Basis set effect on hydrogen bond stabilization energy estimation of the Watson Crick type nucleic acid base pairs using medium-size basis sets: single point MP2 evaluations at the HF optimized structures
Kawahara, S-ichi; Uchimaru, T
Physical Chemistry Chemical Physics, PCCP 2(13): 2869-2872
2000
ISSN/ISBN: 1463-9076
DOI: 10.1039/b001507p
Accession: 062864722
PDF emailed within 0-6 h: $19.90
Related References
Kawahara, S.I.; Uchimaru, T. 2000: Basis set effect on hydrogen bond stabilization energy estimation of the Watson-Crick type nucleic acid base pairs using medium-size basis sets : single point MP2 evaluations at the HF optimized structures Pccp. Physical Chemistry Chemical Physics 2(13): 2869-2872Dabkowska, I.; Gonzalez, H.V.; Jurecka, P.; Hobza, P. 2005: Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels Journal of Physical Chemistry. a 109(6): 1131-1136
Kabelác, M.; Hobza, P. 2001: At nonzero temperatures, stacked structures of methylated nucleic acid base pairs and microhydrated nonmethylated nucleic acid base pairs are favored over planar hydrogen-bonded structures: a molecular dynamics simulations study Chemistry 7(10): 2067-2074
Rejnek, J.; Hobza, P. 2007: Hydrogen-bonded nucleic acid base pairs containing unusual base tautomers: complete basis set calculations at the MP2 and CCSD(T) levels Journal of Physical Chemistry. B 111(3): 641-645
Fan, W.J.; Zhang, R.Q.; Liu, S. 2007: Computation of large systems with an economic basis set: structures and reactivity indices of nucleic acid base pairs from density functional theory Journal of Computational Chemistry 28(5): 967-974
Koga, T.; Thakkar, A.J. 1993: Medium-size Gaussian basis sets for hydrogen through argon Theoretica Chimica Acta 85(5): 391-394
Mohajeri, A.; Nobandegani, F.F. 2008: Detection and evaluation of hydrogen bond strength in nucleic acid base pairs Journal of Physical Chemistry. a 112(2): 281-295
Inada, Y.; Orita, H. 2008: Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets Journal of Computational Chemistry 29(2): 225-232
Turner, D.H.; Sugimoto, N.; Kierzek, R.; Dreiker, S.D. 1987: Free energy increments for hydrogen bonds in nucleic acid base pairs Journal of the American Chemical Society 109(12): 3783-3785
Nowek, A. 1993: Medium-size polarized basis sets applicability for interaction energy calculations : He2 and Be2 van der Waals systems Collection of Czechoslovak Chemical Communications 58(8): 1739-1750
Martin, J.M.L.; Francois, J.P.; Gijbels, R. 1989: Combined bond-polarization basis sets for accurate determination of dissociation energies. II: Basis set superposition error as a function of the parent basis set Journal of Computational Chemistry 10(7): 875-886
Bryce, D.L.; Wasylishen, R.E. 2001: Modeling 2hJiso(N, N) in nucleic acid base pairs: ab initio characterization of the 2hJ(N, N) tensor in the methyleneimine dimer as a function of hydrogen bond geometry Journal of Biomolecular Nmr 19(4): 371-375
Šponer, Jří; Hobza, P 2000: Interaction Energies of Hydrogen-Bonded Formamide Dimer, Formamidine Dimer, and Selected DNA Base Pairs Obtained with Large Basis Sets of Atomic Orbitals Journal of Physical Chemistry A 104(19): 4592-4597
Görling, A.; Hesselmann, A.; Jones, M.; Levy, M. 2008: Relation between exchange-only optimized potential and Kohn-Sham methods with finite basis sets, and effect of linearly dependent products of orbital basis functions Journal of Chemical Physics 128(10): 104104
Faegri, K. 1987: Energy optimized Gaussian basis sets for the atoms T1-Rm Theoretica Chimica Acta 72(4): 297-301