Unsupervised and supervised classification of hyperspectral imaging data using projection pursuit and Markov random field segmentation
Sarkar, A.; Vulimiri, A.; Paul, S.; Iqbal, J; Banerjee, A.; Chatterjee, R.; Ray, S. S.
International Journal of Remote Sensing 33(18): 5799-5818
2012
ISSN/ISBN: 0143-1161 DOI: 10.1080/01431161.2012.670959
Accession: 064261808
PDF emailed within 0-6 h: $19.90
Related References
Fang, Y.; Xu, L.; Peng, J.; Yang, H.; Wong, A.; Clausi, D.A. 2018: Unsupervised Bayesian Classification of a Hyperspectral Image Based on the Spectral Mixture Model and Markov Random Field IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11(9): 3325-3337Chiang, S.S.; Chang, C.I.; Ginsberg, I.W. 2001: Unsupervised target detection in hyperspectral images using projection pursuit : Analysis of hyperspectral image data IEEE Transactions on Geoscience and Remote Sensing 39(7): 1380-1391
Daniels, C.J.; Gallagher, F.A. 2018: Unsupervised Segmentation of 5D Hyperpolarized Carbon-13 MRi Data Using a Fuzzy Markov Random Field Model IEEE Transactions on Medical Imaging 37(4): 840-850
Rellier, G.; Descombes, X.; Falzon, F.; Zerubia, J. 2003: Classification de textures hyperspectrales fondée sur un modèle markovien et une technique de poursuite de projection - Hyperspectral texture classification using a markov model and a projection pursuit technique Ts. Traitement du Signal 20(1): 25-42
Jimenez, L.O.; Landgrebe, D.A. 1999: Hyperspectral data analysis and supervised feature reduction via projection pursuit IEEE Transactions on Geoscience and Remote Sensing 37(6): 2653-2667
Sun, L; Wu, Z; Liu, J; Xiao, L; Wei, Z 2015: Supervised Spectral–Spatial Hyperspectral Image Classification With Weighted Markov Random Fields IEEE Transactions on Geoscience and Remote Sensing 53(3): 1490-1503
Xie, L.; Pan, P.; Lu, Y. 2014: Markov random field based fusion for supervised and semi-supervised multi-modal image classification Multimedia Tools and Applications 74(2): 613-634
Barker, S.; Rayner, P. 2000: Unsupervised image segmentation using Markov random field models Pattern Recognition 33(4): 587-602
Manjunath, B.S.; Chellappa, R. 1991: Unsupervised texture segmentation using Markov random field models IEEE Transactions on Pattern Analysis and Machine Intelligence 13(5): 478-482
Panjwani, D.; Healey, G. 1995: Markov random field models for unsupervised segmentation of textured color images IEEE Transactions on Pattern Analysis and Machine Intelligence 17(10): 939-954
Cordero-Grande, L.; Vegas-Sánchez-Ferrero, G.; Casaseca-de-la-Higuera, P.; San-Román-Calvar, J.A.; Revilla-Orodea, A.; Martín-Fernández, M.; Alberola-López, C. 2011: Unsupervised 4D myocardium segmentation with a Markov Random Field based deformable model Medical Image Analysis 15(3): 283-301
Huawu Deng; Clausi, D.A. 2005: Unsupervised segmentation of synthetic aperture Radar sea ice imagery using a novel Markov random field model IEEE Transactions on Geoscience and Remote Sensing 43(3): 528-538
Li, B.; Chen, W.-f. 2007: A new unsupervised algorithm for image segmentation based on an inhomogeneous Markov random field model Nan Fang Yi Ke da Xue Xue Bao 27(11): 1646-1648
Song, W.; Li, M.; Zhang, P.; Wu, Y.; Jia, L.; An, L. 2017: Unsupervised Pol SAR Image Classification and Segmentation Using Dirichlet Process Mixture Model and Markov Random Fields with Similarity Measure IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10(8): 3556-3568
Ifarraguerri, A.; Chang, C.I. 2000: Unsupervised hyperspectral image analysis with projection pursuit IEEE Transactions on Geoscience and Remote Sensing 38(6): 2529-2538
O, N.K.; Kim, C. 2015: Unsupervised Texture Segmentation of Natural Scene Images Using Region-based Markov Random Field Journal of Signal Processing Systems 83(3): 423-436
Chaobo, M.I.N.; Junju, Z.H.A.N.G.; Bengkang, C.H.A.N.G.; Bin, S.U.N.; Yingjie, L.I. 2014: Unsupervised evaluation method using Markov random field for moving object segmentation in infrared videos Iet Image Processing 8(7): 426-433
Chen, Y.; Xu, L.; Fang, Y.; Peng, J.; Yang, W.; Wong, A.; Clausi, D.A. 2021: Unsupervised Bayesian Subpixel Mapping of Hyperspectral Imagery Based on Band-Weighted Discrete Spectral Mixture Model and Markov Random Field IEEE Geoscience and Remote Sensing Letters 18(1): 162-166
Kervrann, C.; Heitz, F. 1995: A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 4(6): 856-862
Fan, S.; Bian, Y.; Chen, H.; Kang, Y.; Yang, Q.; Tan, T. 2019: Unsupervised Cerebrovascular Segmentation of TOF-MRA Images Based on Deep Neural Network and Hidden Markov Random Field Model Frontiers in Neuroinformatics 13: 77