+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Diagnostic performance of transluminal attenuation gradient and non-invasive fractional flow reserve derived from 320 detector computed tomography angiography to diagnose haemodynamically significant coronary stenosis- a NXT substudy



Diagnostic performance of transluminal attenuation gradient and non-invasive fractional flow reserve derived from 320 detector computed tomography angiography to diagnose haemodynamically significant coronary stenosis- a NXT substudy



Heart Lung & Circulation 24: S334-S335




Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 064656405

Download citation: RISBibTeXText

DOI: 10.1016/j.hlc.2015.06.521


Related references

Diagnostic Performance of Transluminal Attenuation Gradient and Noninvasive Fractional Flow Reserve Derived from 320-Detector Row CT Angiography to Diagnose Hemodynamically Significant Coronary Stenosis: An NXT Substudy. Radiology 279(1): 75-83, 2016

Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. Journal of the American College of Cardiology 61(12): 1271-1279, 2013

Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve. Jacc. Cardiovascular Imaging 5(11): 1088-1096, 2013

Comparison of diagnostic accuracy of combined assessment using adenosine stress computed tomography perfusion + computed tomography angiography with transluminal attenuation gradient + computed tomography angiography against invasive fractional flow reserve. Journal of the American College of Cardiology 63(18): 1904-1912, 2014

Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies. International Journal of Cardiovascular Imaging 31(6): 1251-1259, 2016

Performance of computed tomography-derived fractional flow reserve using reduced-order modelling and static computed tomography stress myocardial perfusion imaging for detection of haemodynamically significant coronary stenosis. European Heart Journal Cardiovascular Imaging 19(11): 1234-1243, 2018

Meta-Analysis of Diagnostic Performance of Coronary Computed Tomography Angiography, Computed Tomography Perfusion, and Computed Tomography-Fractional Flow Reserve in Functional Myocardial Ischemia Assessment Versus Invasive Fractional Flow Reserve. American Journal of Cardiology 116(9): 1469-1478, 2016

Comparison Between Non-invasive (Coronary Computed Tomography Angiography Derived) and Invasive-Fractional Flow Reserve in Patients with Serial Stenoses Within One Coronary Artery: A NXT Trial substudy. Annals of Biomedical Engineering 44(2): 580-589, 2016

Diagnostic performance of intracoronary gradient-based methods by coronary computed tomography angiography for the evaluation of physiologically significant coronary artery stenoses: a validation study with fractional flow reserve. European Heart Journal Cardiovascular Imaging 13(12): 1001-1007, 2013

Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in ischemia-causing coronary stenosis: a meta-analysis. Japanese Journal of Radiology 34(12): 795-808, 2016

Diagnostic performance of machine-learning-based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR. International Journal of Cardiovascular Imaging 34(12): 1987-1996, 2018

Fractional flow reserve derived by coronary computed tomography angiography : A sophisticated analysis method for detecting hemodynamically significant coronary stenosis. Herz 42(6): 604-606, 2016

Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). Journal of the American College of Cardiology 63(12): 1145-1155, 2014

Combined diagnostic performance of coronary computed tomography angiography and computed tomography derived fractional flow reserve for the evaluation of myocardial ischemia: A meta-analysis. International Journal of Cardiology 236: 100-106, 2017

Fractional flow reserve derived from coronary computed tomography angiography: diagnostic performance in hypertensive and diabetic patients. European Heart Journal Cardiovascular Imaging 18(12): 1351-1360, 2016