-F.; Wang, C.-Y.; Chen, S.-J. 2018: Predictive Factors of Visual Outcome for Vitreomacular Traction Syndrome after Vitrectomy. Retina 38(8): 1533-1540
Thevi, T.; Godinho, M.Anthony. 2017: Predictive factors of visual outcome of Malaysian cataract patients: a retrospective study. International Journal of Ophthalmology 10(9): 1452-1459
Keith, C.J.; Gullick, A.A.; Feng, K.; Richman, J.; Stahl, R.; Grams, J. 2018: Predictive factors of weight regain following laparoscopic Roux-en-Y gastric bypass. Surgical Endoscopy 32(5): 2232-2238
Van Dijk, S.T.; Daniels, L.; Nio, C.Y.; Somers, I.; van Geloven, A.A.W.; Boermeester, M.A. 2017: Predictive factors on CT imaging for progression of uncomplicated into complicated acute diverticulitis. International Journal of Colorectal Disease 32(12): 1693-1698
Leyrer, C.M.; Berriochoa, C.A.; Agrawal, S.; Donaldson, A.; Calhoun, B.C.; Shah, C.; Stewart, R.; Moore, H.C.F.; Tendulkar, R.D. 2017: Predictive factors on outcomes in metaplastic breast cancer. Breast Cancer Research and Treatment 165(3): 499-504
Nyholm, L.; Howells, T.; Enblad, P. 2017: Predictive Factors That May Contribute to Secondary Insults With Nursing Interventions in Adults With Traumatic Brain Injury. Journal of neuroscience nursing: journal of the American Association of Neuroscience Nurses 49(1): 49-55
Ryu, D.G.; Choi, C.W.; Kang, D.H.; Kim, H.W.; Park, S.B.; Kim, S.J.; Nam, H.S. 2017: Predictive factors to diagnosis undifferentiated early gastric cancer after endoscopic submucosal dissection. Medicine 96(36): E8044
Yang, T.; Sun, S.; Lin, L.; Han, M.; Liu, Q.; Zeng, X.; Zhao, Y.; Li, Y.; Su, B.; Huang, S.; Yang, L. 2017: Predictive Factors Upon Discontinuation of Renal Replacement Therapy for Long-Term Chronic Dialysis and Death in Acute Kidney Injury Patients. Artificial Organs 41(12): 1127-1134
He, D.; Mo, C.; Fang, F. 2017: Predictive feature remapping before saccadic eye movements. Journal of Vision 17(5): 14
Bacuzzi, A.; Dionigi, G.; Guzzetti, L.; De Martino, A.I.; Severgnini, P.; Cuffari, S. 2017: Predictive features associated with thyrotoxic storm and management. Gland Surgery 6(5): 546-551
Schulz, R.T.; Fabio, L.C.; Franco, M.C.; Siqueira, S.A.; Sakai, P.; Maluf-Filho, F. 2017: Predictive features for histology of gastric subepithelial lesions. Arquivos de Gastroenterologia 54(1): 11-15
Jamme, M.; Raimbourg, Q.; Chauveau, D.; Seguin, A.él.; Presne, C.; Perez, P.; Gobert, P.; Wynckel, A.; Provôt, F.ço.; Delmas, Y.; Mousson, C.; Servais, A.; Vrigneaud, L.; Veyradier, A.ès.; Rondeau, E.; Coppo, P. 2017: Predictive features of chronic kidney disease in atypical haemolytic uremic syndrome. Plos one 12(5): E0177894
Loschak, P.M.; Degirmenci, A.; Howe, R.D. 2017: Predictive Filtering in Motion Compensation with Steerable Cardiac Catheters. IEEE International Conference on Robotics and Automation: Icra: Proceedings . IEEE International Conference on Robotics and Automation 2017: 4830-4836
Son, S.Min.; Shin, J.Ki.; Goh, T.Sik.; Suh, K.Tak.; Lee, J.Sub. 2018: Predictive Findings of the Presence of Stooping in Patients With Lumbar Degenerative Kyphosis by Upright Whole Spine Lateral Radiography. Spine 43(8): 571-577
Bean, T.G.; Arnold, K.E.; Lane, J.M.; Bergström, E.; Thomas-Oates, J.; Rattner, B.A.; Boxall, A.B.A. 2017: Predictive framework for estimating exposure of birds to pharmaceuticals. Environmental Toxicology and Chemistry 36(9): 2335-2344
Crook, A.; Williams, K.; Adams, L.; Blair, I.; Rowe, D.B. 2017: Predictive genetic testing for amyotrophic lateral sclerosis and frontotemporal dementia: genetic counselling considerations. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 18(7-8): 475-485
Michie, S.; Bobrow, M.; Marteau, T.M. 2001: Predictive genetic testing in children and adults: a study of emotional impact. Journal of Medical Genetics 38(8): 519-526
Serbus, L.R.; Rodriguez, B.Garcia.; Sharmin, Z.; Momtaz, A.J.M.Zehadee.; Christensen, S. 2017: Predictive Genomic Analyses Inform the Basis for Vitamin Metabolism and Provisioning in Bacteria-Arthropod Endosymbioses. G3 7(6): 1887-1898
Kwon, H.Jae.; Kwon, S.; Seo, J.Gil.; Jung, I.Sun.; Son, Y-Hwan.; Lee, C.Hyun.; Lee, K.Bong.; Lee, H.Chul. 2017: Predictive Guide for Collective CO 2 Adsorption Properties of Mg-Al Mixed Oxides. ChemSusChem 10(8): 1701-1709
Forlenza, G.P.; Raghinaru, D.; Cameron, F.; Wayne Bequette, B.; Peter Chase, H.; Paul Wadwa, R.; Maahs, D.M.; Jost, E.; Ly, T.T.; Wilson, D.M.; Norlander, L.; Ekhlaspour, L.; Min, H.; Clinton, P.; Njeru, N.; Lum, J.W.; Kollman, C.; Beck, R.W.; Buckingham, B.A. 2018: Predictive hyperglycemia and hypoglycemia minimization: In-home double-blind randomized controlled evaluation in children and young adolescents. Pediatric Diabetes 19(3): 420-428
Spaic, T.; Driscoll, M.; Raghinaru, D.; Buckingham, B.A.; Wilson, D.M.; Clinton, P.; Chase, H.P.; Maahs, D.M.; Forlenza, G.P.; Jost, E.; Hramiak, I.; Paul, T.; Bequette, B.W.; Cameron, F.; Beck, R.W.; Kollman, C.; Lum, J.W.; Ly, T.T. 2017: Predictive Hyperglycemia and Hypoglycemia Minimization: In-Home Evaluation of Safety, Feasibility, and Efficacy in Overnight Glucose Control in Type 1 Diabetes. Diabetes Care 40(3): 359-366
Gerendas, B.S.; Prager, S.; Deak, G.; Simader, C.; Lammer, J.; Waldstein, S.M.; Guerin, T.; Kundi, M.; Schmidt-Erfurth, U.M. 2018: Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema. British Journal of Ophthalmology 102(2): 195-203
Kim, C.A.; Chu, Q.S.C.; Fassbender, K.; Ghosh, S.; Spratlin, J.L. 2018: Predictive Impact of Clinical Benefit in Chemotherapy-treated Advanced Pancreatic Cancer Patients in Northern Alberta. American Journal of Clinical Oncology 41(9): 867-873
Harada, K.; Sekiya, N.; Konishi, T.; Nagata, A.; Yamada, Y.; Takezaki, T.; Kaito, S.; Kurosawa, S.; Sakaguchi, M.; Yasuda, S.; Sasaki, S.; Yoshioka, K.; Watakabe-Inamoto, K.; Igarashi, A.; Najima, Y.; Hagino, T.; Muto, H.; Kobayashi, T.; Doki, N.; Kakihana, K.; Sakamaki, H.; Ohashi, K. 2017: Predictive implications of albumin and C-reactive protein for progression to pneumonia and poor prognosis in Stenotrophomonas maltophilia bacteremia following allogeneic hematopoietic stem cell transplantation. Bmc Infectious Diseases 17(1): 638
Hashimoto, M.; Kobayashi, T.; Ishiyama, K.; Ide, K.; Ohira, M.; Tahara, H.; Kuroda, S.; Hamaoka, M.; Iwako, H.; Okimoto, S.; Honmyo, N.; Ohdan, H. 2017: Predictive Independent Factors for Extrahepatic Metastasis of Hepatocellular Carcinoma Following Curative Hepatectomy. Anticancer Research 37(5): 2625-2631
Green, L.-L.; Goussard, P.; van Zyl, A.; Kidd, M.; Kruger, M. 2018: Predictive Indicators to Identify High-Risk Paediatric Febrile Neutropenia in Paediatric Oncology Patients in a Middle-Income Country. Journal of Tropical Pediatrics 64(5): 395-402
