A new method of new exact solutions and solitary wave-like solutions for the generalized variable coefficients Kadomtsev Petviashvili equation
Jie-Jian, M; Jian-Rong, Y
Chinese Physics 15(12): 2804-2808
2006
DOI: 10.1088/1009-1963/15/12/007
Accession: 063430526
PDF emailed within 0-6 h: $19.90
Related References
Triki, H.; Taha, T.R.; Wazwaz, A. 2010: Solitary wave solutions for a generalized Kd V–m Kd V equation with variable coefficients Mathematics and Computers in Simulation 80(9): 1867-1873Zhang, W.; Li, S.; Tian, W.; Zhang, L. 2008: Exact solitary-wave solutions and periodic wave solutions for generalized modified Boussinesq equation and the effect of wave velocity on wave shape Acta Mathematicae Applicatae Sinica, English Series 24(4): 691-704
Sabry, R.; Zahran, M.; Fan, E. 2004: A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients Kd V equation Physics Letters A 326(1-2): 93-101
Li, Z.; Zhang, X. 2010: New exact kink solutions and periodic form solutions for a generalized Zakharov–Kuznetsov equation with variable coefficients Communications in Nonlinear Science and Numerical Simulation 15(11): 3418-3422
Javidi, M.; Golbabai, A. 2008: Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method Chaos, Solitons and Fractals 36(2): 309-313
Yue-yue Wang; Chao-qing Dai; Lei Wu; Jie-fang Zhang 2007: Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method Chaos, Solitons and Fractals 32(3): 1208-1214
Jibin Li; Yi Zhang 2009: Exact loop solutions, cusp solutions, solitary wave solutions and periodic wave solutions for the special CHDP equation Nonlinear Analysis: Real World Applications 10(4): 2502-2507
Tang, B.; Wang, X.; Fan, Y.; Qu, J. 2016: Exact Solutions for a Generalized Kd V-MKd V Equation with Variable Coefficients Mathematical Problems in Engineering 2016: 1-10
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 2004: New exact solutions for a generalized variable coefficients 2D KdV equation Chaos, Solitons and Fractals 19(5): 1083-1086
Gómez, C.A.; Salas, A.H. 2010: Exact Solutions for the Generalized BBM Equation with Variable Coefficients Mathematical Problems in Engineering 2010: 1-10
Taogetusang, ; Sirendaoreji, 2006: New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov Kuzentsov equation Chinese Physics 15(6): 1143-1148
Zhou, Q.; Ekici, M.; Sonmezoglu, A.; Manafian, J.; Khaleghizadeh, S.; Mirzazadeh, M. 2016: Exact solitary wave solutions to the generalized Fisher equation Optik 127(24): 12085-12092
M.M. Hassan 2004: Exact solitary wave solutions for a generalized KdVBurgers equation Chaos, Solitons and Fractals 19(5): 1201-1206
Bo-Kui, C; Song-Qiang, M; Bing-Hong, W 2010: Exact Solutions of Generalized Burgers Fisher Equation with Variable Coefficients Communications in Theoretical Physics 53(3): 443-449
Zhenya, Y.A.N. 2008: The modified KdV equation with variable coefficients : Exact uni/bi-variable travelling wave-like solutions Applied Mathematics and Computation 203(1): 106-112
Meng, Q.; He, B. 2013: Exact Peakon, Compacton, Solitary Wave, and Periodic Wave Solutions for a Generalized Kd V Equation Mathematical Problems in Engineering 2013: 1-19
Ming, S.O.N.G.; Shuguang, S.H.A.O. 2010: Exact solitary wave solutions of the generalized (2 + 1 ) dimensional Boussinesq equation Applied Mathematics and Computation 217(7): 3557-3563
Li, S.; Zhang, W.; Bu, X. 2017: Periodic wave solutions and solitary wave solutions of generalized modified Boussinesq equation and evolution relationship between both solutions Journal of Mathematical Analysis and Applications 449(1): 96-126
Kaya, D. 2006: The exact and numerical solitary-wave solutions for generalized modified Boussinesq equation Physics Letters A 348(3-6): 244-250
Sonmezoglu, A.; Ekici, M.; Moradi, M.; Mirzazadeh, M.; Zhou, Q. 2017: Exact solitary wave solutions to the new (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation Optik 128: 77-82