Fermentation of xylose and rice straw hydrolysate to ethanol byCandida shehataeNCL-3501
M Abbi; R C Kuhad; A Singh
Journal of Industrial Microbiology and Biotechnology 17(1): 20-23
1996
ISSN/ISBN: 1367-5435 DOI: 10.1007/bf01570143
Accession: 062532609
Candida shehatae NCL-3501 utilized glucose and xylose efficiently in batch cultures. The specific rate of ethanol production was higher with mixtures of glucose and xylose (0.64-0.83 g g-1 cells d-1) compared to that with individual sugars (0.38-0.58 g g-1 cells d-1). Although the optimum temperature for growth was 30 degrees C, this strain grew and produced appreciable levels of ethanol at 45 degrees C.
PDF emailed within 0-6 h: $19.90
Related References
Abbi, M.; Kuhad, R.C.; Singh, A. 1996: Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501 Journal of Industrial Microbiology 17(1): 20-23Sasaki, K.; Sasaki, D.; Sakihama, Y.; Teramura, H.; Yamada, R.; Hasunuma, T.; Ogino, C.; Kondo, A. 2013: Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration Bioresource Technology 147: 84-88
L, Z.D.V.. Mayerhoff; Roberto, I.C.; Silva, S.S. 1998: Production of xylitol byCandida mogiifrom rice straw hydrolysate Applied Biochemistry and Biotechnology 70-72(1): 149-159
Roberto, I.C.; Mancilha, I.M.; de, S.C.A.; Felipe, M.G.A.; Sato, S.; de, C.H.F. 1994: Evaluation of rice straw hemicellulose hydrolysate in the production of xylitol byCandida guilliermondii Biotechnology Letters 16(11): 1211-1216
Silva, Jão.Paulo.A.; Mussatto, S.Inês.; Roberto, Iês.C. 2010: The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate Applied Biochemistry and Biotechnology 162(5): 1306-1315
I C Roberto; S Sato; I M de Mancilha 1996: Effect of inoculum level on xylitol production from rice straw hemicellulose hydrolysate byCandida guilliermondii Journal of Industrial Microbiology and Biotechnology 16(6): 348-350
Harinder Singh Oberoi; Praveen, V. Vadlani; Khushal Brijwani; Vinod Kumar Bhargav; Ramabhau Tumadu Patil 2010: Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803 Process Biochemistry 45(8): 1299-1306
Huang, C.-F.; Lin, T.-H.; Guo, G.-L.; Hwang, W.-S. 2009: Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis Bioresource Technology 100(17): 3914-3920
Senatham, S.; Chamduang, T.; Kaewchingduang, Y.; Thammasittirong, A.; Srisodsuk, M.; Elliston, A.; Roberts, I.N.; Waldron, K.W.; Thammasittirong, S.N.-R. 2016: Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate Springerplus 5(1): 1040
Meethit, P.; Ratanaprasit, P.; Sakdaronnarong, C. 2016: Candida shehataeand Saccharomyces cerevisiaework synergistically to improve ethanol fermentation from sugarcane bagasse and rice straw hydrolysate in immobilized cell bioreactor Engineering in Life Sciences 16(8): 706-719
Sasaki, K.; Tsuge, Y.; Sasaki, D.; Teramura, H.; Inokuma, K.; Hasunuma, T.; Ogino, C.; Kondo, A. 2015: Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae Bioresource Technology 185: 263-268
Lopes, H.J.S.; Ramos, L.R.; de Menezes, C.A.; Silva, E.L. 2020: Simultaneous hydrogen and ethanol production in a thermophilic AFBR: a comparative approach between cellulosic hydrolysate single fermentation and the fermentation of glucose and xylose as co-substrates Cellulose 27(5): 2599-2612
Nielsen, F.; Zacchi, G.; Galbe, M.; Wallberg, O. 2017: Sequential Targeting of Xylose and Glucose Conversion in Fed-Batch Simultaneous Saccharification and Co-fermentation of Steam-Pretreated Wheat Straw for Improved Xylose Conversion to Ethanol Bioenergy Research 10(3): 800-810
Katahira, S.; Mizuike, A.; Fukuda, H.; Kondo, A. 2006: Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain Applied Microbiology and Biotechnology 72(6): 1136-1143
Amartey, S.; Leak, D.J.; Hartley, B.S. 1987: A continuous ethanol fermentation at 70 degrees C from straw hydrolysate Biomass for energy and industry 4th EC conference Proceedings of the international conference, Orleans, France, 11-15 May 1987: 648-652
Mayerhoff, Z.; Roberto, I.; Franco, T. 2001: Activity of xylose reductase from Candida mogii grown in media containing different concentrations of rice straw hydrolysate Applied biochemistry and biotechnologyng 91(91-93): 729-737
Mayerhoff, Z.D.; Roberto, I.C.; Franco, T.T. 2001: Activity of xylose reductase from Candida mogii grown in media containing different concentrations of rice straw hydrolysate Applied Biochemistry and Biotechnology 91-93: 729-737
Crespo, C.F.; Badshah, M.; Alvarez, M.T.; Mattiasson, B. 2012: Ethanol production by continuous fermentation of D-(+)-cellobiose, D-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis Bioresource Technology 103(1): 186-191
Panjiar, N.; Mattam, A.Jose.; Jose, S.; Gandham, S.; Velankar, H.Ravindra. 2020: Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodiphila Science of the Total Environment 729: 138933
Olofsson, K.; Runquist, D.; Hahn-Hägerdal, B.är.; Lidén, G. 2011: A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw Amb Express 1(1): 4