Kurichi, J.E.; Kwong, P.L.; Xie, D.; Bogner, H.R. 2017: Predictive Indices for Functional Improvement and Deterioration, Institutionalization, and Death Among Elderly Medicare Beneficiaries. Pm and R: the Journal of Injury Function and Rehabilitation 9(11): 1065-1076
Coolen-Maturi, T. 2017: Predictive inference for best linear combination of biomarkers subject to limits of detection. Statistics in Medicine 36(18): 2844-2874
Olivero, W.C.; Wang, H.; Farahvar, A.; Kim, T.A.; Wang, F. 2017: Predictive (subtle or overlooked) initial head CT findings in patients who develop delayed chronic subdural hematoma. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia 42: 129-133
Pesquita, A.; Whitwell, R.L.; Enns, J.T. 2018: Predictive joint-action model: a hierarchical predictive approach to human cooperation. Psychonomic Bulletin and Review 25(5): 1751-1769
Kim, J.-L.; Shin, J.Y.; Roh, S.-G.; Chang, S.C.; Lee, N.-H. 2017: Predictive Laboratory Findings of Lower Extremity Amputation in Diabetic Patients: Meta-analysis. International Journal of Lower Extremity Wounds 16(4): 260-268
Yubo Wang; Tatinati, S.; Liyu Huang; Kim Jeong Hong; Shafiq, G.; Veluvolu, K.C.; Khong, A.W.H. 2017: Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2017: 2859-2862
Lee, K.; Lee, S.; Bang, H.; Choi, J.K. 2017: Predictive long-range allele-specific mapping of regulatory variants and target transcripts. Plos one 12(4): E0175768
Pinsker, J.E.; Dassau, E. 2017: Predictive Low-Glucose Suspend to Prevent Hypoglycemia. Diabetes Technology and Therapeutics 19(5): 271-276
Hill, R.A.; Fox, E.W.; Leibowitz, S.G.; Olsen, A.R.; Thornbrugh, D.J.; Weber, M.H. 2017: Predictive mapping of the biotic condition of conterminous U.S. rivers and streams. Ecological Applications: a Publication of the Ecological Society of America 27(8): 2397-2415
Murakami, K.; Yamamoto, Y.; Fukunaga, H.; Matsushita, M.; Hirai, C.; Makino, S.; Shimizu, T.; Itakura, A.; Takeda, S. 2018: Predictive markers and prenatal management of isolated fetal complete atrioventricular block: A retrospective review at a single institution. Journal of Obstetrics and Gynaecology Research 44(2): 228-233
Luksic, I.; Suton, P. 2017: Predictive markers for delayed lymph node metastases and survival in early-stage oral squamous cell carcinoma. Head and Neck 39(4): 694-701
Li, Y.; Kang, W.; Yang, Q.; Zhang, L.; Zhang, L.; Dong, F.; Chen, S.; Liu, J. 2017: Predictive markers for early conversion of iRBD to neurodegenerative synucleinopathy diseases. Neurology 88(16): 1493-1500
Altundag, K. 2017: Predictive markers for trastuzumab-associated cardiac dysfunction in patients with early-stage human epidermal growth factor receptor 2-positive breast cancer receiving trastuzumab. Journal of BUON: Official Journal of the Balkan Union of Oncology 22(3): 801
Kirkeby, A.; Nolbrant, S.; Tiklova, K.; Heuer, A.; Kee, N.; Cardoso, T.; Ottosson, D.Rylander.; Lelos, M.J.; Rifes, P.; Dunnett, S.B.; Grealish, S.; Perlmann, T.; Parmar, M. 2017: Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell stem cell 20(1): 135-148
Tímár, J.óz.; Ladányi, A. 2017: Predictive markers of immunotherapy of cancer, practical issues of PD-L1 testing. Magyar Onkologia 61(2): 158-166
Sahaï, A.ïs.; Pacherie, E.; Grynszpan, O.; Berberian, B. 2017: Predictive Mechanisms Are not Involved the Same way during Human-Human vs. Human-Machine Interactions: a Review. Frontiers in Neurorobotics 11: 52
Jones, A.K.P.; Brown, C.A. 2018: Predictive mechanisms linking brain opioids to chronic pain vulnerability and resilience. British Journal of Pharmacology 175(14): 2778-2790
Yan, W.; He, M. 2017: Predictive Medicine in Ophthalmology. Ophthalmology 124(4): 420-421
Eccles, K.M.; Thomas, P.J.; Chan, H.M. 2017: Predictive meta-regressions relating mercury tissue concentrations of freshwater piscivorous mammals. Environmental Toxicology and Chemistry 36(9): 2377-2384
Elliott, P.H. 1996: Predictive Microbiology and HACCP. Journal of food protection 59(13): 48-53
Nicolau-Raducu, R.; Cohen, A.J.; Bokhari, A.; Bohorquez, H.; Bruce, D.; Carmody, I.; Bugeaud, E.; Seal, J.; Sonnier, D.; Nossaman, B.; Loss, G. 2017: Predictive model and risk factors associated with a revised definition of early allograft dysfunction in liver transplant recipients. Clinical Transplantation 31(11)
Huang, S-Hsin.; Loh, J-Khim.; Tsai, J-Tsong.; Houg, M-Feng.; Shi, H-Yi. 2017: Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents. Chinese journal of cancer 36(1): 23
Lee, S.J.; Kim, S.R.; Chung, S.J.; Kang, H.C.; Kim, M.S.; Cho, S.-J.; Kwon, H.K.; Kim, J.; Jung, S.Y. 2018: Predictive model for health-related quality of life in patients with Parkinson's disease. Geriatric Nursing 39(2): 204-211
Fujiyoshi, K.; Yamaguchi, T.; Kakuta, M.; Takahashi, A.; Arai, Y.; Yamada, M.; Yamamoto, G.; Ohde, S.; Takao, M.; Horiguchi, S-Ichiro.; Natsume, S.; Kazama, S.; Nishizawa, Y.; Nishimura, Y.; Akagi, Y.; Sakamoto, H.; Akagi, K. 2017: Predictive model for high-frequency microsatellite instability in colorectal cancer patients over 50 years of age. Cancer medicine 6(6): 1255-1263
Zhou, W.; Ma, Y.; Zhang, J.; Hu, J.; Zhang, M.; Wang, Y.; Li, Y.; Wu, L.; Pan, Y.; Zhang, Y.; Zhang, X.; Zhang, X.; Zhang, Z.; Zhang, J.; Li, H.; Lu, L.; Jin, L.; Wang, J.; Yuan, Z.; Liu, J. 2017: Predictive model for inflammation grades of chronic hepatitis B: Large-scale analysis of clinical parameters and gene expressions. Liver International: Official Journal of the International Association for the Study of the Liver 37(11): 1632-1641
Yang, J.-I.; Lee, J.K.; Ahn, D.G.; Park, J.K.; Lee, K.H.; Lee, K.T.; Chi, S.A.; Jung, S.-H. 2018: Predictive Model for Neoplastic Potential of Gallbladder Polyp. Journal of Clinical Gastroenterology 52(3): 273-276
Morales-Rivera, C.A.; Floreancig, P.E.; Liu, P. 2017: Predictive Model for Oxidative C-H Bond Functionalization Reactivity with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. Journal of the American Chemical Society 139(49): 17935-17944
Phusoongnern, W.; Anunnatsiri, S.; Sawanyawisuth, K.; Kitkhuandee, A. 2017: Predictive Model for Permanent Shunting in Cryptococcal meningitis. American Journal of Tropical Medicine and Hygiene 97(5): 1451-1453
Margrey, K.A.; McManus, J.B.; Bonazzi, S.; Zecri, F.; Nicewicz, D.A. 2017: Predictive Model for Site-Selective Aryl and Heteroaryl C-H Functionalization via Organic Photoredox Catalysis. Journal of the American Chemical Society 139(32): 11288-11299
