Mathematical modeling of control systems for production processes with distributed parameters
Kulagina, L.V.
Chemical and Petroleum Engineering 43(5-6): 319-322
2007
ISSN/ISBN: 0009-2355 DOI: 10.1007/s10556-007-0057-1
Accession: 063586122
PDF emailed within 0-6 h: $19.90
Related References
Shipov, A.A.; Kondrachuk, A.V.; Sirenko, S.P. 1992: Mathematical modeling of the otoliths and semicircular canals as the systems with distributed parameters Physiologist 35(1 Suppl): S182-S183Smirnov, A.A. 1977: Mathematical description of the parameters of wood in automatic control systems for technological drying processes Lesnoi Zhurnal 2: 149-152
Danciu, D 2015: A CNN-based approach for a class of non-standard hyperbolic partial differential equations modeling distributed parameters (nonlinear) control systems Neurocomputing 164: 56-70
Simeonov, I.S. 1999: Mathematical modeling and parameters estimation of anaerobic fermentation processes Bioprocess Engineering 21(4): 377-381
Kirilin, N.I. 2004: Problems of the theory of estimating optimal parameters for automatic control systems for processes in agricultural production Mekhanizatsiya i Elektrifikatsiya Sel' skogo Khozyaistva 9: 7-9
Davidson, J.; Houle, J.L. 1988: Mathematical model for simulation of hierarchically distributed process control computer systems Automatica 24(5): 677-686
Nys, P.S.; Erdman, I.E.; Biryukov, V.V. 1986: Mathematical modeling and calculation of the optimal regimen parameters of biocatalytic processes Khimiko-Farmatsevticheskii Zhurnal 20(1): 77-83
Bashash, S.; Vora, K.; Jalili, N. 2011: Distributed-parameters modeling and control of rod-type solid-state actuators Journal of Vibration and Control 17(6): 813-825
Linninger, A.; Chowdhry, S.; Bahl, V.; Krendl, H.; Pinger, H. 2000: A systems approach to mathematical modeling of industrial processes Computers-Chemical Engineering 24(2-7): 591-598
Moiseev, N.N. 1984: Methodology of mathematical modeling of agricultural production processes Vestnik sel'skokhoziaistvennoi nauki: (1) 14-20
Babaei Pourkargar, D; Armaou, A 2015: Control of spatially distributed processes with unknown transport-reaction parameters via two layer system adaptations Aiche Journal 61(8): 2497-2507
Gromyko, G.; Chuiko, M.; Smychnik, A.; Hrechka, A.; Zlebava, A. 2007: Mathematical Modeling of Geofiltration and Geomigration Processes in Multilayer Systems Computational Methods in Applied Mathematics 7(2): 163-177
Viskanta, R. 1990: Mathematical modeling of transport processes during solidification of binary systems Jsme International Journal. Series 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties 33(3): 409-423
Lesyuk, E.A. 2009: Physical-Mathematical Modeling of Thermal Processes in Cold Systems Heat Transfer Research 40(2): 117-126
Sklyarov, Y.S. 1993: Optimal control in systems with distributed parameters of hyperbolic type Journal of Mathematical Sciences 65(2): 1544-1550
Jacobsen, O.S. 1979: Mathematical modeling for water pollution control processes Ecological Modelling 6(2): 173-174
Kliueva, N.Z.; Panin, A.I. 1984: Mathematical modeling of control processes in the respiratory system Doklady Akademii Nauk SSSR 274(5): 1269-1271
Cocheci, V.; Craiu, C.; Botea, M. 1985: Mathematical modeling of the anaerobic fermentation processes for biomethane production Revista de Chimie 36(4): 324-325
Burak Ya, I.; Nagirnyi, T.S. 1992: Mathematical modeling of local gradient processes in inertial thermomechanical systems International Applied Mechanics 28(12): 775-793
Menshutkin, V.V.; Natochin, I.V. 2011: Quantum processes in evolution of regulation of living system (mathematical modelling) Zhurnal Evoliutsionnoi Biokhimii i Fiziologii 47(3): 260-266