Travelling Solitary Wave Solutions for Generalized Time-delayed Burgers Fisher Equation
Xi-Jun, D; Li-Bo, H; Xi, L
Communications in Theoretical Physics 52(2): 284-286
2009
ISSN/ISBN: 0253-6102 DOI: 10.1088/0253-6102/52/2/19
Accession: 063867599
Full Text Article emailed within 0-6 h: $19.90
Related References
Zhang, W.; Li, S.; Tian, W.; Zhang, L. 2008: Exact solitary-wave solutions and periodic wave solutions for generalized modified Boussinesq equation and the effect of wave velocity on wave shape Acta Mathematicae Applicatae Sinica, English Series 24(4): 691-704Xie, S.; Lin, Q.; Gao, B. 2011: Periodic and solitary travelling-wave solutions of a CH–DP equation Communications in Nonlinear Science and Numerical Simulation 16(10): 3941-3948
Parkes, E.; Duffy, B. 1997: Travelling solitary wave solutions to a compound Kd V-Burgers equation Physics Letters A 229(4): 217-220
Taogetusang, ; Sirendaoreji, 2006: New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov Kuzentsov equation Chinese Physics 15(6): 1143-1148
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 2009: Solitary wave solutions for a time-fraction generalized Hirota Satsuma coupled KdV equation by an analytical technique Applied Mathematical Modelling 33(7): 3107-3113
Lou, S-Yue; Chen, D-Fang 1993: Deforming the Travelling Wave Solutions of the KdV Equation to Those of the Generalized Fifth Order KdV Equation Communications in Theoretical Physics 19(2): 247-252
Li, S.; Zhang, W.; Bu, X. 2017: Periodic wave solutions and solitary wave solutions of generalized modified Boussinesq equation and evolution relationship between both solutions Journal of Mathematical Analysis and Applications 449(1): 96-126
Peng, G.; Li, C. 2002: On new travelling wave solutions of the generalized K-S equation Journal of Shanghai University (English Edition) 6(4): 288-291
E.J. Parkes 2008: Some periodic and solitary travelling-wave solutions of the short-pulse equation Chaos, Solitons and Fractals 38(1): 154-159
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 2003: Exact travelling wave solutions for the generalized shallow water wave equation Chaos, Solitons and Fractals 17(1): 121-126
Parkes, E.; Zhu, Z.; Duffy, B.; Huang, H. 1998: Sech-polynomial travelling solitary-wave solutions of odd-order generalized Kd V equations Physics Letters A 248(2-4): 219-224
Yulan, M.A.; Bangqing, L.I.; Cong, W.A.N.G. 2009: A series of abundant exact travelling wave solutions for a modified generalized Valchnenko equation using auxiliary equation method Applied Mathematics and Computation 211(1): 102-107
Xinghua, F.A.N.; Shouxiang, Y.A.N.G.; Jiuli, Y.I.N.; Lixin, T.I.A.N. 2011: Peakon, loop and solitary travelling wave solutions for the general modified CH-DP equation Applied Mathematics and Computation 217(9): 4812-4818
Yijun, L.O.U. 2007: Bifurcation of travelling wave solutions in generalized phi-four equation Applied Mathematics and Computation 190(1): 517-525
Cai-Min Wei; Jian-Jun Wang 2008: Travelling wave solutions to the generalized stochastic KdV equation Chaos, Solitons and Fractals 37(3): 733-740
Shengqiang, T.A.N.G.; Xiaoliang, H.U.A.N.G.; Wentao, H.U.A.N.G. 2010: Bifurcations of travelling wave solutions for the generalized KP―BBM equation Applied Mathematics and Computation 216(10): 2881-2890
Shengqiang, T.A.N.G.; Jianxian, Z.H.E.N.G.; Wentao, H.U.A.N.G. 2009: Travelling wave solutions for a class of generalized KdV equation Applied Mathematics and Computation 215(7): 2768-2774
Abdelkader, M. A. 1982: Travelling wave solutions for a generalized Fisher equation Journal of Mathematical Analysis and Applications 85(2): 287-290
Petrović, N.Z.; Aleksić, N.B.; Bastami, A.A.; Belić, M.R. 2011: Analytical traveling-wave and solitary solutions to the generalized Gross-Pitaevskii equation with sinusoidal time-varying diffraction and potential Physical Review. e Statistical Nonlinear and Soft Matter Physics 83(3 Part 2): 036609
Malwe, B.H.; Betchewe, G.; Doka, S.Y.; Kofane, T.C. 2015: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method Nonlinear Dynamics 84(1): 171-177