Bachegowda, L.S.; Saliba, R.M.; Ramlal, R.; Kongtim, P.; Chen, J.; Rondon, G.; Wallis, W.; Alousi, A.; Ahmed, S.; Hosing, C.M.; Parmar, S.; Qazilbash, M.; Khouri, I.F.; Bashir, Q.; Oran, B.; Popat, U.; Shpall, E.J.; Marin, D.; Rezvani, K.; Kebriaei, P.; Champlin, R.E.; Ciurea, S.O. 2017: Predictive model for survival in patients with AML/MDS receiving haploidentical stem cell transplantation. Blood 129(22): 3031-3033
Álvarez Aliaga, A.; González-Aguilera, J.C.és.; Maceo-Gómez, L.D.R.; Suárez-Quesada, A. 2017: Predictive model for the development of hypertensive cardiopathy: a prospective cohort study. Medwave 17(4): E6954
Brouwer, M.T.; Thoden van Velzen, E.U.; Augustinus, A.; Soethoudt, H.; De Meester, S.; Ragaert, K. 2018: Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy. Waste Management 71: 62-85
Tan, P.M.; Buchholz, K.S.; Omens, J.H.; McCulloch, A.D.; Saucerman, J.J. 2017: Predictive model identifies key network regulators of cardiomyocyte mechano-signaling. Plos Computational Biology 13(11): E1005854
Posada, J.D.; Barda, A.J.; Shi, L.; Xue, D.; Ruiz, V.; Kuan, P.-H.; Ryan, N.D.; Tsui, F.R. 2017: Predictive modeling for classification of positive valence system symptom severity from initial psychiatric evaluation records. Journal of Biomedical Informatics 75s: S94
Patil, R.B.; Patil, M.A.; Ravi, V.; Naik, S. 2017: Predictive modeling for corrective maintenance of imaging devices from machine logs. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2017: 1676-1679
Yimenu, S.M.; Kim, J.Y.; Koo, J.; Kim, B.S. 2017: Predictive modeling for monitoring egg freshness during variable temperature storage conditions. Poultry Science 96(8): 2811-2819
Garzotto, M.; Hudson, R.G.; Peters, L.; Hsieh, Y.-C.; Barrera, E.; Mori, M.; Beer, T.M.; Klein, T. 2003: Predictive modeling for the presence of prostate carcinoma using clinical, laboratory, and ultrasound parameters in patients with prostate specific antigen levels < or = 10 ng/mL. Cancer 98(7): 1417-1422
Malwade, A.; Nguyen, A.; Sadat-Mousavi, P.; Ingalls, B.P. 2017: Predictive Modeling of a Batch Filter Mating Process. Frontiers in Microbiology 8: 461
Steimer, A.; Müller, M.; Schindler, K. 2017: Predictive modeling of EEG time series for evaluating surgery targets in epilepsy patients. Human Brain Mapping 38(5): 2509-2531
Morris, D.H.; Gostic, K.M.; Pompei, S.; Bedford, T.; Łuksza, M.; Neher, R.A.; Grenfell, B.T.; Lässig, M.; McCauley, J.W. 2018: Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology. Trends in Microbiology 26(2): 102-118
Nandal, V.; Nair, P.R. 2017: Predictive Modeling of Ion Migration Induced Degradation in Perovskite Solar Cells. Acs Nano 11(11): 11505-11512
Pustavoitau, A.; Lesley, M.; Ariyo, P.; Latif, A.; Villamayor, A.J.; Frank, S.M.; Rizkalla, N.; Merritt, W.; Cameron, A.; Dagher, N.; Philosophe, B.; Gurakar, A.; Gottschalk, A. 2017: Predictive Modeling of Massive Transfusion Requirements During Liver Transplantation and its Potential to Reduce Utilization of Blood Bank Resources. Anesthesia and Analgesia 124(5): 1644-1652
Folkert, M.R.; Setton, J.; Apte, A.P.; Grkovski, M.; Young, R.J.; Schöder, H.; Thorstad, W.L.; Lee, N.Y.; Deasy, J.O.; Oh, J.H. 2017: Predictive modeling of outcomes following definitive chemoradiotherapy for oropharyngeal cancer based on FDG-PET image characteristics. Physics in Medicine and Biology 62(13): 5327-5343
Gonçalves, L.íc.D.D.A.; Piccoli, R.H.; Peres, A.d.P.; Saúde, A.é V. 2017: Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values. Brazilian Journal of Microbiology: 48(2): 352-358
Balasubramanian, A.; Shamsuddin, R.; Prabhakaran, B.; Sawant, A. 2017: Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts. Physics in Medicine and Biology 62(5): 1791-1809
Narani, A.; Coffman, P.; Gardner, J.; Li, C.; Ray, A.E.; Hartley, D.S.; Stettler, A.; Konda, N.V.S.N.M.; Simmons, B.; Pray, T.R.; Tanjore, D. 2017: Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply. Bioresource Technology 243: 676-685
Jung, W.J.; Jang, J.Y.; Park, W.Y.; Jeong, S.W.; Lee, H.J.; Park, S.J.; Lee, S.H.; Kim, S.G.; Cha, S.-W.; Kim, Y.S.; Cho, Y.D.; Kim, H.S.; Kim, B.S.; Park, S.; Baymbajav, B. 2018: Effect of tenofovir on renal function in patients with chronic hepatitis B. Medicine 97(7): E9756
Gefeller, O.; Hofner, B.; Mayr, A.; Waldmann, E. 2017: Predictive Modelling Based on Statistical Learning in Biomedicine. Computational and Mathematical Methods in Medicine 2017: 4041736
García-Nieto, P.J.; García-Gonzalo, E.; Alonso Fernández, J.R.; Díaz Muñiz, C. 2018: Predictive modelling of eutrophication in the Pozón de la Dolores lake (Northern Spain) by using an evolutionary support vector machines approach. Journal of Mathematical Biology 76(4): 817-840
O'Sullivan, A.J.; Pigat, S.; O'Mahony, C.; Gibney, M.J.; McKevitt, A.I. 2018: Predictive modelling of the exposure to steviol glycosides in Irish patients aged 1-3 years with phenylketonuria and cow's milk protein allergy. Food Additives and Contaminants. Part A Chemistry Analysis Control Exposure and Risk Assessment 35(1): 40-48
Rao, A.; Monteiro, J.M.; Mourao-Miranda, J. 2017: Predictive modelling using neuroimaging data in the presence of confounds. Neuroimage 150: 23-49
Benoit, T.; Game, X.; Roumiguie, M.; Sallusto, F.; Doumerc, N.; Beauval, J.B.; Rischmann, P.; Kamar, N.; Soulie, M.; Malavaud, B. 2017: Predictive model of 1-year postoperative renal function after living donor nephrectomy. International Urology and Nephrology 49(5): 793-801
Tuca, A.; Gómez-Martínez, M.ón.; Prat, A. 2018: Predictive model of complexity in early palliative care: a cohort of advanced cancer patients (PALCOM study). Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer 26(1): 241-249
Stecker, M.M.; Stecker, M.; Falotico, J. 2017: Predictive model of length of stay and discharge destination in neuroscience admissions. Surgical Neurology International 8: 17
Mohammadi, M.; Tembely, M.; Dolatabadi, A. 2017: Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: the Role of the Gas-Liquid Interface Temperature. Langmuir: the Acs Journal of Surfaces and Colloids 33(8): 1816-1825
Wu, A.; Weaver, M.J.; Heng, M.M.; Urman, R.D. 2017: Predictive Model of Surgical Time for Revision Total Hip Arthroplasty. Journal of Arthroplasty 32(7): 2214-2218
Machida, H.; Hom, M.S.; Shabalova, A.; Grubbs, B.H.; Matsuo, K. 2017: Predictive model of urinary tract infection after surgical treatment for women with endometrial cancer. Archives of Gynecology and Obstetrics 296(2): 335-343
Yokota, N.; Miyakoshi, T.; Sato, Y.; Nakasone, Y.; Yamashita, K.; Imai, T.; Hirabayashi, K.; Koike, H.; Yamauchi, K.; Aizawa, T. 2017: Predictive models for conversion of prediabetes to diabetes. Journal of Diabetes and its Complications 31(8): 1266-1271
