Identification of organic solutes accumulated by purple and green sulphur bacteria during osmotic stress using natural abundance 13C nuclear magnetic resonance spectroscopy
David, T. Welsh; Rodney, A. Herbert
Fems Microbiology Ecology 13(2): 145-149
1993
ISSN/ISBN: 0168-6496
DOI: 10.1016/0168-6496(93)90032-3
Accession: 062310800
PDF emailed within 0-6 h: $19.90
Related References
Welsh, D.T.; Herbert, R.A. 1993: Identification of organic solutes accumulated by purple and green sulphur bacteria during osmotics stress using natural abundance 13C nuclear magnetic resonance spectroscopy FEMS (Federation of European Microbiological Societies) Microbiology Ecology 13(2): 145-150Fanso-Free, S.; Furst, G.; Srinivasan, P.; Lichter, R.; Nelson, R.; Panetta, J.; Gribble, G. 1979: Organic structure characterization by natural-abundance nitrogen-15 nuclear magnetic resonance spectroscopy. Rauwolfia alkaloids and model compounds Journal 101(6): 1549-1553
Hocking, A.; Norton, R. 1983: Natural-abundance 13C nuclear magnetic resonance studies on the internal solutes of xerophilic fungi Journal of general microbiology 129(9): 2915-2925
Larher, F. 1988: Natural abundance 13C-nuclear magnetic resonance studies on the compatible solutes of halophytic higher plants Plant Physiology and Biochemistry Paris 26(1): 35-45
Norton, R.S.; MacKay, M.A.; Borowitzka, L.J. 1982: The physical state of osmoregulatory solutes in unicellular algae. a natural-abundance carbon-13 nuclear-magnetic-resonance relaxation study Biochemical Journal 202(3): 699-706
Rosenberg, E.; Williamson, K.L.; Roberts, J.D. 1976: 15N nuclear magnetic resonance spectroscopy. Natural abundance 15N Nmr of monosubstituted indoles Magnetic Resonance in Chemistry 8(3): 117-119
Berman, E.; Allerhand, A.; DeVries, A.L. 1980: Natural abundance carbon 13 nuclear magnetic resonance spectroscopy of antifreeze glycoproteins Journal of Biological Chemistry 255(10): 4407-4410
Botto, R.E.; Westerman, P.W.; Roberts, J.D. 1978: 15N nuclear magnetic resonance spectroscopy. Natural-abundance 15N spectra of aliphatic oximes Magnetic Resonance in Chemistry 11(10): 510-515
Mazumder, A.; Kumar, A.; Dubey, D.K. 2013: High resolution ¹⁹F{¹H} nuclear magnetic resonance spectroscopy and liquid chromatography-solid phase extraction-offline ¹H nuclear magnetic resonance spectroscopy for conclusive detection and identification of cyanide in water samples Journal of Chromatography. a 1284: 88-99
Canioni, P.; Alger, J.R.; Shulman, R.G. 1983: Natural abundance Carbon-13 nuclear magnetic resonance spectroscopy of liver and adipose tissue of the living rat Biochemistry 22(21): 4974-4980
Gimenez-Miralles, J.; Guardiola, V.S.lazar, D.S.lana, I. 1995: Characterization of Valencian varietal grape musts by natural abundance deuterium nuclear magnetic resonance spectroscopy Acta Horticulturae 388: 53-58
Yoshida, M.; Kano, H.; Ishida, N.; Yoshida, T. 1989: Non-destructive analysis of the oil composition of soybean seeds by natural abundance carbon-13 nuclear magnetic resonance spectroscopy Agricultural and Biological Chemistry 53(5): 1395-1400
Pursiainen, J.; Pakkanen, P.A.; Smolander, K. 1987: Synthesis and characterisation of [N(PPh3)2][RuRh5(CO)16] by X-ray crystallography and by natural-abundance carbon-13 nuclear magnetic resonance spectroscopy Journal of the Chemical Society. Dalton Transactions (4): 781-784
Wilbur, D.J.; Allerhand, A. 1977: Observation of epsilon-N-trimethyllysine residues of proteins by natural abundance carbon-13 nuclear magnetic resonance spectroscopy Febs Letters 74(2): 272-274
Weigert, F.J.; Jautelat, M.; Roberts, J.D. 1968: Natural-abundance C nuclear magnetic resonance spectra of medium-molecular-weight organic compounds Proceedings of the National Academy of Sciences of the United States of America 60(4): 1152-1155