Calibrated linear unbiased estimators in finite population sampling
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L.
Journal of Statistical Planning and Inference 140(3): 652-658
2010
ISSN/ISBN: 0378-3758 DOI: 10.1016/j.jspi.2009.08.008
Accession: 063895401
PDF emailed within 0-6 h: $19.90
Related References
Mourya, K. K.; Sisodia, B. V. S.; Kumar, S.; Singh, A. 2016: Calibrated Estimators of Finite Population Parameters in Unequal Cluster SAMPLING International Journal of Agricultural and Statistical Sciences 12(2): 471-476Singh, G.; Prasad, S.; Majhi, D. 2012: Best linear unbiased estimators of population variance in successive sampling Model Assisted Statistics and Applications 7(3): 169-178
Huang, K. 2009: Unbiased estimators of mean, variance and sensitivity level for quantitative characteristics in finite population sampling Metrika 71(3): 341-352
Sugden, R.A.; Fred Smith, T.M. 2007: Design-Based properties of linear calibrated estimators of a finite population total International Statistical Review 75(2): 218-223
Jozani, M.J.; Majidi, S.; Perron, F. 2012: Unbiased and almost unbiased ratio estimators of the population mean in ranked set sampling Statistical Papers 53(3): 719-737
Prasad, B. 1986: Some unbiased estimators versus mean per unit and ratio estimators in finite population sample surveys Communications in Statistics. Theory and Methods 15(12): 3647-3657
Barreto, M.C.cilia Mendes; Barnett, V. 1999: Best linear unbiased estimators for the simple linear regression model using ranked set sampling Environmental and Ecological Statistics 6(2): 119-133
Sharma, S.S. 1970: On an estimator in T3-class of linear estimators in sampling with varying probabilities from a finite population Annals of the Institute of Statistical Mathematics 22(1): 495-500
Haq, A.; Brown, J.; Moltchanova, E. 2015: Improved best linear unbiased estimators for the simple linear regression model using double ranked set sampling schemes Communications in Statistics - Theory and Methods 45(12): 3541-3561
Singh, H.P.; Biradar, R.S. 1992: Almost unbiased ratio-cum-product estimators for the finite population mean Test 1(1): 19-29
Lih-Yuan Deng and Raj, S. Chhikara 1991: On Asymptotically Design-Unbiased Estimators of a Finite Population Mean Biometrika 78(1): 189-195
Mickey, M.R. 1959: Some finite population unbiased ratio and regression estimators J. American Stat. Ass, Menasha, Wisc., Sept. 54(287): 594-612
Chang, H.; Huang, K. 2001: On constructing almost unbiased estimators of finite population mean using transformed auxiliary variable Statistical Papers 42(4): 505-515
Tranquilli, G.B. 1992: An admissibility condition in the class of unbiased estimators of finite population parameters Journal of the Italian Statistical Society 1(1): 131-141
Prasad, B.; Singh, H.P. 1992: Unbiased estimators of finite population variance using auxiliary information in sample surveys Communications in Statistics. Theory and Methods 21(5): 1367-1376
Tapan, K. Nayak 2003: Finding optimal estimators in survey sampling using unbiased estimators of zero Journal of Statistical Planning and Inference 114(1-2): 21-30
Kungjong, L.U.I. 1990: Modified product estimators of finite population mean in finite sampling Communications in Statistics. Theory and Methods 19(10): 3799-3807
Lieberman, O. 1998: Miscellanea. From unbiased linear estimating equations to unbiased estimators Biometrika 85(1): 244-250
Offer Lieberman 1998: From Unbiased Linear Estimating Equations to Unbiased Estimators Biometrika 85(1): 244-250
Milliken, G.A.; Mohammed, A.L.B.O.H.A.L.I. 1984: On necessary and sufficient conditions for ordinary least squares estimators to be best linear unbiased estimators The American Statistician 38(4): 298-299