Ben Abdallah, M.; Blonski, M.; Wantz-Mezieres, S.; Gaudeau, Y.; Taillandier, L.; Moureaux, J.-M. 2016: Predictive models for diffuse low-grade glioma patients under chemotherapy. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2016: 4357-4360
Pinho, C.P.S.; Diniz, A.d.S.; de Arruda, I.K.G.; Leite, A.P.D.L.ão.; Petribú, M.d.M.V.; Rodrigues, I.G.ão. 2017: Predictive models for estimating visceral fat: the contribution from anthropometric parameters. Plos one 12(7): E0178958
Yin, C.; Yang, X.; Wei, M.; Liu, H. 2017: Predictive models for identifying the binding activity of structurally diverse chemicals to human pregnane X receptor. Environmental Science and Pollution Research International 24(24): 20063-20071
Kaewprag, P.; Newton, C.; Vermillion, B.; Hyun, S.; Huang, K.; Machiraju, R. 2017: Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks. Bmc Medical Informatics and Decision Making 17(Suppl. 2): 65
Piñero, F.; Carrihlo, F.J.; Silva, M.O. 2017: Predictive models for recurrence risk of hepatocellular carcinoma after liver transplantation: Still an unmet need. Liver International: Official Journal of the International Association for the Study of the Liver 37(5): 648-650
Rathore, R.; Parihar, A.; Dwivedi, D.K.; Dwivedi, A.K.; Kohli, N.; Garg, R.K.; Chandra, A. 2017: Predictive Models in Differentiating Vertebral Lesions Using Multiparametric MRi. AJNR. American Journal of Neuroradiology 38(12): 2391-2398
Dubey, D.; Singh, J.; Britton, J.W.; Pittock, S.J.; Flanagan, E.P.; Lennon, V.A.; Tillema, J.-M.; Wirrell, E.; Shin, C.; So, E.; Cascino, G.D.; Wingerchuk, D.M.; Hoerth, M.T.; Shih, J.J.; Nickels, K.C.; McKeon, A. 2017: Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia 58(7): 1181-1189
Wei, B.; Zheng, X-Ming.; Lei, P-Run.; Huang, Y.; Zheng, Z-Heng.; Chen, T-Feng.; Huang, J-Long.; Fang, J-Feng.; Liang, C-Hua.; Wei, H-Bo. 2017: Predictive models of adjuvant chemotherapy for patients with stage ii colorectal cancer: A retrospective study. Chinese Medical Journal 130(17): 2069-2075
Kaladji, A.; Lalys Therenva Rennes, F.; Daoudal, A.; Clochard, E.; Maudet, A.; Lucas, A.; Cardon, A. 2017: Predictive Models of Complications after Endovascular Treatment of Abdominal Aortic Aneurysms. Annals of Vascular Surgery 38: E30-E31
Pham, T.; Forrest, K.A.; Franz, D.M.; Guo, Z.; Chen, B.; Space, B. 2017: Predictive models of gas sorption in a metal-organic framework with open-metal sites and small pore sizes. Physical Chemistry Chemical Physics: Pccp 19(28): 18587-18602
Gonzalez-Buendia, L.; Delgado-Tirado, S.; Sanabria, M.R.; Fernandez, I.; Coco, R.M. 2017: Predictive models of long-term anatomic outcome in age-related macular degeneration treated with as-needed Ranibizumab. Bmc Ophthalmology 17(1): 147
Ferreiro, L.ía.; Gude, F.; Toubes, M.ía.E.; Lama, A.; Suárez-Antelo, J.; San-José, E.; González-Barcala, F.J.; Golpe, A.; Álvarez-Dobaño, J.é M.; Rábade, C.; Rodríguez-Núñez, N.; Díaz-Louzao, C.; Valdés, L. 2017: Predictive models of malignant transudative pleural effusions. Journal of Thoracic Disease 9(1): 106-116
Choi, J.H.; Lee, J.Y.; Cha, J.; Kim, K.; Hong, S.-N.; Lee, S.H. 2017: Predictive models of objective oropharyngeal OSA surgery outcomes: Success rate and AHi reduction ratio. Plos one 12(9): E0185201
Gok, A.; Ngendahimana, D.K.; Fagerholm, C.L.; French, R.H.; Sun, J.; Bruckman, L.S. 2017: Predictive models of poly(ethylene-terephthalate) film degradation under multi-factor accelerated weathering exposures. Plos one 12(5): E0177614
Constantine, G.M.; Buliga, M.G.; Ivanco, L.S.; Moore, R.Y.; Bohnen, N.I. 2005: Predictive models of postural control based on electronic force platform measures in patients with Parkinson's disease. International Journal of Applied Mathematics 18(4): 487-500
Downey, T.A. 2006: Predictive NCLEX success with the HESI Exit Examination: Fourth annual validity study. Nurse educator Suppl: 35S-36S; author reply 36S-38S
Abel, E.J.; Masterson, T.A.; Karam, J.A.; Master, V.A.; Margulis, V.; Hutchinson, R.; Lorentz, C.A.; Bloom, E.; Bauman, T.M.; Wood, C.G.; Blute, M.L. 2017: Predictive Nomogram for Recurrence following Surgery for Nonmetastatic Renal Cell Cancer with Tumor Thrombus. Journal of Urology 198(4): 810-816
Li, W.; Li, Y.; Zhang, Z.; Xia, K.; Shang, X.; Yang, X.; Wang, L.; Zhang, Q. 2017: Predictive Nomogram of RAGE Genetic Polymorphisms and Metabolic Risk Factors for Myocardial Infarction Risk in a Han Chinese Population. Angiology 68(10): 877-883
Hanna, M.G.; Liu, C.; Rohde, G.K.; Singh, R. 2017: Predictive Nuclear Chromatin Characteristics of Melanoma and Dysplastic Nevi. Journal of Pathology Informatics 8: 15
Bierman, H.R. 1973: Predictive oncology. 3. International Surgery 58(11): 768-773
Güttlein, L.N.; Benedetti, L.G.; Fresno, C.ób.; Spallanzani, R.úl.G.; Mansilla, S.F.; Rotondaro, C.; Raffo Iraolagoitia, X.L.; Salvatierra, E.; Bravo, A.I.; Fernández, E.A.; Gottifredi, V.; Zwirner, N.W.; Llera, A.S.; Podhajcer, O.L. 2017: Predictive Outcomes for HER2-enriched Cancer Using Growth and Metastasis Signatures Driven by SPARC. Molecular Cancer Research: Mcr 15(3): 304-316
Schreuder, S.M.; Hendrix, Y.M.G.A.; Reekers, J.A.; Bipat, S. 2018: Predictive Parameters for Clinical Outcome in Patients with Critical Limb Ischemia who Underwent Percutaneous Transluminal Angioplasty (PTA): a Systematic Review. Cardiovascular and Interventional Radiology 41(1): 1-20
Lekovic, D.; Gotic, M.; Milic, N.; Zivojinovic, B.; Jovanovic, J.; Colovic, N.; Milosevic, V.; Bogdanovic, A. 2017: Predictive parameters for imatinib failure in patients with chronic myeloid leukemia. Hematology 22(8): 460-466
Lazzari, G.; Terlizzi, A.; Della Vittoria Scarpati, G.; Perri, F.; De Chiara, V.; Turi, B.; Silvano, G. 2017: Predictive parameters in hypofractionated whole-breast 3D conformal radiotherapy according to the Ontario Canadian trial. Oncotargets and Therapy 10: 1835-1842
Lelakowski, J.; Rydlewska, A.; Lelakowska, M.; Pudło, J.; Piekarz, J. 2017: Predictive parameters of occurrence of adequate interventions in patients with implanted cardioverter-defibrillators with or without resynchronisation therapy in primary prevention of sudden cardiac death in dilated cardiomyopathy. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego 42(248): 65-70
Batisse, C.; Bonnet, G.; Veyrune, J.-L.; Nicolas, E.; Bessadet, M. 2017: Predictive Parameters of Oral Health Quality of Life in Complete Mandibular Denture Wearers Stabilized by Mini-Implants: a Two-Year Follow-Up Study. Materials 10(10)
Kim, S.I.; Lee, K.M.; Choi, Y.H.; Lee, D.H. 2017: Predictive parameters of retained foreign body presence after foreign body swallowing. American Journal of Emergency Medicine 35(8): 1090-1094
