Discriminating between the log-normal and generalized exponential distributions
Debasis Kundu; Rameshwar, D. Gupta; Anubhav Manglick
Journal of Statistical Planning and Inference 127(1-2): 213-227
2005
ISSN/ISBN: 0378-3758
DOI: 10.1016/j.jspi.2003.08.017
Accession: 063356637
PDF emailed within 0-6 h: $19.90
Related References
Gupta, R.D.; Kundu, D. 2004: Discriminating between gamma and generalized exponential distributions Journal of Statistical Computation and Simulation 74(2): 107-121Gupta, R.D.; Kundu, D. 2003: Discriminating between Weibull and generalized exponential distributions Computational Statistics and Data Analysis 43(2): 179-196
Raqab, M Z. 2013: Discriminating between the generalized Rayleigh and Weibull distributions Journal of Applied Statistics 40(7): 1480-1493
Gomezsanchezmanzano, E.; Gomezvillegas, M.A.; Marin, J.M. 2008: Multivariate Exponential Power Distributions as Mixtures of Normal Distributions with Bayesian Applications Communications in Statistics. Theory and Methods 37(6-7): 972-985
Shorgin, S.Y. 1998: Exponential bounds for generalized poisson distributions Journal of Mathematical Sciences 91(3): 2984-2989
Lye, J.N.; Martin, V.L. 1993: Robust estimation, nonnormalities, and generalized exponential distributions Journal of the American Statistical Association 88(421): 261-267
Abe, S. 2004: Stability analysis of generalized entropies and q-exponential distributions Physica. D 193(1-4): 84-89
Harris, C.M.; Sykes, E.A. 1987: Likelihood estimation for generalized mixed exponential distributions Naval Research Logistics 34(2): 251-279
Raschke, M 2015: Modeling of magnitude distributions by the generalized truncated exponential distribution Journal of Seismology 19(1): 265-271
Arabin Kumar, D.E.Y.; Kundu, D. 2010: Discriminating Between the Log-Normal and Log-Logistic Distributions Communications in Statistics. Theory and Methods 39(1-2): 280-292
Sum, S.T.; Oommen, B.J. 1995: Mixture decomposition for distributions from the exponential family using a generalized method of moments IEEE Transactions on Systems, Man, and Cybernetics 25(7): 1139-1149
Crowder, G.E.; Moore, A.H. 1983: Adaptive robust estimation based on a family of generalized exponential power distributions IEEE Transactions on Reliability 32(5): 488-495
Huzurbazar, A.V. 1999: Flowgraph models for generalized phase type distributions having non-exponential waiting times Scandinavian Journal of Statistics 26(1): 145-157
Qun, J.I.N.; Sugasawa, Y.; Seya, K. 1991: Analysis of Stochastic Petri Net model with non-exponential distributions using a generalized Markov Renewal Process Microelectronics and Reliability 31(5): 933-939
Jamalizadeh, A.; Balakrishnan, N. 2009: Order statistics from trivariate normal and tν-distributions in terms of generalized skew-normal and skew-tν distributions Conference on Multivariate Distributions with Fixed Marginals 139(11): 3799-3819