Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method
Yue-yue Wang; Chao-qing Dai; Lei Wu; Jie-fang Zhang
Chaos, Solitons and Fractals 32(3): 1208-1214
2007
ISSN/ISBN: 0960-0779 DOI: 10.1016/j.chaos.2005.11.071
Accession: 063565562
PDF emailed within 0-6 h: $19.90
Related References
Javidi, M.; Golbabai, A. 2008: Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method Chaos, Solitons and Fractals 36(2): 309-313Taogetusang, ; Sirendaoreji, 2006: New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov Kuzentsov equation Chinese Physics 15(6): 1143-1148
A.M. Wazwaz 2001: Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method Chaos, Solitons and Fractals 12(12): 2283-2293
Yue-Yue, W; Chao-Qing, D; Jie-Fang, Z 2009: Solitary Wave Solutions of Discrete Complex Ginzburg Landau Equation by Modified Adomian Decomposition Method Communications in Theoretical Physics 51(1): 81-89
Kaya, D. 2006: The exact and numerical solitary-wave solutions for generalized modified Boussinesq equation Physics Letters A 348(3-6): 244-250
Yong, C; Biao, L 2004: New Exact Travelling Wave Solutions for Generalized Zakharov Kuzentsov Equations Using General Projective Riccati Equation Method Communications in Theoretical Physics 41(1): 1-6
Dai, Z.; Xu, Y. 2011: Bifurcations of traveling wave solutions and exact solutions to generalized Zakharov equation and Ginzburg-Landau equation Applied Mathematics and Mechanics 32(12): 1615-1622
Ming, S.O.N.G.; Jionghui, C.A.I. 2010: Solitary wave solutions and kink wave solutions for a generalized Zakharov-Kuznetsov equation Applied Mathematics and Computation 217(4): 1455-1462
Jie-Jian, M; Jian-Rong, Y 2006: A new method of new exact solutions and solitary wave-like solutions for the generalized variable coefficients Kadomtsev Petviashvili equation Chinese Physics 15(12): 2804-2808
Awawdeh, F. 2012: New exact solitary wave solutions of the Zakharov–Kuznetsov equation in the electron–positron–ion plasmas Applied Mathematics and Computation 218(13): 7139-7143
Zhang, B.G.; Liu, Z.R.; Qing, X.I.A.O. 2010: New exact solitary wave and multiple soliton solutions of quantum Zakharov-Kuznetsov equation Applied Mathematics and Computation 217(1): 392-402
Biao, L.I.; Yong, C.H.E.N.; Hongqing, Z.H.A.N.G. 2003: Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation Applied Mathematics and Computation 146(2-3): 653-666
Betchewe, G.; Bouetou Bouetou, T.H.O.M.A.S.; Kuetche Kamgang, V.I.C.T.O.R.; Kofane Timoleon, C.R.E.P.I.N. 2010: Dynamical survey of a generalized-Zakharov equation and its exact travelling wave solutions Applied Mathematics and Computation 217(1): 203-211
Aslan, I. 2010: Generalized solitary and periodic wave solutions to a (2 + 1)-dimensional Zakharov-Kuznetsov equation Applied Mathematics and Computation 217(4): 1421-1429
Batool, F.; Akram, G. 2017: A novel approach for solitary wave solutions of the generalized fractional Zakharov-Kuznetsov equation Indian Journal of Physics 92(1): 111-119
Yu, J.; Wang, D.; Sun, Y.; Wu, S. 2016: Modified method of simplest equation for obtaining exact solutions of the Zakharov–Kuznetsov equation, the modified Zakharov–Kuznetsov equation, and their generalized forms Nonlinear Dynamics 85(4): 2449-2465
Bin, W; Sen-Yue, L 2002: Adomian Decomposition Method and Exact Solutions of the Perturbed KdV Equation Communications in Theoretical Physics 38(6): 649-652
Zhang, W.; Li, S.; Tian, W.; Zhang, L. 2008: Exact solitary-wave solutions and periodic wave solutions for generalized modified Boussinesq equation and the effect of wave velocity on wave shape Acta Mathematicae Applicatae Sinica, English Series 24(4): 691-704
Zhang, B.; Lu, J. 2011: Exact Solutions of Homogeneous Partial Differential Equation by a new Adomian Decomposition Method Procedia Environmental Sciences 11: 440-446
Macías-Díaz, J.E. 2013: On an exact numerical simulation of solitary-wave solutions of the Burgers–Huxley equation through Cardano's method BIT Numerical Mathematics 54(3): 763-776