Kozik, T.M.; Al-Zaiti, S.S.; Carey, M.G.; Pelter, M.M. 2017: Predictive Pattern for Acute Myocardial Infarction. American Journal of Critical Care: An Official Publication American Association of Critical-Care Nurses 26(3): 257-258
Scarpino, M.; Lanzo, G.; Carrai, R.; Lolli, F.; Migliaccio, M.L.; Spalletti, M.; Peris, A.; Amantini, A.; Grippo, A. 2017: Predictive patterns of sensory evoked potentials in comatose brain injured patients evolving to brain death. Neurophysiologie Clinique 47(1): 19-29
Degen, D.A.; Janardan, J.; Barraclough, K.A.; Schneider, H.G.; Barber, T.; Barton, H.; Snell, G.; Levvey, B.; Walker, R.G. 2017: Predictive performance of different kidney function estimation equations in lung transplant patients. Clinical Biochemistry 50(7-8): 385-393
Vaughn, J.L.; Kline, D.; Denlinger, N.M.; Andritsos, L.A.; Exline, M.C.; Walker, A.R. 2018: Predictive performance of early warning scores in acute leukemia patients receiving induction chemotherapy. Leukemia and Lymphoma 59(6): 1498-1500
Hara, M.; Masui, K.; Eleveld, D.J.; Struys, M.M.R.F.; Uchida, O. 2017: Predictive performance of eleven pharmacokinetic models for propofol infusion in children for long-duration anaesthesia. British Journal of Anaesthesia 118(3): 415-423
Bongue, B.; Buisson, A.él.; Dupre, C.; Beland, F.ço.; Gonthier, R.ég.; Crawford-Achour, Ém. 2017: Predictive performance of four frailty screening tools in community-dwelling elderly. Bmc Geriatrics 17(1): 262
Mehrban, H.; Lee, D.Hwan.; Moradi, M.Hossein.; IlCho, C.; Naserkheil, M.; Ibáñez-Escriche, N. 2017: Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture. Genetics Selection Evolution: Gse 49(1): 1
Zhou, W.; Johnson, T.N.; Bui, K.H.; Cheung, S.Y.Amy.; Li, J.; Xu, H.; Al-Huniti, N.; Zhou, D. 2018: Predictive Performance of Physiologically Based Pharmacokinetic (PBPK) Modeling of Drugs Extensively Metabolized by Major Cytochrome P450s in Children. Clinical Pharmacology and Therapeutics 104(1): 188-200
Li, M.; Zhao, P.; Pan, Y.; Wagner, C. 2018: Predictive Performance of Physiologically Based Pharmacokinetic Models for the Effect of Food on Oral Drug Absorption: Current Status. Cpt: Pharmacometrics and Systems Pharmacology 7(2): 82-89
Ihlemann, J.; Ploug, T.; Hellsten, Y.; Galbo, H. 2018: Effect of tension on contraction-induced glucose transport in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism 277(2): E208-E214
Van Doorn, S.; Debray, T.P.A.; Kaasenbrood, F.; Hoes, A.W.; Rutten, F.H.; Moons, K.G.M.; Geersing, G.J. 2017: Predictive performance of the CHA2DS2-VASc rule in atrial fibrillation: a systematic review and meta-analysis. Journal of Thrombosis and Haemostasis: Jth 15(6): 1065-1077
Lee, Y.H.; Choi, G.H.; Jung, K.W.; Choi, B.H.; Bang, J.Y.; Lee, E.K.; Choi, B.M.; Noh, G.J. 2017: Predictive performance of the modified Marsh and Schnider models for propofol in underweight patients undergoing general anaesthesia using target-controlled infusion. British Journal of Anaesthesia 118(6): 883-891
Kim, M.; Ahn, S.; Kim, W.Y.; Sohn, C.H.; Seo, D.W.; Lee, Y.-S.; Lim, K.S. 2017: Predictive performance of the quick Sequential Organ Failure Assessment score as a screening tool for sepsis, mortality, and intensive care unit admission in patients with febrile neutropenia. Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer 25(5): 1557-1562
Granholm, A.; Møller, M.H.; Krag, M.; Perner, A.; Hjortrup, P.B. 2016: Predictive Performance of the Simplified Acute Physiology Score (SAPS) Ii and the Initial Sequential Organ Failure Assessment (SOFA) Score in Acutely Ill Intensive Care Patients: Post-Hoc Analyses of the SUP-ICU Inception Cohort Study. Plos one 11(12): E0168948
Kimura, H.; Shigematsu, M.; Tanaka, A.; Watanabe, S.; Takatori, S.; Tanaka, M.; Mizuma, T.; Araki, H. 2017: Predictive Performance of Vancomycin Trough Concentrations in Patients with Diabetes with Microalbuminuria. Therapeutic Drug Monitoring 39(6): 614-616
Gönner, L.; Vitay, J.; Hamker, F.H. 2017: Predictive Place-Cell Sequences for Goal-Finding Emerge from Goal Memory and the Cognitive Map: a Computational Model. Frontiers in Computational Neuroscience 11: 84
Edwards, G.; Paeye, C.él.; Marque, P.; VanRullen, R.; Cavanagh, P. 2017: Predictive position computations mediated by parietal areas: TMS evidence. Neuroimage 153: 49-57
Parker, E.A.; Rippy, M.A.; Mehring, A.S.; Winfrey, B.K.; Ambrose, R.F.; Levin, L.A.; Grant, S.B. 2017: Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters. Environmental Science and Technology 51(10): 5703-5712
Glickel, S.Z.; Hinojosa, L.; Eden, C.M.; Balutis, E.; Barron, O.A.; Catalano, L.W. 2017: Predictive Power of Distal Radial Metaphyseal Tenderness for Diagnosing Occult Fracture. Journal of Hand Surgery 42(10): 835.E1-835.E4
McDiarmid, A.K.; Loh, H.; Nikitin, N.; Cleland, J.G.; Ball, S.G.; Greenwood, J.P.; Plein, S.; Sparrow, P. 2014: Predictive power of late gadolinium enhancement for myocardial recovery in chronic ischaemic heart failure: a HEART sub-study. Esc Heart Failure 1(2): 146-153
Baeza-Román, A.; de Miguel-Balsa, E.; Latour-Pérez, J.; Carrillo-López, A.és. 2017: Predictive power of the grace score in population with diabetes. International Journal of Cardiology 248: 73-76
Jiang, H.Y.; Kohtakangas, E.L.; Asai, K.; Shum, J.B. 2018: Predictive Power of the NSQIP Risk Calculator for Early Post-Operative Outcomes After Whipple: Experience from a Regional Center in Northern Ontario. Journal of Gastrointestinal Cancer 49(3): 288-294
Wilkinson, S.; Dodgson, G.; Meares, K. 2017: Predictive Processing and the Varieties of Psychological Trauma. Frontiers in Psychology 8: 1840
Hakonen, M.; May, P.J.C.; Jääskeläinen, I.P.; Jokinen, E.; Sams, M.; Tiitinen, H. 2017: Predictive processing increases intelligibility of acoustically distorted speech: Behavioral and neural correlates. Brain and Behavior 7(9): E00789
Griffin, J.D.; Fletcher, P.C. 2017: Predictive Processing, Source Monitoring, and Psychosis. Annual Review of Clinical Psychology 13: 265-289
Bajari, R.; Tak, S. 2017: Predictive prognostic value of neutrophil-lymphocytes ratio in acute coronary syndrome. Indian Heart Journal 69(Suppl 1): S46-S50
Bidadkosh, A.; Lambooy, S.P.H.; Heerspink, H.J.; Pena, M.J.; Henning, R.H.; Buikema, H.; Deelman, L.E. 2017: Predictive Properties of Biomarkers GDF-15, NTproBNP, and hs-TnT for Morbidity and Mortality in Patients with Type 2 Diabetes with Nephropathy. Diabetes Care 40(6): 784-792
Owens, D.; Kelley, R. 2017: Predictive properties of risk assessment instruments following self-harm. British Journal of Psychiatry: the Journal of Mental Science 210(6): 384-386
