Unsupervised texture classification: Automatically discover and classify texture patterns
Lei Qin; Qingfang Zheng; Shuqiang Jiang; Qingming Huang; Wen Gao
Image and Vision Computing 26(5): 647-656
2008
ISSN/ISBN: 0262-8856
DOI: 10.1016/j.imavis.2007.08.003
Accession: 063737002
PDF emailed within 0-6 h: $19.90
Related References
Ojala, T.; Pietikainen, M. 1999: Unsupervised texture segmentation using feature distributions : Color and Texture Analysis Pattern Recognition 32(3): 477-486Lee, K.L.; Chen, L.H. 2001: Unsupervised texture segmentation by determining the interior of texture regions based on wavelet transform International Journal of Pattern Recognition and Artificial Intelligence 15(8): 1231-1250
Bhushan, N.; Ravishankar Rao, A.; Lohse, G.L. 1997: The texture lexicon : Understanding the categorization of visual texture terms and their relationship to texture images - Lexique et texture. Pour comprendre la catégorisation des termes de texture visuelle et leurs relations avec des images de textures Cognitive Science 21(2): 219-246
Sidorova, V.S. 2008: Unsupervised classification of image texture Pattern Recognition and Image Analysis (Advances in Mathematical Theory 18(4): 693-699
Dongchen, H.E.; Li, W.A.N.G. 1992: Unsupervised textural classification of images using the texture spectrum Pattern Recognition 25(3): 247-255
Tscheuschner, H.D.; Markov, E. 1987: Instrumental texture studies on chocolate. III. Processing conditioned factors influencing the texture - Etude instrumentale de la texture du chocolat. III. Facteurs dépendant de la technologie et influençant la texture Journal of Texture Studies 17(4): 377-399
Chamundeeswari, V.V.; Singh, D.; Singh, K. 2009: An Analysis of Texture Measures in PCA-Based Unsupervised Classification of SAR Images IEEE Geoscience and Remote Sensing Letters 6(2): 214-218
Twarakavi, N.K.C.; Simunek, J.; Schaap, M.G. 2010: Can texture-based classification optimally classify soils with respect to soil hydraulics? Water Resources Research 46.1
Sidorova, V.S. 2009: Unsupervised classification of a forest's image by texture model features Pattern Recognition and Image Analysis (Advances in Mathematical Theory 19(4): 698-703
Kayabol, K.; Zerubia, J. 2013: Unsupervised amplitude and texture classification of SAR images with multinomial latent model IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 22(2): 561-572
Raghu, P.P.; Poongodi, R.; Yegnanarayana, B. 1997: Unsupervised texture classification using vector quantization and deterministic relaxation neural network IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 6(10): 1376-1387
Velloso, M.L.F.; Souza, F.J.; Almeida, N.N. 2004: Fuzzy texture unsupervised classification approach using conditional local variance model International Conference of the North American Fuzzy Information Processing Society: 491-495
Tidu, A.; Vadon, A.; Heizmann, J.J. 1989: Taking into account the texture effect in the measurement of residual stresses by using the vector method of texture analysis - Prise en compte de l'influence de la texture dans la mesure des contraintes résiduelles par l'utilisation de la méthode vectorielle d'analyse de texture Annual Conference on Applications of X-Ray Analysis 37 (Steamboat Springs 1988) 32: 423-428
Cariou, C.; Chehdi, K. 2008: Unsupervised texture segmentation/classification using 2-D autoregressive modeling and the stochastic expectation-maximization algorithm Pattern Recognition Letters 29(7): 905-917
Huber, M.B.; Bunte, K.; Nagarajan, M.B.; Biehl, M.; Ray, L.A.; Wismüller, A. 2012: Texture feature ranking with relevance learning to classify interstitial lung disease patterns Artificial Intelligence in Medicine 56(2): 91-97