Determination of kolmogorov entropy of chaotic attractor included in onedimensional time series of meteorological data
Yan Shaojin; Peng Yongqing; Wang Jianzhong
Advances in Atmospheric Sciences 8(2): 243-250
1991
ISSN/ISBN: 0256-1530 DOI: 10.1007/bf02658098
Accession: 062160373
PDF emailed within 0-6 h: $19.90
Related References
Henderson, H.W.; Weils, R. 1988: Obtaining attractor dimensions from meteorological time series Advances in Geophysics (30): 205-237Termonia, Y. 1984: Kolmogorov entropy from a time series Physical Review. A, General Physics 29(3): 1612-1614
Ke-Ping, L; Tian-Lun, C; Zi-You, G 2003: Time Series Prediction Based on Chaotic Attractor Communications in Theoretical Physics 40(3): 311-314
Chennaoui; Pawelzik; Liebert; Schuster; Pfister 1990: Attractor reconstruction from filtered chaotic time series Physical Review. A Atomic Molecular and Optical Physics 41(8): 4151-4159
Dünki, R.M. 1991: The estimation of the Kolmogorov entropy from a time series and its limitations when performed on EEG Bulletin of Mathematical Biology 53(5): 665-678
Kumar, A.; Mullick, S.K. 1990: Attractor dimension, entropy and modeling of speech time series Electronics Letters 26(21): 1790-1792
Zimmermann, G. 1995: Empirical orthogonal functions and attractor dimensions for computed and observed meteorological time series Contributions to Atmospheric Physics 68(2): 149-160
Corana, A.; Rolando, C. 1995: An optimized direct algorithm to estimate the Kolmogorov entropy from a time series Physics Letters A 207(1-2): 77-82
Lawkins; Daw; Downing; Clapp 1993: Role of low-pass filtering in the process of attractor reconstruction from experimental chaotic time series Physical Review. E Statistical Physics Plasmas Fluids and Related Interdisciplinary Topics 47(4): 2520-2535
Stakhovsky, I. R. 2016: Attractor reconstruction from the time series of information entropy of seismic kinetics process Izvestiya, Physics of the Solid Earth 52(5): 740-753
Li, H.; Zhou, S. 2012: Kolmogorov ε-entropy of attractor for a non-autonomous strongly damped wave equation Communications in Nonlinear Science and Numerical Simulation 17(9): 3579-3586
Efendiev, M.A.; Zelik, S.V. 2002: Upper and Lower Bounds for the Kolmogorov Entropy of the Attractor for the RDE in an Unbounded Domain Journal of Dynamics and Differential Equations 14(2): 369-403
Yang, Y.; Zhang, B. 2017: On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ Discrete-Continuous Dynamical Systems - B 22(6): 2339-2350
Ataei, M.; Lohmann, B.; Khaki-Sedigh, A; Lucas, C. 2004: Model based method for estimating an attractor dimension from uni/multivariate chaotic time series with application to Bremen climatic dynamics Chaos, Solitons and Fractals 19(5): 1131-1139
Jia, X.; Zhao, C.; Yang, X. 2012: Global attractor and Kolmogorov entropy of three component reversible Gray–Scott model on infinite lattices Applied Mathematics and Computation 218(19): 9781-9789
Grassberger, P.; Procaccia, I. 1983: Estimation of the Kolmogorov entropy from a chaotic signal Physical Review. A, General Physics 28(4): 2591-2593
Perezmunuzuri, V. 1998: Forecasting of chaotic cloud absorption time series for meteorological and plume dispersion modeling Journal of Applied Meteorology (1988) 37(11): 1430-1443
Stynes, D.; Heffernan, D.M. 2001: Universality and scaling in chaotic attractor to chaotic attractor transitions in an optical ring cavity resonator Journal of Modern Optics 48(6): 1043-1058
Kanjamapornkul, K.; Pinčák, R. 2016: Kolmogorov space in time series data Mathematical Methods in the Applied Sciences 39(15): 4463-4483
Jayawardena, A.W.; Xu, P.; Li, W.K. 2010: Modified correlation entropy estimation for a noisy chaotic time series Chaos 20(2): 023104