Franceschi, N.ò; Paraskevopoulos, K.; Waigmann, E.; Ramon, M. 2017: Predictive Protein Toxicity and its use in Risk Assessment. Trends in Biotechnology 35(6): 483-486
Yu, P.; Li, D.; Ni, J.; Zhao, L.; Ding, G.; Wang, Z.; Xiao, W. 2018: Predictive QSAR modeling study on berberine derivatives with hypolipidemic activity. Chemical Biology and Drug Design 91(4): 867-873
Qin, L.; Zhang, X.; Chen, Y.; Mo, L.; Zeng, H.; Liang, Y. 2017: Predictive QSAR Models for the Toxicity of Disinfection Byproducts. Molecules 22(10)
Pierlot, F.éd.ér.; Marks-Perreau, J.; Réal, B.ît.; Carluer, N.; Constant, T.; Lioeddine, A.; van Dijk, P.; Villerd, J.; Keichinger, O.; Cherrier, R.; Bockstaller, C. 2017: Predictive quality of 26 pesticide risk indicators and one flow model: a multisite assessment for water contamination. Science of the Total Environment 605-606: 655-665
Bouti, K.; Maouni, I.; Benamor, J.; Bourkadi, J.E. 2017: Predictive Regression Equations of Flowmetric and Spirometric Peak Expiratory Flow in Healthy Moroccan Adults. International Scholarly Research Notices 2017: 8985067
Marcelino, L.; de Sousa, Ós.; Lopes, A.ón. 2017: Predictive Relation between Early Numerical Competencies and Mathematics Achievement in first Grade Portuguese Children. Frontiers in Psychology 8: 1103
Terry, C.B.; Heitner, K.L.; Miller, L.A.; Hollis, C. 2017: Predictive Relationships Between Students' Evaluation Ratings and Course Satisfaction. American Journal of Pharmaceutical Education 81(3): 53
Aghajani, M.J.; Yang, T.; McCafferty, C.E.; Graham, S.; Wu, X.; Niles, N. 2018: Predictive relevance of programmed cell death protein 1 and tumor-infiltrating lymphocyte expression in papillary thyroid cancer. Surgery 163(1): 130-136
Russek, E.M.; Momennejad, I.; Botvinick, M.M.; Gershman, S.J.; Daw, N.D. 2017: Predictive representations can link model-based reinforcement learning to model-free mechanisms. Plos Computational Biology 13(9): E1005768
Tierney, J.; Bhutiani, N.; Stamp, B.; Richey, J.S.; Bahr, M.H.; Vitale, G.C. 2018: Predictive risk factors associated with cholangitis following ERCP. Surgical Endoscopy 32(2): 799-804
Jeong, S.H.; An, J.; Kwon, K.A.; Lee, W.K.; Kim, K.O.; Chung, J.-W.; Kim, Y.J.; Park, D.K.; Kim, J.H. 2017: Predictive risk factors associated with synchronous multiple early gastric cancer. Medicine 96(26): E7088
Caione, P.; Villa, M.; Capozza, N.; De Gennaro, M.; Rizzoni, G. 2004: Predictive risk factors for chronic renal failure in primary high-grade vesico-ureteric reflux. Bju International 93(9): 1309-1312
Ariake, K.; Motoi, F.; Ohtsuka, H.; Fukase, K.; Masuda, K.; Mizuma, M.; Hayashi, H.; Nakagawa, K.; Morikawa, T.; Maeda, S.; Takadate, T.; Naitoh, T.; Egawa, S.; Unno, M. 2017: Predictive risk factors for peritoneal recurrence after pancreatic cancer resection and strategies for its prevention. Surgery Today 47(12): 1434-1442
Abdel-Hafez, M.A.; Abou-El-Hana, N.M.; Erfan, A.A.; El-Gamasy, M.; Abdel-Nabi, H. 2017: Predictive risk factors of steroid dependent nephrotic syndrome in children. Journal of Nephropathology 6(3): 180-186
Hernandez-Vaquero, D.; Díaz, R.ío.; Pascual, I.; Álvarez, R.én.; Alperi, A.; Rozado, J.; Morales, C.; Silva, J.; Morís, C.és. 2017: Predictive risk models for proximal aortic surgery. Journal of Thoracic Disease 9(Suppl 6): S521-S525
Mazzone, C.; Cioffi, G.; Carriere, C.; Barbati, G.; Faganello, G.; Russo, G.; Cherubini, A.; Sinagra, G.; Zeriali, N.; Di Lenarda, A. 2017: Predictive role of CHA 2 DS 2 -VASc score for cardiovascular events and death in patients with arterial hypertension and stable sinus rhythm. European Journal of Preventive Cardiology 24(15): 1584-1593
Weymann, A.; Sabashnikov, A.; Ali-Hasan-Al-Saegh, S.; Popov, A.-F.; Jalil Mirhosseini, S.; Baker, W.L.; Lotfaliani, M.; Liu, T.; Dehghan, H.; Yavuz, S.; de Oliveira Sá, M.P.B.; Jang, J.-S.; Zeriouh, M.; Meng, L.; D'Ascenzo, F.; Deshmukh, A.J.; Biondi-Zoccai, G.; Dohmen, P.M.; Calkins, H.; Cardiac Surgery And Cardiology-Group Imcsc-Group, I.M.-A.O.C. 2017: Predictive Role of Coagulation, Fibrinolytic, and Endothelial Markers in Patients with Atrial Fibrillation, Stroke, and Thromboembolism: a Meta-Analysis, Meta-Regression, and Systematic Review. Medical Science Monitor Basic Research 23: 97-140
Li, J.; Yang, C.; Xie, W.; Zhang, G.; Li, X.; Wang, S.; Yang, X.; Zeng, J. 2017: Predictive role of corneal Q-value differences between nasal-temporal and superior-inferior quadrants in orthokeratology lens decentration. Medicine 96(2): E5837
Sone, K.; Oguri, T.; Ito, K.; Kitamura, Y.; Inoue, Y.; Takeuchi, A.; Fukuda, S.; Takakuwa, O.; Maeno, K.; Asano, T.; Kanemitsu, Y.; Ohkubo, H.; Takemura, M.; Ito, Y.; Niimi, A. 2017: Predictive Role of CYFRA21-1 and CEA for Subsequent Docetaxel in Non-small Cell Lung Cancer Patients. Anticancer Research 37(9): 5125-5131
Stolwijk, L.J.; Lemmers, P.M.A.; van Herwaarden, M.Y.A.; van der Zee, D.C.; van Bel, F.; Groenendaal, F.; Tataranno, M.L.; Calderisi, M.; Longini, M.; Bazzini, F.; Benders, M.J.N.L.; Buonocore, G. 2017: Predictive Role of F2-Isoprostanes as Biomarkers for Brain Damage after Neonatal Surgery. Disease Markers 2017: 2728103
Zhu, H.; Chen, A.; Li, S.; Tao, X.; Sheng, B.; Chetry, M.; Zhu, X. 2017: Predictive role of galectin-1 and integrin α5β1 in cisplatin-based neoadjuvant chemotherapy of bulky squamous cervical cancer. Bioscience Reports 37(5)
Yang, S.-J.; Wang, D.-D.; Li, J.; Xu, H.-Z.; Shen, H.-Y.; Chen, X.; Zhou, S.-Y.; Zhong, S.-L.; Zhao, J.-H.; Tang, J.-H. 2017: Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene 623: 5-14
Aoyama, T.; Kazama, K.; Miyagi, Y.; Murakawa, M.; Yamaoku, K.; Atsumi, Y.; Shiozawa, M.; Ueno, M.; Morimoto, M.; Oshima, T.; Yukawa, N.; Yoshikawa, T.; Rino, Y.; Masuda, M.; Morinaga, S. 2017: Predictive role of human equilibrative nucleoside transporter 1 in patients with pancreatic cancer treated by curative resection and gemcitabine-only adjuvant chemotherapy. Oncology Letters 14(1): 599-606
Chae, M.S.; Park, C.S.; Oh, S.A.; Hong, S.H. 2017: Predictive Role of Intraoperative Plasma Fibrinogen for Postoperative Portal Venous Flow in Living Donor Liver Transplantation. Annals of Transplantation 22: 83-95
Altundag, K. 2018: Predictive role of loco-regional radiotherapy among metastatic breast cancer patients who had undergone primary tumor surgery. Breast Cancer Research and Treatment 167(1): 303
Atalay, K.; Kaldirim Erdogan, H.; Kirgiz, A.; Asik Nacaroglu, S. 2017: Predictive role of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in normal-tension glaucoma. Medical Hypotheses 103: 54-56
