Three-frequency NMR: Simultaneous determination of carbon-13 chemical shifts, scalar couplings, multiplicities, and chemical shifts of directly bonded protons
Philip H Bolton
Journal of Magnetic Resonance 46(2): 343-347
1969
ISSN/ISBN: 1090-7807
DOI: 10.1016/0022-2364(82)90152-4
Accession: 061218233
PDF emailed within 0-6 h: $19.90
Related References
Kakita, V.M.R.; Hosur, R.V. 2018: Real-time J-upscaling in two-dimensional pure shift diagonal NMR: Simultaneous resolution enhancement in chemical shifts and scalar couplings Journal of Magnetic Resonance 296: 176-180Navarro-Vázquez, A. 2017: State of the art and perspectives in the application of quantum chemical prediction of 1 H and 13 C chemical shifts and scalar couplings for structural elucidation of organic compounds Magnetic Resonance in Chemistry: Mrc 55(1): 29-32
García, P.; Martín-Pastor, M.; de Lera, A.R.; Alvarez, R. 2010: Determination of the geometry of acetoxyendiynes and acetoxyenynes by NMR heteronuclear (13)C-(1)H scalar couplings and (13)C NMR chemical shifts. Structural assignment of the oxylipin natural products peyssonenynes a and B Magnetic Resonance in Chemistry: Mrc 48(7): 543-549
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 1969: Simultaneous measurement of 13C multiplicities and 1H and 13C chemical shifts Journal of Magnetic Resonance 78(1): 172-177
Kozerski, L.; Kawecki, R.; Krajewski, P.; Kwiecien,B.; Boykin, D.W.; Bolvig, S.; Hansen, P.E. 1998: 17O chemical shifts and deuterium isotope effects on 13C chemical shifts of intramolecularly hydrogen-bonded compounds Magnetic Resonance in Chemistry 36(12): 921-928
Bonvin, A.M.; Houben, K.; Guenneugues, M.; Kaptein, R.; Boelens, R. 2001: Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC') Journal of Biomolecular Nmr 21(3): 221-233
Saunders, J.K. 1973: Lanthanide shift reagents in carbon 13 nmr quantitative determination of pseudocontact shifts and assignment of carbon 13 chemical shifts of steroids Canadian Journal Of Chemistry: 3874-3881
Yamazaki, T.; Formankay, J.D.; Kay, L.E. 1993: Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings Journal of the American Chemical Society 115(23): 11054-11055
Wiberg, K B.; Hammer, J D.; Keith, T A.; Zilm, K 1999: NMR Chemical Shifts. 2. Interpretation of the Carbon Chemical Shifts in Monocyclic Aromatic Compounds and Carbenes Journal of Physical Chemistry A 103(1): 21-27
Klinot, Jří; Buděšínský, Mš; Světlý, J 1990: Conformation of ring A in triterpenoid and 4,4-dimethylsteroid 3-ketones. Chemical shifts of methyl protons and lanthanide and benzene induced shifts Collection of Czechoslovak Chemical Communications 55(3): 766-781
King Morris, M.J.; Serianni, A.S. 1987: Carbon 13 nmr studies of 1 carbon 13 aldoses empirical rules correlating pyranose ring configuration and conformation with carbon 13 chemical shifts and carbon 13 carbon 13 spin couplings Journal of the American Chemical Society 109(12): 3501-3508
Pitoux, D.; Hu, Z.; Plainchont, B.; Merlet, D.; Farjon, J.; Bonnaffé, D.; Giraud, N. 2018: Combining pure shift and J-edited spectroscopies: a strategy for extracting chemical shifts and scalar couplings from highly crowded proton spectra of oligomeric saccharides Magnetic Resonance in Chemistry: Mrc 56(10): 954-962
Wong, T.C.; Rutar, V.; Wang J S. 1984: Study of proton chemical shifts and couplings with fluorine 19 in 9 alpha fluorocortisol application of a novel proton carbon 13 chemical shift correlation technique with homonuclear decoupling Journal of the American Chemical Society 106(23): 7046-7051
Schaller, R.B.; Arnold, C.; Pretsch, E. 1995: New parameters for predicting 1H NMR chemical shifts of protons attached to carbon atoms Analytica Chimica Acta 312(1): 95-105
Mackenzie, K.R.; Prestegard, J.H.; Engelman, D.M. 1996: Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon-carbon couplings and 13C chemical shifts Journal of Biomolecular Nmr 7(3): 256-260
Deev, S.L.; Shestakova, T.S.; Shenkarev, Z.O.; Paramonov, A.S.; Khalymbadzha, I.A.; Eltsov, O.S.; Charushin, V.N.; Chupakhin, O.N. 2022: 15N Chemical Shifts and JNN-Couplings as Diagnostic Tools for Determination of the Azide-Tetrazole Equilibrium in Tetrazoloazines Journal of Organic Chemistry 87(1): 211-222
Sgourakis, N.G.; Lange, O.F.; DiMaio, F.; André, I.; Fitzkee, N.C.; Rossi, P.; Montelione, G.T.; Bax, A.; Baker, D. 2011: Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings Journal of the American Chemical Society 133(16): 6288-6298
Bo-Long Poh 1987: Correlations of chemical shifts of saturated carbon atoms that have a directly bonded substituent Spectrochimica Acta Part A: Molecular Spectroscopy 43(3): 401-404
W.T Raynes; G Stanney 1969: Temperature-dependent chemical shifts and isotope shifts in the NMR spectroscopy of carbon monoxide Journal of Magnetic Resonance 14(3): 378-380
Kochetkov, N.K.; Chizhov, O.S.; Shashkov, A.S. 1984: Dependence of carbon 13 chemical shifts on the spatial interaction of protons and its application in structural and conformational studies of oligosaccharides and polysaccharides Carbohydrate Research 133(2): 173-186