Some new exact solutions to the Burgers Fisher equation and generalized Burgers Fisher equation
Lu, J; Yu-Cui, G; Shu-Jiang, X
Chinese Physics 16(9): 2514-2522
2007
DOI: 10.1088/1009-1963/16/9/005
Accession: 063613705
Full Text Article emailed within 0-6 h
Payments are secure & encrypted

Related References
Vitanov, N.K.; Dimitrova, Z.I.; Kantz, H. 2013: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg–de Vries equation and generalized Camassa–Holm equation Applied Mathematics and Computation 219(14): 7480-7492Taogetusang, ; Sirendaoreji, 2006: New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov Kuzentsov equation Chinese Physics 15(6): 1143-1148
Dai, Z.; Xu, Y. 2011: Bifurcations of traveling wave solutions and exact solutions to generalized Zakharov equation and Ginzburg-Landau equation Applied Mathematics and Mechanics 32(12): 1615-1622
Mahmud, F.; Samsuzzoha, M.; Akbar, M.A. 2017: The generalized Kudryashov method to obtain exact traveling wave solutions of the PHI-four equation and the Fisher equation Results in Physics 7: 4296-4302
Yulan, M.A.; Bangqing, L.I.; Cong, W.A.N.G. 2009: A series of abundant exact travelling wave solutions for a modified generalized Valchnenko equation using auxiliary equation method Applied Mathematics and Computation 211(1): 102-107
Petrović, N.Z.; Aleksić, N.B.; Belić, M. 2015: Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrödinger equation and the Gross-Pitaevskii equation using a variational approach Optics Express 23(8): 10616-10630
Cuicui Kong; Dan Wang; Lina Song; Hongqing Zhang 2009: New exact solutions to MKDV-Burgers equation and (2 + 1)-dimensional dispersive long wave equation via extended Riccati equation method Chaos, Solitons and Fractals 39(2): 697-706
Yu, J.; Wang, D.; Sun, Y.; Wu, S. 2016: Modified method of simplest equation for obtaining exact solutions of the Zakharov–Kuznetsov equation, the modified Zakharov–Kuznetsov equation, and their generalized forms Nonlinear Dynamics 85(4): 2449-2465
Moshinskij, A.I. 1986: Solutions exactes de l'équation décrivant la cristallisation en masse à partir de solutions - On exact solutions of the equation describing mass crystallization from melts Kristallografia 31(2): 219-225
Li, L.; Xie, Y.; Zhu, S. 2018: New exact solutions for a generalized Kd V equation Nonlinear Dynamics 92(2): 215-219
Sabry, R.; Zahran, M.; Fan, E. 2004: A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients Kd V equation Physics Letters A 326(1-2): 93-101
Xie, Y.; Tang, S.; Feng, D. 2012: New exact solutions to the generalized Kd V equation with generalized evolution Pramana 78(4): 499-511
Kudryashov, N.A.; Sinelshchikov, D.I.; Demina, M.V. 2011: Exact solutions of the generalized Bretherton equation Physics Letters A 375(7): 1074-1079
Su, J.; Xu, G. 2016: New Exact Solutions for the (3+1)-Dimensional Generalized BKP Equation Discrete Dynamics in Nature and Society 2016: 1-9
Zhang, J.; Li, S. 2011: Bifurcations of Traveling Wave Solutions and Exact Solutions for the Generalized Schrödinger Equation International Journal of Bifurcation and Chaos 21(09): 2623-2628
Grisvard, P. 1989: Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités - Exact controllability of solutions of the wave equation with singularities Journal de Mathematiques Pures et Appliquees 68(2): 215-259
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 2004: New exact solutions for a generalized variable coefficients 2D KdV equation Chaos, Solitons and Fractals 19(5): 1083-1086
Cherniha, R.; Dutka, V.' 2001: Exact and numerical solutions of the generalized fisher equation Reports on Mathematical Physics 47(3): 393-411
Pathria, D.; Morris, J.L. 1989: Exact solutions for a generalized nonlinear Schrödinger equation Physica Scripta 39(6): 673-679
Hua, G.A.O.; Zhao, R.X. 2010: New exact solutions to the generalized Burgers―Huxley equation Applied Mathematics and Computation 217(4): 1598-1603