Lazzeroni, D.; Bini, M.; Camaiora, U.; Castiglioni, P.; Moderato, L.; Ugolotti, P.Tito.; Brambilla, L.; Brambilla, V.; Coruzzi, P. 2017: Predictive role of P-wave axis abnormalities in secondary cardiovascular prevention. European Journal of Preventive Cardiology 24(18): 1994-1999
Kumari, N.; Agrawal, U.; Mishra, A.K.; Kumar, A.; Vasudeva, P.; Mohanty, N.K.; Saxena, S. 2017: Predictive role of serum and urinary cytokines in invasion and recurrence of bladder cancer. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine 39(4): 1010428317697552
Chuaypen, N.; Posuwan, N.; Chittmittraprap, S.; Hirankarn, N.; Treeprasertsuk, S.; Tanaka, Y.; Shinkai, N.; Poovorawan, Y.; Tangkijvanich, P. 2018: Predictive role of serum HBsAg and HBcrAg kinetics in patients with HBeAg-negative chronic hepatitis B receiving pegylated interferon-based therapy. Clinical Microbiology and Infection: the Official Publication of the European Society of Clinical Microbiology and Infectious Diseases 24(3): 306.E7-306.E13
Guimaraes, G.C.; Costa, W.H.d.; Rosa, R.A.; Zequi, S.ên.; Favaretto, R. 2017: Predictive role of Trimprob associated with multiparametric MRi in the diagnosis of prostate cancer. International Braz J Urol: Official Journal of the Brazilian Society of Urology 43(1): 29-35
Li, H.; Fu, R.; Zou, Y.; Cui, Y. 2017: Predictive Roles of Three-Dimensional Psychological Pain, Psychache, and Depression in Suicidal Ideation among Chinese College Students. Frontiers in psychology 8: 1550
Ding, C.-G.; Tai, Q.-H.; Han, F.; Li, Y.; Tian, X.-H.; Tian, P.-X.; Ding, X.-M.; Pan, X.-M.; Zheng, J.; Xiang, H.-L.; Xue, W.-J. 2017: Predictive Score Model for Delayed Graft Function Based on Easily Available Variables before Kidney Donation after Cardiac Death. Chinese Medical Journal 130(20): 2429-2434
González-Del Castillo, J.; Candel, F.J.; Manzano-Lorenzo, R.; Arias, L.; García-Lamberechts, E.J.; Martín-Sánchez, F.J.; Chaib, F.B.; Chirella, F.; Hernández, S.; Larrosa-Espejo, I.án.; Lopez-González, L.; Navarro, M.G.; Casado, M.I.P.; Pérez-Morales, A.; Redondo-Domínguez, D.; Rodríguez-Neira, V.íc.; Tallón-Martínez, J.é C.; Trujillo-Fox, M. 2017: Predictive score of haematological toxicity in patients treated with linezolid. European Journal of Clinical Microbiology and Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 36(8): 1511-1517
Mouelhi, L.; Ayadi, H.; Zaimi, Y.; Daboussi, O.; Salem, M.; Debbech, R.; Houissa, F.; Najjar, T. 2016: Predictive scores of early mortality from variceal gastrointestinal bleeding in cirrhotic patients. La Tunisie Medicale 94(11): 670
Lembo, N.J.; Hatem, R.; Karmpaliotis, D. 2017: Predictive Scores of Success in CTO PCI: there Is no Substitute for Operator Experience and Skill. JACC. Cardiovascular Interventions 10(11): 1099-1101
Hofmann, M.; Gieseler, H. 2018: Predictive Screening Tools Used in High-Concentration Protein Formulation Development. Journal of Pharmaceutical Sciences 107(3): 772-777
Shi, Z.; Li, E.S.; Zhong, J.S.; Yuan, J.L.; Li, L.R.; Zheng, C.W. 2017: Predictive Significance of Day-to-Day Blood Pressure Variability in Acute Ischemic Stroke for 12-Month Functional Outcomes. American Journal of Hypertension 30(5): 524-531
Tang, H.; Wu, Y.; Qin, Y.; Wang, H.; Jia, Y.; Yang, S.; Luo, S.; Wang, Q. 2017: Predictive significance of HMGCS2 for prognosis in resected Chinese esophageal squamous cell carcinoma patients. Oncotargets and Therapy 10: 2553-2560
Le Guyader, M.ïl.; Claisse, J.-F.ço.; Guillaume, N. 2017: Predictive significance of smudge cell on routine blood smear in lymphocytosis. Annales de Biologie Clinique 75(1): 114-115
Hori, Y.; Kubota, A.; Yokose, T.; Furukawa, M.; Matsushita, T.; Takita, M.; Mitsunaga, S.; Mizoguchi, N.; Nonaka, T.; Nakayama, Y.; Oridate, N. 2017: Predictive Significance of Tumor Depth and Budding for Late Lymph Node Metastases in Patients with Clinical N0 Early Oral Tongue Carcinoma. Head and Neck Pathology 11(4): 477-486
Santos, G.F.; Gomes, A.A.; Sacco, I.C.N.; Ackermann, M. 2017: Predictive simulation of diabetic gait: Individual contribution of ankle stiffness and muscle weakening. Gait and Posture 58: 208-213
Rausch, A.M.; Küng, V.E.; Pobel, C.; Markl, M.; Körner, C. 2017: Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density. Materials 10(10)
Mehrabi, N.; Sharif Razavian, R.; Ghannadi, B.; McPhee, J. 2016: Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control. Frontiers in Computational Neuroscience 10: 143
Galarraga, O.C.; Vigneron, V.; Khouri, N.; Dorizzi, B.; Desailly, E. 2017: Predictive simulation of surgery effect on cerebral palsy gait. Computer Methods in Biomechanics and Biomedical Engineering 20(Sup1): 85-86
Le, Z.; Niu, X.; Chen, Y.; Ou, X.; Zhao, G.; Liu, Q.; Tu, W.; Hu, C.; Kong, L.; Liu, Y. 2017: Predictive single nucleotide polymorphism markers for acute oral mucositis in patients with nasopharyngeal carcinoma treated with radiotherapy. Oncotarget 8(38): 63026-63037
Spahr, N.; Schilling, P.; Thoduka, S.; Abolmaali, N.; Schenk, A. 2017: Predictive SIRT dosimetry based on a territorial model. Ejnmmi Physics 4(1): 25
Viala, Y.; Laurette, J.; Denaix, L.; Gourdain, E.; Méléard, B.; Nguyen, C.; Schneider, A.é; Sappin-Didier, V.ér. 2017: Predictive statistical modelling of cadmium content in durum wheat grain based on soil parameters. Environmental Science and Pollution Research International 24(25): 20641-20654
Andreoletti, P.; Raas, Q.; Gondcaille, C.; Cherkaoui-Malki, M.; Trompier, D.; Savary, S.ép. 2017: Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters. International Journal of Molecular Sciences 18(7)
Trisciuzzi, D.; Alberga, D.; Mansouri, K.; Judson, R.; Novellino, E.; Mangiatordi, G.F.; Nicolotti, O. 2017: Predictive Structure-Based Toxicology Approaches to Assess the Androgenic Potential of Chemicals. Journal of Chemical Information and Modeling 57(11): 2874-2884
Heiser, C.; Hofauer, B. 2017: Predictive Success Factors in Selective Upper Airway Stimulation. Orl; Journal for Oto-Rhino-Laryngology and its Related Specialties 79(1-2): 121-128
Gasbarro, G.; Giugale, J.M.; Walch, G.; Lin, A. 2016: Predictive Surgical Reasons for Failure After Coracoid Process Transfers. Orthopaedic Journal of Sports Medicine 4(12): 2325967116676795
Harper, P.S.; Morris, M.J. 1989: Predictive testing for Huntington's disease. Bmj 298(6671): 404-405
Kimber, I.; Hilton, J.; Basketter, D.A.; Dearman, R.J. 1996: Predictive testing for respiratory sensitization in the mouse. Toxicology Letters 86(2-3): 193-198
Quarrell, O.W.; Clarke, A.J.; Compton, C.; de Die-Smulders, C.E.M.; Fryer, A.; Jenkins, S.; Lahiri, N.; MacLeod, R.; Miedzybrodzka, Z.; Morrison, P.J.; Musgrave, H.; O'Driscoll, M.; Strong, M.; van Belzen, M.J.; Vermeer, S.; Verschuuren-Bemelmans, C.C.; Bijlsma, E.K. 2018: Predictive testing of minors for Huntington's disease: the UK and Netherlands experiences. American Journal of Medical Genetics. Part B Neuropsychiatric Genetics: the Official Publication of the International Society of Psychiatric Genetics 177(1): 35-39
