+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States

Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States

Morbidity and Mortality Weekly Report. Surveillance Summaries 66(13): 1-10

The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. 2008-2012 for air quality and 2010-2015 for water quality. Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM2.5) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM2.5 (PM2.5 days); 2) mean annual average ambient concentrations of PM2.5 in micrograms per cubic meter (mean PM2.5); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM2.5 concentration decreased from 11.15 μg/m3 in large central metropolitan counties to 8.87 μg/m3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. Understan ding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality.

Please choose payment method:

(PDF emailed within 0-6 h: $19.90)

Accession: 060220671

Download citation: RISBibTeXText

PMID: 28640797

DOI: 10.15585/mmwr.ss6613a1

Related references

Differences in Health Care, Family, and Community Factors Associated with Mental, Behavioral, and Developmental Disorders Among Children Aged 2-8 Years in Rural and Urban Areas - United States, 2011-2012. Morbidity and Mortality Weekly Report. Surveillance Summaries 66(8): 1-11, 2017

Urban-Rural County and State Differences in Chronic Obstructive Pulmonary Disease - United States, 2015. Mmwr. Morbidity and Mortality Weekly Report 67(7): 205-211, 2018

Differences Between Rural and Urban Areas in Mortality Rates for the Leading Causes of Infant Death: United States, 2013-2015. Nchs Data Brief 2018(300): 1-8, 2018

Survey of microbial quality of drinking water in rural areas of Kashan-Iran in second half of 2008. Pakistan Journal of Biological Sciences 14(1): 59-63, 2011

Guidelines for drinking-water quality, volume 3: Drinking-water quality control in small-community supplies: WHO, Geneva, 1985, viii + 121 pp. Price: Sw. fr. 17.00. Science of Total Environment 61: 274-275, 1987

Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada). Environmental Research 159: 435-443, 2017

Microbiological quality of drinking water of urban and rural communities, Brazil. Revista de Saude Publica 37(2): 232-236, 2003

Racial/Ethnic Health Disparities Among Rural Adults - United States, 2012-2015. Morbidity and Mortality Weekly Report. Surveillance Summaries 66(23): 1-9, 2017

A community-based bacteriological study of quality of drinking-water and its feedback to a rural community in Western Maharashtra, India. Journal of Health, Population, and Nutrition 26(2): 139-150, 2008

Rural residents who are hospitalized in rural and urban hospitals: United States, 2010. Nchs Data Brief 2015(159): 1-8, 2015

Water-quality data for pharmaceuticals and other organic wastewater contaminants in ground water and in untreated drinking water sources in the United States, 2000-01. U. S. Geological Survey: 7, 2008

Molecular approach and bacterial quality of drinking water of urban and rural communities in Egypt. Acta Microbiologica et Immunologica Hungarica 55(3): 311-326, 2008

Guidelines for drinking water quality vol. 3. drinking water quality control in small community supplies. Who Guidelines For Drinking-Water Quality, Vol 3 Drinking-Water Quality Control in Small-Community Supplies Viii+121p Who: Geneva, Switzerland Illus Paper Viii+121p, 1985

Assessment of water quality of rivers that serve as water sources for drinking and domestic functions in rural and pre-urban communities in Edo North, Nigeria. Environmental Monitoring and Assessment 190(7): 387, 2018

Urban Water Services in Fragile States: An Analysis of Drinking Water Sources and Quality in Port Harcourt, Nigeria, and Monrovia, Liberia. American Journal of Tropical Medicine and Hygiene 95(1): 229-238, 2016