Jenkins, D.M.; Need, J.A.; Scott, J.S.; Morris, H.; Pepper, M. 1978: Human leucocyte antigens and mixed lymphocyte reaction in severe pre-eclampsia. British Medical Journal 1(6112): 542-544
Garcia, P.A.; Kos, B.; Rossmeisl, J.H.; Pavliha, D.; Miklavčič, D.; Davalos, R.V. 2017: Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant glioma. Medical Physics 44(9): 4968-4980
Blanc, J.; Bretelle, F. 2016: Predictive tools of preterm birth in asymptomatic high-risk pregnancy. Journal de Gynecologie Obstetrique et Biologie de la Reproduction 45(10): 1261-1279
Nydegger, L.A.; Ames, S.L.; Stacy, A.W. 2017: Predictive utility and measurement properties of the Strength of Implementation Intentions Scale (SIIS) for condom use. Social Science and Medicine 185: 102-109
Tanpitukpongse, T.P.; Mazurowski, M.A.; Ikhena, J.; Petrella, J.R. 2017: Predictive Utility of Marketed Volumetric Software Tools in Subjects at Risk for Alzheimer Disease: do Regions Outside the Hippocampus Matter?. AJNR. American Journal of Neuroradiology 38(3): 546-552
Newton-Howes, G.; Mulder, R.; Ellis, P.M.; Boden, J.M.; Joyce, P. 2018: Predictive Utility of Personality Disorder in Depression: Comparison of Outcomes and Taxonomic Approach. Journal of Personality Disorders 32(4): 513-526
Brasg, I.; Elligsen, M.; MacFadden, D.; Daneman, N. 2017: Predictive utility of swab screening for vancomycin-resistant Enterococcus in selection of empiric antibiotics for Enterococcus sterile-site infections: a retrospective cohort study. CMAJ open 5(3): E632-E637
Chou, R.; Totten, A.M.; Carney, N.; Dandy, S.; Fu, R.; Grusing, S.; Pappas, M.; Wasson, N.; Newgard, C.D. 2017: Predictive Utility of the Total Glasgow Coma Scale Versus the Motor Component of the Glasgow Coma Scale for Identification of Patients with Serious Traumatic Injuries. Annals of Emergency Medicine 70(2): 143-157.E6
Karnon, J.; Afzali, H.H. 2017: Predictive Validation and the Re-Analysis of Cost-Effectiveness: do we Dare to Tread?. Pharmacoeconomics 35(11): 1111-1112
Negreiros, A.; Padula, R.Simprini.; Andrea Bretas Bernardes, R.; Moraes, Mônica.Vasconcelos.de.; Pires, R.Simoni.; Chiavegato, L.Dias. 2017: Predictive validity analysis of six reference equations for the 6-minute walk test in healthy Brazilian men: a cross-sectional study. Brazilian Journal of Physical Therapy 21(5): 350-356
Gerlach, T.M.; Arslan, R.C.; Schultze, T.; Reinhard, S.K.; Penke, L. 2019: Predictive validity and adjustment of ideal partner preferences across the transition into romantic relationships. Journal of Personality and Social Psychology 116(2): 313-330
Campbell-Sills, L.; Kessler, R.C.; Ursano, R.J.; Sun, X.; Taylor, C.T.; Heeringa, S.G.; Nock, M.K.; Sampson, N.A.; Jain, S.; Stein, M.B. 2018: Predictive validity and correlates of self-assessed resilience among U.S. Army soldiers. Depression and Anxiety 35(2): 122-131
Momenyan, S.; Mousavi, S.M.; Dadkhahtehrani, T.; Sarvi, F.; Heidarifar, R.; Kabiri, F.; Mohebi, E.; Koohbor, M. 2017: Predictive Validity and Inter-Rater Reliability of the Persian Version of Full Outline of Unresponsiveness Among Unconscious Patients with Traumatic Brain Injury in an Intensive Care Unit. Neurocritical Care 27(2): 229-236
Lima-Serrano, M.; González-Méndez, M.I.; Martín-Castaño, C.; Alonso-Araujo, I.; Lima-Rodríguez, J.S. 2018: Predictive validity and reliability of the Braden scale for risk assessment of pressure ulcers in an intensive care unit. Medicina Intensiva 42(2): 82-91
Edwards, M.K.; Addoh, O.; Loprinzi, P.D. 2017: Predictive Validity of a Fitness Fatness Index in Predicting Cardiovascular Disease and All-Cause Mortality. Mayo Clinic Proceedings 92(5): 851
Gillespie, M.L.; Huey, S.J.; Cunningham, P.B. 2017: Predictive validity of an observer-rated adherence protocol for multisystemic therapy with juvenile drug offenders. Journal of Substance Abuse Treatment 76: 1-10
Streibelt, M.; Bethge, M.; Gross, T.; Herrmann, K.; Ustaoglu, F.; Reichel, C. 2017: Predictive Validity of a Screening Instrument for the Risk of Non-Return to Work in Patients with Internal Diseases. Archives of Physical Medicine and Rehabilitation 98(5): 989-996.E1
Ammitzbøll, J.; Thygesen, L.C.; Holstein, B.ør.E.; Andersen, A.; Skovgaard, A.M. 2018: Predictive validity of a service-setting-based measure to identify infancy mental health problems: a population-based cohort study. European Child and Adolescent Psychiatry 27(6): 711-723
Hernández Martínez, A.; Molina-Alarcón, M.; Pascual-Pedreño, A.I.; Baño-Garnés, A.B.; Redondo Gonzalez, O.; Gómez Salgado, J. 2017: Predictive validity of Bishop and Burnett Scores for vaginal delivery modified by parity. Anales del Sistema Sanitario de Navarra 40(3): 351-360
Zamora Salas, J.D.; Laclé-Murray, A. 2017: Predictive validity of body fat percentage by bioimpedance compared with deuterium oxide dilution in Costa Rican schoolchildren. American Journal of Human Biology: the Official Journal of the Human Biology Council 29(5)
Buu, A.; Hu, Y-Han.; Pampati, S.; Arterberry, B.J.; Lin, H-Chang. 2017: Predictive validity of cannabis consumption measures: Results from a national longitudinal study. Addictive Behaviors 73: 36-40
Georgiou, A.; Vlachopapadopoulou, E.; Moschonis, G.; Psaltopoulou, T.; Karachaliou, F.; Koutsouki, D.; Bogdanis, G.; Karagianni, V.; Papadopoulou, A.; Manios, Y.; Chatzakis, A.; Michalakos, S. 2017: Predictive validity of CORE index in predicting obesity in a national representative sample of children and adolescents in Greece. Clinical Nutrition Espen 13: E59-E60
Deepika, A.; Devi, B.I.; Shukla, D. 2017: Predictive validity of disability rating scale in determining functional outcome in patients with severe traumatic brain injury. Neurology India 65(1): 83-86
Cartwright, J.K.; Desmarais, S.L.; Hazel, J.; Griffith, T.; Azizian, A. 2018: Predictive validity of HCR-20, START, and static-99R assessments in predicting institutional aggression among sexual offenders. Law and Human Behavior 42(1): 13-25
Hyland, P.; Brewin, C.R.; Maercker, A. 2017: Predictive Validity of ICD-11 PTSD as Measured by the Impact of Event Scale-Revised: A 15-Year Prospective Study of Political Prisoners. Journal of Traumatic Stress 30(2): 125-132
Teramoto, M.; Cross, C.L.; Rieger, R.H.; Maak, T.G.; Willick, S.E. 2018: Predictive Validity of National Basketball Association Draft Combine on Future Performance. Journal of Strength and Conditioning Research 32(2): 396-408